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Abstract. The edge metric dimension problem was recently introduced,
which initiated the study of its mathematical properties. The theoretical
properties of the edge metric representations and the edge metric dimen-
sion of generalized Petersen graphs GP (n, k) are studied in this paper.
We prove the exact formulae for GP (n, 1) and GP (n, 2), while for other
values of k a lower bound is stated.
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1. Introduction

The concept of the metric dimension of graph G was introduced independently
by Slater [1] and Harary and Melter [2]. This concept is based on the notion
of a resolving set R of vertices, which has the property that each vertex is
uniquely identified by its metric representation with respect to R. The minimal
cardinality of resolving sets is called the metric dimension of the graph G.

1.1. Literature Review

Kelenc et al. [3] recently introduced a similar concept of edge metric dimension
and initiated the study of its mathematical properties. They made a compar-
ison between the edge metric dimension and the standard metric dimension
of graphs while presenting realization results concerning the edge metric di-
mension and the standard metric dimension of graphs. They also proved that
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the edge metric dimension problem is NP-hard and provided approximation
results. Additionally, for several classes of graphs, exact values for the edge
metric dimension were presented, while several others were given upper and
lower bounds. In [4] and [5], the authors presented results of the mixed metric
dimension alongside the edge metric dimension for some classes of graphs. Ad-
ditionally, Peterin and Yero [6], provided exact formulas for join, lexicographic
and corona products of graphs.

Zubrilina [7], firstly proposed the classification of graphs of n vertices for
which the edge metric dimension is equal to its upper bound n−1. The second
result states that the ratio between the edge metric dimension and the metric
dimension of an arbitrary graph is not bounded from above. The third result
characterizes the change of the edge dimension of an arbitrary graph upon
taking a Cartesian product with a path, and changes of the edge dimension
upon adding a vertex adjacent to all the original vertices. The edge metric
dimension of the Erdös-Rényi random graph G(n, p) is given by Zubrilina [8]
and it is equal to (1 + o(1)) · 4log(n)

log(1/q) , where q = 1 − 2p(1 − p)2(2 − p).
Independently, Epstein et al. [9], introduced another edge metric dimen-

sion definition related to the line graphs, where a line graph of a graph G(V,E)
is defined as: L(G) = (E,F ) where F = {eiej |ei, ej ∈ E, ei is incident with ej}.
Their edge metric dimension of a graph G is defined as the metric dimension
of L(G), which is called edge variant of metric dimension by some authors,
e.g. Liu et al. [10].

1.2. Generalized Petersen Graphs

Generalized Petersen graphs were first studied by Coxeter [11]. Each such
graph, denoted as GP (n, k), is defined for n ≥ 3 and 1 ≤ k < n/2. It has 2n
vertices and 3n edges, with vertex set V (GP (n, k)) = {ui, vi | 0 ≤ i ≤ n − 1}
and edge set E(GP (n, k)) = {uiui+1, uivi, vivi+k | 0 ≤ i ≤ n − 1}. It should
be noted that vertex indices are taken modulo n.

Example. Consider the Petersen graph, numbered GP (5, 2), shown in Fig. 1.
It is easily calculated by using the total enumeration technique, that its edge
metric dimension is equal to 4 (it is also presented in Table 6). Figure 2 shows
GP (6, 1) where the edge metric dimension equals 3. This can also be concluded
by Theorem 2.4.

The metric dimension of generalized Petersen graphs GP (n, k) is studied
for different values of k:

• Case k = 1 is concluded in [12];
• Case k = 2 is proven in [13];
• Case k = 3 in [14].

Various other properties of generalized Petersen graphs have recently
been theoretically investigated in the following areas: Hamiltonian property
[15], the cop number [16], the total coloring [17], etc.
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Figure 1. Petersen graph GP(5,2)—edge metric base is col-
ored red (color figure online)
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Figure 2. Graph GP(6,1)—edge metric base is colored red
(color figure online)

1.3. Definitions and Previous Work

Given a simple connected undirected graph G = (V,E), by d(u, v) we denote
the distance between two vertices u, v ∈ V , i.e. the length of a shortest u − v
path. A vertex x of the graph G is said to resolve two vertices u and v of G if
d(x, u) �= d(x, v). An ordered vertex set R = {x1, x2, ..., xk} of G is a resolving
set of G if every two distinct vertices of G are resolved by some vertex of
R. A metric basis of G is a resolving set of minimum cardinality. The metric
dimension of G, denoted by β(G), is the cardinality of its metric basis.

Similarly, for a given connected graph G, a vertex w ∈ V , and an edge
uv ∈ E, the distance between the vertex w and the edge uv is defined as
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Table 1. Edge metric representations for GP (6, 1) with re-
spect to S1

e r(e) e r(e)

u0u1 (0, 0, 2) u0u5 (0, 1, 2)
u0v0 (0, 1, 3) u1u2 (1, 0, 1)
u1v1 (1, 0, 2) u2u3 (2, 1, 0)
u2v2 (2, 1, 1) u3u4 (2, 2, 0)
u3v3 (3, 2, 0) u4u5 (1, 2, 1)
u4v4 (2, 3, 1) u5v5 (1, 2, 2)
v0v1 (1, 1, 3) v0v5 (1, 2, 3)
v1v2 (2, 1, 2) v2v3 (3, 2, 1)
v3v4 (3, 3, 1) v4v5 (2, 3, 2)

d(w, uv) = min{d(w, u), d(w, v)}. A vertex w ∈ V resolves two edges e1 and
e2 (e1, e2 ∈ E), if d(w, e1) �= d(w, e2). A set S of vertices in a connected graph
G is an edge metric generator for G if every two edges of G are resolved by
some vertex of S. The smallest cardinality of an edge metric generator of G
is called the edge metric dimension and is denoted by βE(G). An edge metric
basis for G is the edge metric generator of G with cardinality βE(G). Given an
edge e ∈ E and an ordered vertex set S = {x1, x2, ..., xk}, the k-touple r(e, S)
= (d(e, x1), d(e, x2), ..., d(e, xk)) is called the edge metric representation of e
with respect to S.

Example. Consider the generalized Petersen graph GP (6, 1) given in Fig. 2.
The set S1 = {u0, u1, u3} is an edge metric generator for G since the vectors
of metric coordinates for edges of G with respect to S1 are mutually different.
This can be seen in Table 1.

From Corollary 2.3, it holds that for GP (6, 1), as for any other generalized
Petersen graph, the cardinality of an edge metric generator must be at least
3, so S1 is an edge metric basis for GP (6, 1). This implies that its edge metric
dimension is equal to 3, i.e. βE(GP (6, 1)) = 3.

Two edges are incident, if both contain one common endpoint. For a
given vertex v ∈ V , its degree degv is equal to the number of its neighbors, i.e.
the number of edges in which it is the endpoint. The maximum and minimum
degrees over all vertices of graph G are denoted as Δ(G) and δ(G), respectively.
Formally, Δ(G) = maxv∈V degv and δ(G) = minv∈V degv.

In the following text, we briefly show three propositions from [3] that are
relevant for our work. The first proposition is related to paths and cycles and
classification of graphs having the edge metric dimension equal to 1. The last
two give bounds of the edge metric dimension based on the degree of vertices.
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Proposition 1.1 [3]. For n ≥ 2 it holds βE(Pn) = β(Pn) = 1, βE(Cn) =
β(Cn) = 2, βE(Kn) = β(Kn) = n − 1. Moreover, βE(G) = 1 if and only if G
is a path Pn.

Proposition 1.2 [3]. Let G be a connected graph and let Δ(G) be the maximum
degree of G. Then βE(G) ≥ log2Δ(G)

Proposition 1.3 [3]. Let G be a connected graph and let S be an edge metric
basis with |S| = k. Then S does not contain a vertex with the degree greater
than 2k−1.

From each of these propositions, given in [3], the next two corollaries
follow:

Corollary 1.4. The edge metric dimension of any 3-regular graph is at least 2.

Corollary 1.5. βE(GP (n, k)) ≥ 2.

As previously mentioned, Epstein et al. [9] introduced another edge met-
ric dimension definition based on line graphs. In order to avoid any misun-
derstanding, β′

E(G) will denote this second definition of the edge metric di-
mension of graph G, also called the edge version of metric dimension [10], i.e.
β′

E(G) = β(L(G)). Based on this definition, in [18], the authors obtained the
results for n-sunlet graphs and prism graphs.

Difference between these definitions can be demonstrated with the fol-
lowing example. Let G1 = (V1, E1) be the graph with V1 = {v0, v1, v2, v3}
and E1 = {e0, e1, e2, e3, e4} such that e0 = v0v1, e1 = v1v2, e2 = v0v2, e3 =
v1v3, e4 = v2v3. Line graph of G1 is L(G1) = (E1, F1) where F1 = {e0e1, e0e2,
e0e3, e1e2, e1e3, e1e4, e2e4, e3e4}. Graphs G1 and L(G1) are presented in Fig. 3.

v0 v1

v2 v3

e0

e1e2 e3

e4

e3 e4

e0 e2

e1

Figure 3. Graph from Example 1 and its corresponding line
graph (edge metric base is colored red) (color figure online)
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By using the total enumeration technique, it can be shown that βE(G1) =
3 with a edge metric base {v0, v1, v2}. On the other hand, β′

E(G1) = β(L(G1)) =
2 with a metric base {e0, e2} = {v0v1, v0v2}.

2. Main Results

2.1. Lower Bound

Having in mind the fact that vertices from an edge metric base are also end-
points for some (incident) edges, the bound presented in Proposition 1.2, could
be improved in some cases.

Theorem 2.1. Let G be a connected graph and let δ(G) be the minimum degree
of G. Then, βE(G) ≥ 1 + �log2δ(G)�.
Proof. Let S = {w1, w2, ..., wp} be an edge metric generator of graph G with
a minimal cardinality, i.e. p = βE(G). Vertex w1 is incident to at least δ(G)
edges. Name them e1, ..., eδ(G). Since w1 is incident with e1, ..., eδ(G), it
is obvious that d(e1, w1) = ... = d(eδ(G), w1) = 0. By the definition of the
distance between vertex and edge, it is clear that for an arbitrary vertex v ∈
V (G) there can be only two different distances to a set of incident edges.
Then, for each i, i = 2, ..., p, distances d(e1, wi), ..., d(eδ(G), wi) have only two
different values, so since d(e1, w1) = ... = d(eδ(G), w1) = 0, there exist at most
2p−1 different edge metric representations of edges e1, ..., eδ(G) with respect to
S, so δ(G) ≤ 2p−1. Next, because p is integer, it follows that �log2δ(G)� ≤ p−1
⇒ βE(G) = p ≥ 1 + �log2δ(G)�. �

In the case of regular graphs, the bound presented in Proposition 1.2 is
improved by 1.

Corollary 2.2. Let G be an r-regular graph. Then, βE(G) ≥ 1 + �log2r�.
Since GP (n, k) are 3-regular graphs, and �log23� = 2 then the next corol-

lary holds.

Corollary 2.3. βE(GP (n, k)) ≥ 3.

2.2. Exact Value for GP (n, 1)

In this section, we are giving the exact value of the edge metric dimension of
the generalized Petersen graphs GP (n, 1).

Theorem 2.4. βE(GP (n, 1)) = 3.

Proof. Let S = {u0, u1, v0}.

Case 1. n = 2t
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Edge metric representations with respect to S are:

r(uiui+1, S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0, 0, 1), i = 0
(i, i − 1, i + 1), 1 ≤ i ≤ t − 1
(t − 1, t − 1, t), i = t

(2t − 1 − i, 2t − i, 2t − i), t + 1 ≤ i ≤ 2t − 1

.

r(uivi, S) =

⎧
⎪⎨

⎪⎩

(0, 1, 0), i = 0
(i, i − 1, i), 1 ≤ i ≤ t

(2t − i, 2t + 1 − i, 2t − i), t + 1 ≤ i ≤ 2t − 1
.

r(vivi+1, S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1, 1, 0), i = 0
(i + 1, i, i), 1 ≤ i ≤ t − 1
(t, t, t − 1), i = t

(2t − i, 2t + 1 − i, 2t − 1 − i), t + 1 ≤ i ≤ 2t − 2
(1, 2, 0), i = 2t − 1

.

Since all edge metric representations with respect to S are pairwise dif-
ferent, we deduce that S is an edge metric generator. Since |S| = 3, from
Corollary 2.3, it follows βE(GP (2t, 1)) = 3.

Case 2. n = 2t + 1
Edge metric representations with respect to S are:

r(uiui+1, S) =

⎧
⎪⎨

⎪⎩

(0, 0, 1), i = 0
(i, i − 1, i + 1), 1 ≤ i ≤ t

(2t − i, 2t + 1 − i, 2t + 1 − i), t + 1 ≤ i ≤ 2t

.

r(uivi, S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0, 1, 0), i = 0
(i, i − 1, i), 1 ≤ i ≤ t

(t, t, t), i = t + 1
(2t + 1 − i, 2t + 2 − i, 2t + 1 − i), t + 2 ≤ i ≤ 2t

.

r(vivi+1, S) =

⎧
⎪⎨

⎪⎩

(1, 1, 0), i = 0
(i + 1, i, i), 1 ≤ i ≤ t

(2t + 1 − i, 2t + 2 − i, 2t − i), t + 1 ≤ i ≤ 2t

.

Similarly to Case 1, all edge metric representations with respect to S
are pairwise different, so S is an edge metric generator. Having in mind that
|S| = 3, from Corollary 2.3 it follows βE(GP (2t + 1, 1)) = 3. �

In [3], the authors consider the relation between the metric dimension
and the edge metric dimension of some graphs (called realization question).
They concluded that it is possible to find all three cases, i.e. graphs G such
that βE(G) = β(G), βE(G) > β(G) or βE(G) < β(G). For GP (n, 1) there
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Table 2. Edge metric representations for GP (4t, 2)

e r(e) Condition

u2iu2i+1 (0, 2, t) i = 0
(2, 1, t + 1) i = 1
(i + 2, i, t + 2 − i) 2 ≤ i ≤ t
(2t + 2 − i, 2t + 2 − i, i − t) t + 1 ≤ i ≤ 2t − 3
(3, 4, t − 2) i = 2t − 2
(1, 3, t − 1) i = 2t − 1

u2i+1u2i+2 (1, 2, t) i = 0
(3, 1, t + 1) i = 1
(i + 3, i, t + 2 − i) 2 ≤ i ≤ t − 1
(t + 1, t, 2) i = t
(2t + 1 − i, 2t + 2 − i, i − t) t + 1 ≤ i ≤ 2t − 3
(2, 4, t − 2) i = 2t − 2
(0, 3, t − 1) i = 2t − 1

u2iv2i (0, 3, t) i = 0
(2, 2, t + 1) i = 1
(i + 1, i, t + 3 − i) 2 ≤ i ≤ t
(t, t + 1, 2) i = t + 1
(2t + 1 − i, 2t + 3 − i, i − t) t + 2 ≤ i ≤ 2t − 1

u2i+1v2i+1 (1, 1, t − 1) i = 0
(i + 2, i − 1, t + 1 − i) 1 ≤ i ≤ t − 1
(t + 1, t − 1, 1) i = t
(2t + 1 − i, 2t + 1 − i, i − t − 1) t + 1 ≤ i ≤ 2t − 2
(1, 2, t − 2) i = 2t − 1

v2iv2i+2 (1, 3, t + 1) i = 0
(2, 3, t + 2) i = 1
(i + 1, i + 1, t + 3 − i) 2 ≤ i ≤ t − 1
(t, t + 1, 3) i = t
(t − 1, t + 2, 3) i = t + 1
(2t − i, 2t + 3 − i, i + 1 − t) t + 2 ≤ i ≤ 2t − 2
(1, 4, t) i = 2t − 1

v2i+1v2i+3 (2, 0, t − 1) i = 0
(i + 2, i − 1, t − i) 1 ≤ i ≤ t − 1
(t, t − 1, 0) i = t
(2t − i, 2t − i, i − t − 1) t + 1 ≤ i ≤ 2t − 2
(2, 1, t − 2) i = 2t − 1
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Table 3. Edge metric representations for GP (4t + 1, 2)

e r(e) Condition

u2iu2i+1 (0, t − 2, t − 1) i = 0
(2, t − 3, t − 2) i = 1
(i + 2, t − 2 − i, t − 1 − i) 2 ≤ i ≤ t − 3
(i + 2, i + 4 − t, i + 3 − t) t − 2 ≤ i ≤ t
(2t + 2 − i, i + 4 − t, i + 3 − t) t + 1 ≤ i ≤ 2t − 3
(4t − 2i, 3t − 1 − i, 3t − 1 − i) 2t − 2 ≤ i ≤ 2t

u2i+1u2i+2 (1, t − 2, t − 2) i = 0
(3, t − 3, t − 3) i = 1
(i + 3, t − 2 − i, t − 2 − i) 2 ≤ i ≤ t − 3
(t + 1, 2, 2) i = t − 2
(t + 2, 3, 3) i = t − 1
(2t + 2 − i, i + 4 − t, i + 4 − t) t ≤ i ≤ 2t − 3
(3, t, t + 1) i = 2t − 2
(1, t − 1, t) i = 2t − 1

u2iv2i (0, t − 1, t − 2) i = 0
(2, t − 2, t − 3) i = 1
(i + 1, t − 1 − i, t − 2 − i) 2 ≤ i ≤ t − 3
(i + 1, i + 4 − t, i + 2 − t) t − 2 ≤ i ≤ t
(2t + 2 − i, i + 4 − t, i + 2 − t) t + 1 ≤ i ≤ 2t − 3
(4, t, t) i = 2t − 2
(3, t − 1, t + 1) i = 2t − 1
(1, t − 2, t) i = 2t

u2i+1v2i+1 (1, t − 3, t − 1) i = 0
(i + 2, t − 3 − i, t − 1 − i) 1 ≤ i ≤ t − 3
(t, 1, 2) i = t − 2
(t + 1, 2, 3) i = t − 1
(2t + 1 − i, i + 3 − t, i + 4 − t) t ≤ i ≤ 2t − 3
(3, t + 1, t) i = 2t − 2
(2, t, t − 1) i = 2t − 1

v2iv2i+2 (i + 1, t − 1 − i, t − 3 − i) 0 ≤ i ≤ t − 4
(t − 2, 3, 0) i = t − 3
(t − 1, 3, 0) i = t − 2
(t, 4, 1) i = t − 1
(2t + 1 − i, i + 5 − t, i + 2 − t) t ≤ i ≤ 2t − 4
(2t + 1 − i, 3t − 3 − i, i + 2 − t) 2t − 3 ≤ i ≤ 2t − 1
(2, t − 3, t) i = 2t
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Table 3. continued

e r(e) Condition

v2i+1v2i+3 (2, t − 4, t − 1) i = 0
(i + 2, t − 4 − i, t − 1 − i) 1 ≤ i ≤ t − 4
(t − 1, 0, 3) i = t − 3
(t, 1, 3) i = t − 2
(2t − i, i + 3 − t, i + 5 − t) t − 1 ≤ i ≤ 2t − 4
(3, t, t) i = 2t − 3
(2, t + 1, t − 1) i = 2t − 2
(1, t, t − 2) i = 2t − 1

are only two cases, since, from [12], it follows β(GP (n, 1)) =

{
2, n is odd

3, n is even
.

When n = 2t, it holds βE(GP (n, 1)) = β(GP (n, 1)) = 3, while for n = 2t + 1,
it holds 3 = βE(GP (n, 1)) > β(GP (n, 1)) = 2.

Another interesting discussion is comparison between βE(GP (n, 1)) and
β′

E(GP (n, 1)). From [18], it follows that β′
E(GP (n, 1)) = 3, which matches

βE(GP (n, 1)) = 3 from Theorem 2.4.

2.3. Exact Value for GP (n, 2)
In this section, we are giving the exact value of the edge metric dimension of
the generalized Petersen graphs GP (n, 2).

Theorem 2.5. βE(GP (n, 2)) =

{
3, n = 8 ∨ n ≥ 10
4, n ∈ {5, 6, 7, 9}

Proof. In the case of n = 4t, t ≥ 4, let S = {u0, v3, v2t+3}. All edge metric
representations with respect to S are given in Table 2. The first column is
related to edge e ∈ E(GP (4t, 2)), the second column presents its edge metric
representation r(e), while the last column gives the condition in which the
statement in the second column is true. As can be observed from Table 2, all
edge metric representations with respect to S are pairwise different, so S is
an edge metric generator for GP (4t, 2). Having in mind that |S| = 3, from
Corollary 2.3 it follows that, for t ≥ 4, βE(GP (4t, 2)) = 3 holds.

If n = 4t + 1, t ≥ 4, then let S = {u0, v2t−5, v2t−4}. All edge metric
representations with respect to S are given in Table 3. As can be seen in
Table 3 all edge metric representations with respect to S are pairwise different,
so S is an edge metric generator for GP (4t+1, 2). Again, having in mind that
|S| = 3, from Corollary 2.3 it follows that, for t ≥ 4, βE(GP (4t + 1, 2)) = 3
holds.

For t ≥ 4, in cases when n = 4t + 2 or n = 4t + 3, let us define S =
{u0, v2t−2, v2t−1}. All edge metric representations of GP (4t+2, 2) and GP (4t+
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Table 4. Edge metric representations for GP (4t + 2, 2)

e r(e) Condition

u2iu2i+1 (0, t, t + 1) i = 0
(2, t − 1, t) i = 1
(i + 2, t − i, t + 1 − i) 2 ≤ i ≤ t − 1
(t + 2, 2, 1) i = t
(2t + 3 − i, i + 2 − t, i + 1 − t) t + 1 ≤ i ≤ 2t − 2
(3, t + 1, t) i = 2t − 1
(1, t + 1, t + 1) i = 2t

u2i+1u2i+2 (1, t, t) i = 0
(3, t − 1, t − 1) i = 1
(i + 3, t − i, t − i) 2 ≤ i ≤ t − 1
(2t + 2 − i, i + 2 − t, i + 2 − t) t ≤ i ≤ 2t − 2
(2, t + 1, t + 1) i = 2t − 1
(0, t + 1, t + 1) i = 2t

u2iv2i (0, t + 1, t) i = 0
(2, t, t − 1) i = 1
(i + 1, t + 1 − i, t − i) 2 ≤ i ≤ t − 1
(t + 1, 2, 0) i = t
(2t + 2 − i, i + 2 − t, i − t) t + 1 ≤ i ≤ 2t

u2i+1v2i+1 (1, t − 1, t + 1) i = 0
(i + 2, t − 1 − i, t + 1 − i) 1 ≤ i ≤ t − 1
(2t + 2 − i, i + 1 − t, i + 2 − t) t ≤ i ≤ 2t − 1
(1, t, t + 2) i = 2t

v2iv2i+2 (i + 1, t + 1 − i, t − 1 − i) 0 ≤ i ≤ t − 2
(t, 3, 0) i = t − 1
(2t + 1 − i, i + 3 − t, i − t) t ≤ i ≤ 2t − 1
(1, t + 2, t) i = 2t

v2i+1v2i+3 (i + 2, t − 2 − i, t + 1 − i) 0 ≤ i ≤ t − 2
(t + 1, 0, 3) i = t − 1
(2t + 1 − i, i + 1 − t, i + 3 − t) t ≤ i ≤ 2t − 1
(2, t − 1, t + 2) i = 2t

3, 2), with respect to S, are given in Tables 4 and 5, respectively. It can be seen
in Table 4 that all edge metric representations of GP (4t + 2, 2), with respect
to S, are pairwise different, so S is an edge metric generator for GP (4t+2, 2).
Again, having in mind that |S| = 3, from Corollary 2.3 it follows that, for
t ≥ 4, βE(GP (4t + 2, 2)) = 3 holds. The same conclusion can be drawn for
GP (4t+3, 2), since all its edge metric representations presented in Table 5 are
also pairwise different, so for t ≥ 4, βE(GP (4t + 3, 2)) = 3 holds.
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Table 5. Edge metric representations for GP (4t + 3, 2)

e r(e) Condition

u2iu2i+1 (0, t, t + 1) i = 0
(2, t − 1, t) i = 1
(i + 2, t − i, t + 1 − i) 2 ≤ i ≤ t − 1
(t + 2, 2, 1) i = t
(2t + 3 − i, i + 2 − t, i + 1 − t) t + 1 ≤ i ≤ 2t − 1
(2, t + 2, t + 1) i = 2t
(0, t + 1, t + 1) i = 2t + 1

u2i+1u2i+2 (1, t, t) i = 0
(3, t − 1, t − 1) i = 1
(i + 3, t − i, t − i) 2 ≤ i ≤ t − 1
(2t + 3 − i, i + 2 − t, i + 2 − t) t ≤ i ≤ 2t − 2
(3, t + 1, t + 1) i = 2t − 1
(1, t + 1, t + 2) i = 2t

u2iv2i (0, t + 1, t) i = 0
(2, t, t − 1) i = 1
(i + 1, t + 1 − i, t − i) 2 ≤ i ≤ t − 1
(t + 1, 2, 0) i = t
(2t + 3 − i, i + 2 − t, i − t) t + 1 ≤ i ≤ 2t − 1
(3, t + 1, t) i = 2t
(1, t, t + 1) i = 2t + 1

u2i+1v2i+1 (1, t − 1, t + 1) i = 0
(i + 2, t − 1 − i, t + 1 − i) 1 ≤ i ≤ t − 1
(2t + 2 − i, i + 1 − t, i + 2 − t) t ≤ i ≤ 2t − 1
(2, t + 1, t + 1) i = 2t

v2iv2i+2 (i + 1, t + 1 − i, t − 1 − i) 0 ≤ i ≤ t − 2
(t, 3, 0) i = t − 1
(t + 1, 3, 0) i = t
(2t + 2 − i, i + 3 − t, i − t) t + 1 ≤ i ≤ 2t − 2
(3, t + 1, t − 1) i = 2t − 1
(2, t, t) i = 2t
(2, t − 1, t + 1) i = 2t + 1

v2i+1v2i+3 (i + 2, t − 2 − i, t + 1 − i) 0 ≤ i ≤ t − 2
(t + 1, 0, 3) i = t − 1
(2t + 1 − i, i + 1 − t, i + 3 − t) t ≤ i ≤ 2t − 2
(2, t, t + 1) i = 2t − 1
(1, t + 1, t) i = 2t
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Table 6. Edge resolving bases of GP (n, 2)

n Basis βE(GP (n, 2))

5 {u0, u1, u3, v3} 4
6 {u0, u1, u2, u3} 4
7 {u0, u1, u4, v2} 4
8 {u0, u2, v4} 3
9 {u0, u1, u2, v5} 4
10 {u0, u3, v6} 3
11 {u0, u3, v4} 3
12 {u0, u3, v4} 3
13 {u0, v3, v4} 3
14 {u0, u4, v1} 3
15 {u0, u5, v1} 3
n = 4t ∧ t ≥ 4 {u0, v3, v2t+3} 3
n = 4t + 1 ∧ t ≥ 4 {u0, v2t−5, v2t−4} 3
(n = 4t + 2 ∨ n = 4t + 3) ∧ t ≥ 4 {u0, v2t−2, v2t−1} 3

For the remaining cases when n ≤ 15, the edge metric dimension of
GP (n, 2) is found by the total enumeration technique, and it is presented in
Table 6, along with the corresponding edge metric bases. It should be stated
that the edge metric dimension is equal to 3, except in cases for n ∈ {5, 6, 7, 9},
when it is equal to 4. �

For GP (n, 2) there are only two cases for the realization question given
in [4]. From [13] it follows that β(GP (n, 2)) = 3, so for n /∈ {5, 6, 7, 9} the edge
metric dimension of GP (n, 2) is equal to its metric dimension. Only in cases
when n ∈ {5, 6, 7, 9}, it holds 4 = βE(GP (n, 2)) > β(GP (n, 2)) = 3.

Another interesting discussion is the comparison between βE(GP (n, 2))
and β′

E(GP (n, 2)). In contrast to GP (n, 1), the values of βE(GP (n, 2)) and
β′

E(GP (n, 2)) sometimes differ. For example, βE(GP (9, 2)) = 4, while
β′

E(GP (n, 2)) = 3.

3. Conclusions

In this article, the recently introduced edge metric dimension problem is con-
sidered. The exact formulae for generalized Petersen graphs GP (n, 1) and
GP (n, 2) are stated and proved. Moreover, a lower bound for 3-regular graphs,
which holds for all generalized Petersen graphs, is given.

Possible future research could be the finding of the edge metric dimension
of other challenging classes of graphs or the construction of the metaheuristic
approach for solving the edge metric dimension problem.
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[12] Cáceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C.,
Wood, D.R.: On the metric dimension of Cartesian products of graphs. SIAM
J. Discrete Math. 21(2), 423–441 (2007)

[13] Javaid, I., Rahim, M.T., Ali, K.: Families of regular graphs with constant metric
dimension. Util. Math. 75, 21–34 (2008)

[14] Imran, M., Baig, A.Q., Shafiq, M.K., Tomescu, I.: On metric dimension of gen-
eralized Petersen graphs P(n,3). Ars Comb. 117, 113–130 (2014)

[15] Wang, X.: All double generalized Petersen graphs are Hamiltonian. Discrete
Math. 340(12), 3016–3019 (2017)

[16] Ball, T., Bell, R.W., Guzman, J., Hanson-Colvin, M., Schonsheck, N.: On the
cop number of generalized Petersen graphs. Discrete Math. 340(6), 1381–1388
(2017)

[17] Dantas, S., de Figueiredo, C.M., Mazzuoccolo, G., Preissmann, M., Dos Santos,
V.F., Sasaki, D.: On the total coloring of generalized Petersen graphs. Discrete
Math. 339(5), 1471–1475 (2016)

[18] Nasir, R., Zafar, S., Zahid, Z.: Edge metric dimension of graphs. Ars Comb.
(in press). https://www.researchgate.net/publication/322634658 Edge metric
dimension of graphs. Accessed 8 Feb 2019

http://arxiv.org/abs/1809.08900
http://arxiv.org/abs/1612.06936
https://www.researchgate.net/publication/322634658_Edge_metric_dimension_of_graphs
https://www.researchgate.net/publication/322634658_Edge_metric_dimension_of_graphs


Vol. 74 (2019) Edge Metric Dimension of Some Generalized Petersen Graphs Page 15 of 15 182
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