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Landau-Type Theorems for Certain
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Abstract. In this paper, we establish three sharp versions of the Landau-
type theorems for bounded biharmonic mappings F (z) = |z|2G(z)+H(z),
where G(z) and H(z) are harmonic in the unit disk U with G(0) =
H(0) = 0 and λF (0) = ||Fz(0)| − |Fz(0)|| = 1. Our results generalize (or
improve) the corresponding results given in Liu et al. (Math Methods
Appl Sci 40:2582–2595, 2017). Three conjectures for the sharp version of
the Landau-type theorem for certain bounded biharmonic mappings are
given in third section.
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1. Introduction

A function f(z) = u(z) + iv(z), z = x + iy is a harmonic mapping on the unit
disk U = {z ∈ C : |z| < 1} if and only if f is twice continuously differentiable
and satisfies the Laplacian equation

Δf = 4fzz =
∂2f

∂x2
+

∂2f

∂y2
= 0

for z ∈ U , where we use the common notations for its formal derivatives:

fz =
1
2
(fx − ify), fz =

1
2
(fx + ify).

A function f(z) = u(z) + iv(z) is a biharmonic mapping on U if and
only if f is four times continuously differentiable and satisfies the biharmonic
equation Δ(Δf) = 0 for z ∈ U .
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For such function f , let

Λf (z) = max
0≤θ≤2π

|eiθfz(z) + e−iθfz(z)| = |fz(z)| + |fz(z)|

and

λf (z) = min
0≤θ≤2π

|eiθfz(z) + e−iθfz(z)| = ||fz(z)| − |fz(z)||.

Biharmonic mappings arise in many physical situations, particularly in
fluid dynamics and elasticity problems, and have many important applications
in engineering (see [1] and the references therein for more details).

It is known that a harmonic mapping is locally univalent if and only if its
Jacobian Jf (z) = |fz(z)|2 − |fz(z)|2 �= 0 for z ∈ U (cf. [19]). Since U is simply
connected, f(z) can be written as f = h + g with f(0) = h(0), where g and h
are analytic on U (for details see [11]). Thus,

Jf (z) = |h′(z)|2 − |g′(z)|2.
It is well-known (cf. [1]) that a mapping F (z) is biharmonic in a simply

connected domain D if and only if F (z) has the following representation:

F (z) = |z|2G(z) + H(z), (1.1)

where G(z) and H(z) are complex-valued harmonic functions in D.
The classical Landau’s theorem states that if f is an analytic function on

the unit disk U with f(0) = f ′(0) − 1 = 0 and |f(z)| < M for z ∈ U , then f
is univalent in the disk Ur0 = {z ∈ C : |z| < r0} with

r0 =
1

M +
√

M2 − 1
, (1.2)

and f(Ur0) contains a disk |w| < R0 with R0 = Mr2
0. This result is sharp,

with the extremal function f0(z) = Mz 1−Mz
M−z . The Bloch theorem asserts the

existence of a positive constant number b such that if f is an analytic function
on the unit disk U = {z ∈ C : |z| < 1} with f ′(0) = 1, then f(U) contains
a Schlicht disk of radius b, that is, a disk of radius b which is the univalent
image of some region in U . The supremum of all such constants b is called the
Bloch constant (see [3,13]).

In 2000, under a suitable restriction, Chen et al. [3] first established the
Bloch and Landau theorems for harmonic mappings. Their results were not
sharp. Better estimates were given in [12] and later in [4,7–10,14–16,21,22,24,
27,28]. In 2008, Abdulhadi and Muhanna established two versions of Landau-
type theorems of certain bounded biharmonic mappings in [2]. From that on,
many authors also considered the Landau-type theorems for certain bounded
biharmonic mappings (see [6,7,20,23,25,29]) and logharmonic mappings (see
[26]). However, few sharp results were found. In 2017, Liu et al. established
the following Landau-type theorems for certain biharmonic mappings.
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Theorem A ([25]). Let F (z) = |z|2g(z)+h(z) be a biharmonic mapping of the
unit disk U with g(z), h(z) are harmonic mappings in U , and g(0) = h(0) =
0, λF (0) = λg(0) = Λg(0) = 1, Λg(z) ≤ Λ1 and Λh(z) ≤ Λ2 for z ∈ U . Then
Λ1 ≥ 1, Λ2 ≥ 1, and F is univalent in the disk Ur1 , where r1 is the minimum
positive root in (0, 1) of the equation:

1 − 3r2 − Λ2
2 − 1
Λ2

· r

1 − r
+

Λ2
1 − 1
Λ1

·
[
2r2 + 2r ln(1 − r) − r3

1 − r

]
= 0,

(1.3)

and F (Ur1) contains a Schlicht disk UR1 , with

R1 = r1 − r3
1 +

(
r2
1 · Λ2

1 − 1
Λ1

+
Λ2

2 − 1
Λ2

)[
r1 + ln(1 − r1)

]
. (1.4)

When Λ1 = Λ2 = 1, r1 =
√

3
3 and R1 = 2

√
3

9 are sharp.

Theorem B ([25]). Let F (z) = |z|2g(z)+h(z) be a biharmonic mapping of the
unit disk U with g(z), h(z) are harmonic mappings in U , and g(0) = h(0) =
0, λF (0) = λg(0) = Λg(0) = 1, Λg(z) ≤ Λ and |h(z)| ≤ M for z ∈ U .
Then Λ ≥ 1, M ≥ 1, and F is univalent in the disk Ur2 , where K(M) =
min{ 4M

π ,
√

2M2 − 2}, and r2 is the minimum positive root in (0, 1) of the
equation:

1 − 3r2 − K(M) · 2r − r2

(1 − r)2
+

Λ2 − 1
Λ

·
[
2r2 + 2r ln(1 − r) − r3

1 − r

]
= 0,

(1.5)

and F (Ur2) contains a Schlicht disk UR2 with

R2 = r2 − r3
2 − K(M)

r2
2

1 − r2
+

Λ2 − 1
Λ

[r3
2 + r2

2 ln(1 − r2)]. (1.6)

When Λ = M = 1, r2 =
√

3
3 and R2 = 2

√
3

9 are sharp.

However, Theorems A and B are not sharp if Λ > 1 (Λ1 > 1) or M >
1 (Λ2 > 1), and they both have the strong hypothesis λg(0) = Λg(0) = 1. In
this paper, by extending the method and technique in [24], we will establish
several sharp versions of the Landau-type theorems for bounded biharmonic
mappings.

This paper is organized as follows. In Sect. 2, we should recall several no-
tions and lemmas, and establish four new lemmas, which play a key role in the
proofs of our main results. In Sect. 3, by establishing Theorems 3.1 and 3.3, we
first establish the sharp versions of Landau-type theorems for Theorem A with-
out the hypothesis λg(0) = Λg(0) = 1. Next, by establishing Theorem 3.4, we
establish the sharp version of Landau-type theorem for the case Λ ≥ 1,M = 1
of Theorem B without the hypothesis λg(0) = Λg(0) = 1. Then, by establishing
Theorem 3.7 and Corollary 3.8, we provide two sharp versions of Landau-type
theorems of biharmonic mappings for the case Λ ≥ 1,M > 1. Finally, we also
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provide three conjectures for the sharp versions of Landau-type theorems of
bounded harmonic mappings or biharmonic mappings.

2. Preliminaries

In order to establish our main results, we need the following notions and lem-
mas.

We first introduce the notion of pseudo-disk [5,17,18]. For z ∈ U and 0 <
r < 1, the pseudo-disk of pseudo-center z and pseudo-radius r is defined by

Up(z, r) =
{

ζ ∈ U :
∣∣∣∣ ζ − z

1 − z̄ζ

∣∣∣∣ < r

}
,

and Up(z, r) :=
{

ζ ∈ U :
∣∣ ζ−z
1−z̄ζ

∣∣ ≤ r
}

, ∂Up(z, r) :=
{

ζ ∈ U :
∣∣ ζ−z
1−z̄ζ

∣∣ = r
}

.

It is obvious that Up(0, r) = Ur, and that if z �= 0, it is easy to verify
that Up(z, r) is the Euclidian disk of diameter (a, b), where

a = eiθ′ · |z| − r

1 − r|z| , b = eiθ′ · |z| + r

1 + r|z| , θ′ = arg z.

Next, we recall the classical Schwarz–Pick Lemma as follows.

Lemma 2.1 (Schwarz–Pick Lemma). Suppose f(z) is an analytic function in
U and f(U) ⊂ U .
(1) For z ∈ U and 0 < r < 1, we have

f (Up(z, r)) ⊆ Up (f(z), r) , f
(
Up(z, r)

) ⊆ Up (f(z), r) ;

(2) For z′ ∈ ∂Up(z, r), f(z′) ∈ ∂Up (f(z), r) if and only if f is a Möbius
transformation of U onto itself.

(3) |f ′(z)| / (
1 − |f(z)|2) ≤ 1/(1 − |z|2) holds for z ∈ U , and the equality

holds for some z ∈ U if and only if f is a Möbius transformation.

Now we establish two new lemmas, which play a key role in our proofs of
the main results in this paper.

Lemma 2.2. Suppose Λ > 1. Let H(z) be a harmonic mapping of the unit
disk U with λH(0) = 1 and ΛH(z) < Λ for all z ∈ U . Then for all z1, z2 ∈
Ur (0 < r < 1, z1 �= z2), we have∣∣∣∣

∫
z1z2

Hz(z)dz + Hz̄(z)dz̄

∣∣∣∣ ≥ Λ
1 − Λr

Λ − r
|z1 − z2|, (2.1)

where z1z2 is the line segment joining z1 and z2.

Proof. Let θ0 = arg(z2−z1). Since H(z) is a harmonic mapping in the unit disk
U , we have H(z) can be written as H(z) = H1(z)+H2(z) for z ∈ U , where H1

and H2 are analytic in U . Without lost of the generality, we may assume that
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|H ′
1(0)| > |H ′

2(0)|, since λH(0) = ||H ′
1(0)| − |H ′

2(0)|| = 1 (if |H ′
1(0)| < |H ′

2(0)|,
we can consider the harmonic mapping H = H1 + H2 instead of H). Then

Δ0≤θ≤2π arg
{

H ′
1(0)ei(θ0+θ) + H ′

2(0)ei(θ0−θ)
}

= Δ0≤θ≤2π arg
{

H ′
1(0)ei(θ0+θ)

}
= 2π,

where Δ0≤θ≤2π denotes the increment of the succeeding function as θ increas-
ing from 0 to 2π. Thus there exists a θ1 ∈ [0, 2π] such that

H ′
1(0)ei(θ0+θ1) + H ′

2(0)ei(θ0−θ1) > 0.

For z ∈ U , let

ω(z) =
H ′

1(z)ei(θ0+θ1) + H ′
2(z)ei(θ0−θ1)

Λ
.

Then ω(z) is analytic with |ω(z)| ≤ ΛH(z)/Λ < 1 for z ∈ U and

α := ω(0) =
H ′

1(0)ei(θ0+θ1) + H ′
2(0)ei(θ0−θ1)

Λ
≥ λH(0)

Λ
=

1
Λ

.

Using Schwarz–Pick Lemma, we have

Re ω(z) ≥ α − r

1 − αr
≥

1
Λ − r

1 − r
Λ

, z ∈ Ur.

That is

Re
{

H ′
1(z)ei(θ0+θ1) + H ′

2(z)ei(θ0−θ1)
}

≥ Λ
1
Λ − r

1 − r
Λ

, z ∈ Ur. (2.2)

Then∣∣∣∣
∫

z1z2

Hz(z)dz + Hz̄(z)dz̄

∣∣∣∣ =
∣∣∣∣
∫

z1z2

(
H ′

1(z)ei(θ0+θ1) + H ′
2(z)e−i(θ0−θ1)

)
|dz|

∣∣∣∣
≥

∫
z1z2

Re
{

H ′
1(z)ei(θ0+θ1) + H ′

2(z)e−i(θ0−θ1)
}

|dz|

=
∫

z1z2

Re
{

H ′
1(z)ei(θ0+θ1) + H ′

2(z)ei(θ0−θ1)
}

|dz|

≥
∫

z1z2

Λ
1
Λ − r

1 − r
Λ

|dz| = Λ
1 − Λr

Λ − r
|z1 − z2|.

�

Lemma 2.3. Suppose Λ > 1. Let H(z) be a harmonic mapping of the unit
disk U with λH(0) = 1 and ΛH(z) < Λ for all z ∈ U . Set γ = H−1(ow′)
with w′ ∈ H(∂Ur) (0 < r ≤ 1) and ow′ denotes the closed line segment joining
the origin and w′, then∣∣∣∣

∫
γ

Hζ(ζ)dζ + Hζ̄(ζ)dζ̄

∣∣∣∣ ≥ Λ
∫ r

0

1
Λ − t

1 − t
Λ

dt. (2.3)
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Proof. Let dζ = |dζ|eiθζ , ζ ∈ γ. Since H(z) is a harmonic mapping in the unit
disk U , we see that H(z) can be written as H(z) = H1(z) + H2(z) for z ∈ U ,
where H1 and H2 are analytic in U . Similar to the proof of Lemma 2.2, we
may assume that |H ′

1(0)| > |H ′
2(0)| since λH(0) = ||H ′

1(0)| − |H ′
2(0)|| = 1.

Then for a fixed ζ ∈ γ, there is a θ′
ζ ∈ [0, 2π] such that

H ′
1(0)ei(θζ+θ′

ζ) + H ′
2(0)ei(θζ−θ′

ζ) > 0.

For z ∈ U , define

ωζ(z) =
H ′

1(z)ei(θζ+θ′
ζ) + H ′

2(z)ei(θζ−θ′
ζ)

Λ
.

Then ωζ(z) is analytic in U , with |ωζ(z)| ≤ ΛH(z)/Λ < 1 and

αζ := ωζ(0) =
H ′

1(0)ei(θζ+θ′
ζ) + H ′

2(0)ei(θζ−θ′
ζ)

Λ
≥ 1

Λ
.

According to Schwarz–Pick Lemma, we get that

Re {ωζ(ζ)} ≥ αζ − |ζ|
1 − αζ |ζ| ≥

1
Λ − |ζ|
1 − |ζ|

Λ

, ζ ∈ γ. (2.4)

Thus∣∣∣∣
∫

γ

Hζ(ζ)dζ + Hζ̄(ζ)dζ̄

∣∣∣∣ =
∣∣∣∣
∫

γ

(
H ′

1(ζ)ei(θζ+θ′
ζ) + H ′

2(ζ)e−i(θζ−θ′
ζ)

)
|dζ|

∣∣∣∣
≥

∫
γ

Re
{

H ′
1(ζ)ei(θζ+θ′

ζ) + H ′
2(ζ)e−i(θζ−θ′

ζ)
}

|dζ|

=
∫

γ

Re
{

H ′
1(ζ)ei(θζ+θ′

ζ) + H ′
2(ζ)ei(θζ−θ′

ζ)
}

|dζ|

= Λ
∫

γ

Re {ωζ(ζ)} |dζ| ≥ Λ
∫ r

0

1
Λ − t

1 − t
Λ

dt.

�

Lemma 2.4 ([20]). Suppose that f(z) = g(z) + h(z) is a harmonic mapping
in U with g(z) =

∑∞
n=1 anzn and h(z) =

∑∞
n=1 bnzn are analytic in U , and

λf (0) = 1. If Λf (z) ≤ Λ for z ∈ U , then Λ ≥ 1 and

|an| + |bn| ≤ Λ2 − 1
nΛ

, n = 2, 3, . . . . (2.5)

When Λ > 1, the above estimates are sharp for all n = 2, 3, . . ., with the
extremal functions fn(z) and fn(z), where

fn(z) = Λ2z − (Λ3 − Λ)
∫ z

0

dz

Λ + zn−1
. (2.6)

When Λ = 1, then f(z) = a1z + b1z with ||a1| − |b1|| = 1.
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Lemma 2.5. Suppose Λ ≥ 0. Let F (z) = aΛ|z|2z+bz be a biharmonic mapping
of the unit disk U with |a| = |b| = 1. Then F is univalent in the disk Uρ1 , and
F (Uρ1) contains a Schlicht disk Uσ1 , where ρ1 = 1 when 0 ≤ Λ ≤ 1

3 , ρ1 = 1√
3Λ

when Λ > 1
3 , and

σ1 = ρ1 − Λρ3
1 =

{
1 − Λ, if 0 ≤ Λ ≤ 1

3 ,
2

3
√

3Λ
, if Λ > 1

3 .
(2.7)

This result is sharp.

Proof. We first prove the case of 0 ≤ Λ ≤ 1
3 .

To this end, for every z1, z2 ∈ U with z1 �= z2, because |a| = |b| = 1, we
have

|F (z1) − F (z2)| =
∣∣aΛ(|z1|2z1 − |z2|2z2) + b(z1 − z2)

∣∣
≥ |b||z1 − z2| − |a|Λ|z2

1z1 − z2
2z2|

≥ |z1 − z2| − Λ|z2
1 − z2

2 ||z1| − Λ|z2
2 ||z1 − z2|

≥ |z1 − z2|(1 − Λ|z1|(|z1| + |z2|) − Λ|z2|2) > 0.

This implies F (z1) �= F (z2), which proves the univalence of F (z) in the disk
U .

On the other hand, set θ0 = arg b
a , for each z′ ∈ ∂U and z′

0 = ei
π+θ0

2 ∈
∂U , because F (0) = 0, we have

|F (z′) − F (0)| = |F (z′)| ≥ |b||z′| − |a|Λ|z′|3 = 1 − Λ,

and

|F (z′
0) − F (0)| = |aei

π+θ0
2 (Λ − 1)| = 1 − Λ.

Hence F (U) contains a Schlicht disk U1−Λ, and the radius 1 − Λ is sharp.
Next, we prove the case of Λ > 1

3 .
To this end, for every z1, z2 ∈ U 1√

3Λ
with z1 �= z2, because |a| = |b| = 1,

we have

|F (z1) − F (z2)| =
∣∣aΛ(|z1|2z1 − |z2|2z2) + b(z1 − z2)

∣∣
≥ |b||z1 − z2| − |a|Λ|z2

1z1 − z2
2z2|

≥ |z1 − z2| − Λ|z2
1 − z2

2 ||z1| − Λ|z2
2 ||z1 − z2|

≥ |z1 − z2|(1 − Λ|z1|(|z1| + |z2|) − Λ|z2|2)

> |z1 − z2|
(

1 − 3Λ
(

1√
3Λ

)2)
= 0.

This implies F (z1) �= F (z2), which proves the univalence of F in the disk
U 1√

3Λ
.

Now we prove that F is not univalent in the disk Ur for each r ∈ ( 1√
3Λ

, 1].
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In fact, fixed r ∈ ( 1√
3Λ

, 1], set θ1 = (π + arg b
a )/2, ε = min

{
(r − 1√

3Λ
)/2,

1
2
√

3Λ

}
> 0 and r1 = 1√

3Λ
+ ε, r2 = 1√

3Λ
− δ with

δ =

3√
3Λ

+ ε −
√(

3√
3Λ

− 3ε
) (

3√
3Λ

+ ε
)

2
∈ (0, 2ε) ⊆

(
0,

1√
3Λ

)
.

Direct computation yields r3
1 − 1

Λr1 = r3
2 − 1

Λr2. Thus there exist two
points z1 = r1e

iθ1 , z2 = r2e
iθ1 in Ur with z1 �= z2 such that

F (z1) = aΛ
(

r3
1e

iθ1 + ei arg b
a

1
Λ

r1e
−iθ1

)
= aΛeiθ1

(
r3
1 − r1

Λ

)

= aΛeiθ1

(
r3
2 − r2

Λ

)
= F (z2),

which implies that F (z) is not univalent in the disk Ur for each r ∈ ( 1√
3Λ

, 1].
Hence, the univalent radius 1√

3Λ
is sharp.

On the other hand, for each z′′ ∈ ∂U 1√
3Λ

and z′′
0 = 1√

3Λ
ei

π+θ0
2 ∈ ∂U 1√

3Λ
,

where θ0 = arg b
a , because F (0) = 0, we have

|F (z′′) − F (0)| = |F (z′′)| ≥ |b||z′′| − |a|Λ|z′′|3 =
1√
3Λ

− Λ
(

1√
3Λ

)3

=
2

3
√

3Λ
,

and

|F (z′′
0 ) − F (0)| =

∣∣∣∣aei
π+θ0

2

(
Λ

(
1√
3Λ

)3

− 1√
3Λ

)∣∣∣∣ =
2

3
√

3Λ
.

Hence F (U 1√
3Λ

) contains a Schlicht disk U 2
3

√
3Λ

, and the radius 2
3
√

3Λ
is sharp.

This completes the proof. �

Lemma 2.6 ([20]). Suppose that f(z) = h(z) + g(z) is a harmonic mapping of
the unit disk U with h(z) =

∑∞
n=1 anzn and g(z) =

∑∞
n=1 bnzn. If λf (0) = 1

and |f(z)| < M for all z ∈ U , then M ≥ 1, and

|an| + |bn| ≤
√

2M2 − 2, n = 2, 3, . . . .

Lemma 2.7. Let F (z) = |z|2G(z) + H(z) be a biharmonic mapping of the
unit disk U with G(0) = H(0) = 0 and ΛG(z) ≤ Λ for all z ∈ U , where
G(z) = G1(z) + G2(z) =

∑∞
n=1 anzn +

∑∞
n=1 bnz̄n, H(z) = H1(z) + H2(z) =∑∞

n=1 cnzn +
∑∞

n=1 dnz̄n are harmonic mappings in U . Then for all z1, z2 ∈
Ur(0 < r < 1) with z1 �= z2, we have

|F (z1) − F (z2)| ≥ |z1 − z2|
[
||c1| − |d1|| −

∞∑
n=2

(|cn| + |dn|)nrn−1 − 3Λr2

]
.
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Proof. According to Lemma 2.4, for any z1, z2 ∈ Ur(0 < r < 1, z1 �= z2), we
have

|G(z)| =
∣∣∣∣
∫

[0,z]

Gz(z)dz + Gz̄(z)dz̄

∣∣∣∣ ≤
∫

[0,z]

|ΛG(z)||dz| ≤ Λ|z|, (2.8)

and

|F (z1) − F (z2)| =

∣∣∣∣
∫
[z1,z2]

Fz(z)dz + Fz̄(z)dz̄

∣∣∣∣
=

∣∣∣∣
∫
[z1,z2]

(z̄G(z) + |z|2G′
1(z)+Hz(z))dz+(zG(z)+|z|2G′

2(z) + Hz̄(z))dz̄

∣∣∣∣
=

∣∣∣∣
∫
[z1,z2]

(Hz(0)dz + Hz(0)dz) +

∫
[z1,z2]

(Hz(z) − Hz(0))dz

+(Hz(z) − Hz(0))dz +

∫
[z1,z2]

(z̄G(z) + |z|2G′
1(z))dz + (zG(z) + |z|2G′

2(z))dz̄

∣∣∣∣
≥

∣∣∣∣
∫
[z1,z2]

Hz(0)dz + Hz(0)dz

∣∣∣∣ −
∣∣∣∣
∫
[z1,z2]

(Hz(z) − Hz(0))dz

+(Hz(z) − Hz(0))dz

∣∣∣∣ −
∫
[z1,z2]

(2|z||G(z)| + |z|2|G′
1(z)| + |z|2|G′

2(z)|)|dz|

≥ |z1 − z2|
[
||c1| − |d1|| −

∞∑
n=2

(|cn| + |dn|)nrn−1 − 3Λr2
]
.

This completes the proof of Lemma 2.7. �

3. The Landau-Type Theorems of Biharmonic Mappings

We first prove the sharp version of the Landau-type theorem for biharmonic
mappings F (z) under the assumptions G(0) = H(0) = 0, λF (0) = 1,ΛG(z) ≤
Λ1 and ΛH(z) < Λ2 for all z ∈ U , which is one of the main results in this
paper.

Theorem 3.1. Suppose that Λ1 ≥ 0 and Λ2 > 1. Let F (z) = |z|2G(z)+H(z) be
a biharmonic mapping of the unit disk U , where G(z) and H(z) are harmonic
in U , satisfying G(0) = H(0) = 0, λF (0) = 1, ΛG(z) ≤ Λ1 and ΛH(z) < Λ2

for all z ∈ U . Then F (z) is univalent in the disk Uρ0 and F (Uρ0) contains a
Schlicht disk Uσ0 , where ρ0 is the unique root in (0, 1) of the equation

Λ2
1 − Λ2r

Λ2 − r
− 3Λ1r

2 = 0, (3.1)

and

σ0 = Λ2
2ρ0 +

(
Λ3

2 − Λ2

)
ln

(
1 − ρ0

Λ2

)
− Λ1ρ

3
0. (3.2)
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This result is sharp, with an extremal function given by

F0(z) = Λ2

∫
[0,z]

1 − Λ2z

Λ2 − z
dz − Λ1|z|2z

= Λ2
2z − Λ1|z|2z +

(
Λ3

2 − Λ2

)
ln

(
1 − z

Λ2

)
, z ∈ U. (3.3)

Proof. By the hypothesis of Theorem 3.1, we have

|G(z)| =
∣∣∣∣
∫

[0,z]

Gz(z)dz + Gz̄(z)dz̄

∣∣∣∣ ≤
∫

[0,z]

|ΛG(z)||dz| ≤ Λ1|z|, z ∈ U.

We first prove that F is univalent in the disk Uρ0 . Indeed, for all z1, z2 ∈
Ur(0 < r < ρ0, z1 �= z2), note that λF (0) = λH(0) = 1 and ΛH(z) < Λ2 for
all z ∈ U , we obtain from Lemma 2.2 that

|F (z2) − F (z1)| =
∣∣∣∣
∫

z1z2

Fz(z)dz + Fz̄(z)dz̄

∣∣∣∣
=

∣∣∣∣
∫

z1z2

(
z̄G(z) + |z|2Gz(z)+Hz(z)

)
dz+

(
zG(z) + |z|2Gz̄(z) + Hz̄(z)

)
dz̄

∣∣∣∣
≥

∣∣∣∣
∫

z1z2

Hz(z)dz + Hz̄(z)dz̄

∣∣∣∣ −
∫

z1z2

3Λ1r
2|dz|

≥ |z1 − z2|
(

Λ2
1 − Λ2r

Λ2 − r
− 3Λ1r

2

)
. (3.4)

It is easy to verify that the function

g0(r) := Λ2
1 − Λ2r

Λ2 − r
− 3Λ1r

2

is continuous and strictly decreasing on [0, 1], g0(0) = 1 > 0, and

g0(1) = −(Λ2 + 3Λ1) < 0.

Therefore, by the mean value theorem, there is a unique real ρ0 ∈ (0, 1) such
that g0(ρ0) = 0. We obtain that

|F (z2) − F (z1)| > |z1 − z2|
(

Λ2
1 − Λ2ρ0

Λ2 − ρ0
− 3Λ1ρ

2
0

)
= 0.

This implies F (z1) �= F (z2), which proves the univalence of F in the disk Uρ0 .
Next, we prove that F (Uρ0) ⊇ Uσ0 .
Indeed, note that F (0) = 0, for z′ ∈ ∂Uρ0 with w′ = F (z′) ∈ F (∂Uρ0)

and |w′| = min {|w| : w ∈ F (∂Uρ0)}. Let γ = F−1
(
ow′), by Lemma 2.3, we

have
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|w′| =
∣∣|z′|2G(z′) + H(z′)

∣∣ ≥ |H(z′)| − Λ1ρ
3
0

=
∣∣∣∣
∫

γ

Hζ(ζ)dζ + Hζ̄(ζ)dζ̄

∣∣∣∣ − Λ1ρ
3
0

≥ Λ2

∫ ρ0

0

1
Λ2

− t

1 − t
Λ2

dt − Λ1ρ
3
0

= Λ2
2ρ0 +

(
Λ3

2 − Λ2

)
ln

(
1 − ρ0

Λ2

)
− Λ1ρ

3
0 = σ0,

which implies that F (Uρ0) ⊇ Uσ0 .
Now, we prove the sharpness of ρ0 and σ0. To this end, we consider a

biharmonic mapping F0(z) which is given by (3.3). It is easy to verify that
F0(z) satisfies the hypothesis of Theorem 3.1, and thus, we have that F0(z) is
univalent in the disk Uρ0 , and F0(Uρ0) ⊇ Uσ0 .

To show that the univalent radius ρ0 is sharp, we need to prove that F0(z)
is not univalent in Ur for each r ∈ (ρ0, 1]. In fact, considering the real differ-
entiable function

h0(x) = Λ2
2x − Λ1x

3 +
(
Λ3

2 − Λ2

)
ln

(
1 − x

Λ2

)
, x ∈ [0, 1]. (3.5)

Because the continuous function

h′
0(x) = Λ2

2 − 3Λ1x
2 +

Λ2 − Λ3
2

Λ2 − x
= g0(x)

is strictly decreasing on [0, 1] and h′
0(ρ0) = g0(ρ0) = 0, we see that h′

0(x) = 0
for x ∈ [0, 1] if and only if x = ρ0. So h0(x) is strictly increasing on [0, ρ0) and
strictly decreasing on [ρ0, 1]. Since h0(0) = 0, there is a unique real r3 ∈ (ρ0, 1]
such that h0(r3) = 0 if h0(1) ≤ 0, and

σ0 = Λ2
2ρ0 +

(
Λ3

2 − Λ2

)
ln

(
1 − ρ0

Λ2

)
− Λ1ρ

3
0 = h0(ρ0) > h0(0) = 0. (3.6)

For every fixed r ∈ (ρ0, 1], set x1 = ρ0 + ε, where

ε =
{

min
{

r−ρ0
2 , r3−ρ0

2

}
, if f0(1) ≤ 0,

r−ρ0
2 , if f0(1) > 0,

by the mean value theorem, there is a unique δ ∈ (0, ρ0) such that x2 :=
ρ0 − δ ∈ (0, ρ0) and h0(x1) = h0(x2).

Let z1 = x1 and z2 = x2. Then z1, z2 ∈ Ur with z1 �= z2. Directly
computation leads to

F0(z1) = F0(x1) = h0(x1) = h0(x2) = F0(z2).

Hence F0 is not univalent in the disk Ur for each r ∈ (ρ0, 1], and the univalent
radius ρ0 is sharp.
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Finally, note that F0(0) = 0 and picking up z′ = ρ0 ∈ ∂Uρ0 , by (3.3),
(3.5) and (3.6), we have

|F0(z′) − F0(0)| = |F0(ρ0)| = |h0(ρ0)| = h0(ρ0) = σ0.

Hence, the covering radius σ0 is also sharp. �

Remark 3.2. Corollary 1 in [24] is just a special case of Theorem 3.1 when
Λ1 = 0.

For the harmonic mapping H(z) of the unit disk U with λH(0) = 1 and
ΛH(z) ≤ Λ2 for all z ∈ U , it follows from Lemma 2.4 that Λ2 ≥ 1. Theorem 3.1
provides the sharp version of Landau-type theorem of biharmonic mappings
for the case Λ1 ≥ 0 and Λ2 > 1. If Λ1 ≥ 0 and Λ2 = 1, then we prove
the following sharp version of Landau-type theorem for biharmonic mappings
using Lemmas 2.4 and 2.5.

Theorem 3.3. Suppose that Λ ≥ 0. Let F (z) = |z|2G(z)+H(z) be a biharmonic
mapping of U , where G(z), H(z) are harmonic in U , satisfying G(0) = H(0) =
0, λF (0) = 1,ΛG(z) ≤ Λ and ΛH(z) ≤ 1 for all z ∈ U . Then F is univalent
in the disk Uρ1 and F (Uρ1) contains a Schlicht disk Uσ1 , where ρ1 = 1 when
0 ≤ Λ ≤ 1

3 , ρ1 = 1√
3Λ

when Λ > 1
3 , and σ1 = ρ1 − Λρ3

1 is defined by (2.7).
This result is sharp.

Proof. Because F (z) = |z|2G(z) + H(z) satisfies the hypothesis of Theo-
rem 3.3, where G(z) = G1(z) + G2(z) and H(z) = H1(z) + H2(z) with
G1(z) =

∑∞
n=1 anzn, G2(z) =

∑∞
n=1 bnzn and H1(z) =

∑∞
n=1 cnzn, H2(z) =∑∞

n=1 dnzn are analytic on U . Then

λF (0) = λH(0) = ||c1| − |d1|| = 1.

Since ΛH(z) ≤ 1, using Lemma 2.4, we have

cn = dn = 0, n = 2, 3, . . . .

Hence H(z) = c1z + d1z with ||c1| − |d1|| = 1.
Now we prove F is univalent in the disk Uρ1 . To this end, for any z1, z2 ∈

Ur(0 < r < ρ1) with z1 �= z2, by (3.4), we have

|F (z1) − F (z2)| ≥
∣∣∣∣
∫

z1z2

Hz(z)dz + Hz̄(z)dz̄

∣∣∣∣ −
∫

z1z2

3Λ1r
2|dz|

≥ |z1 − z2|(||c1| − |d1|| − 3Λr2)
= |z1 − z2|(1 − 3Λr2) > 0.

Then, we have F (z1) �= F (z2), which proves the univalence of F in the disk
Uρ1 .

Noticing that F (0) = 0, for any z = ρ1e
iθ ∈ ∂Uρ1 , we have

|F (z)| = ||z|2G(z) + H(z)| ≥ |H(z)| − ρ2
1|G(z)|

≥ ρ1||c1| − |d1|| − Λρ3
1 = ρ1 − Λρ3

1 = σ1.
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Hence, F (Uρ1) contains a Schlicht disk Uσ1 .
Finally, for F (z) = a1Λ|z|2z + d1z̄ with |a1| = |d1| = 1, we have G(z) =

a1Λz,H(z) = d1z̄. Direct computation yields

G(0) = H(0) = 0, λF (0) = | − d1| = 1, ΛG(z) = |a1Λ| ≤ Λ

and |ΛH(z)| = |d1| ≤ 1 for all z ∈ U . Applying Lemma 2.5, we obtain that
ρ1, σ1 are sharp. This completes the proof. �

Next, we prove the sharp version of Landau-type theorems for certain
biharmonic mappings F (z) = |z|2G(z)+H(z) with G(0) = H(0) = 0, λF (0) =
1,ΛG(z) ≤ Λ and |H(z)| < 1 for all z ∈ U , which is also one of the main results
in this paper.

Theorem 3.4. Suppose that Λ ≥ 0. Let F (z) = |z|2G(z)+H(z) be a biharmonic
mapping of U , where G(z), H(z) are harmonic in U , satisfying G(0) = H(0) =
0, λF (0) = 1,ΛG(z) ≤ Λ and |H(z)| < 1 for all z ∈ U . Then F is univalent
in the disk Uρ1 and F (Uρ1) contains a Schlicht disk Uσ1 , where ρ1 = 1 when
0 ≤ Λ ≤ 1

3 , ρ1 = 1√
3Λ

when Λ > 1
3 , and σ1 = ρ1 − Λρ3

1 is defined by (2.7).
This result is sharp.

Proof. Because F (z) = |z|2G(z)+H(z) satisfies the hypothesis of Theorem 3.4,
where G(z) = g1(z)+g2(z) and H(z) = h1(z)+h2(z) with g1(z) =

∑∞
n=1 anzn,

g2(z) =
∑∞

n=1 bnzn and h1(z) =
∑∞

n=1 cnzn, h2(z) =
∑∞

n=1 dnzn are analytic
on U . Then

Since |H(z)| < 1, using Lemma 2.6, we have

cn = dn = 0, n = 2, 3, . . . .

Hence H(z) = c1z + d1z with ||c1| − |d1|| = 1.
Now we prove F is univalent in the disk Uρ1 , where

ρ1 =
{

1 if 0 ≤ Λ ≤ 1
3 ,

1√
3Λ

if Λ > 1
3 .

To this end, for any z1, z2 ∈ Ur(0 < r < ρ1) with z1 �= z2, by the means
of Lemma 2.7, we have

|F (z1) − F (z2)| ≥ |z1 − z2|(1 − 3Λr2) > |z1 − z2|(1 − 3Λρ2
0) ≥ 0.

Then, we have F (z1) �= F (z2), which proves the univalence of F in the disk
Uρ1 .

Noticing that F (0) = 0, for any z = ρ0e
iθ ∈ ∂Uρ1 , it follows from (2.8)

that

|F (z) − F (0)| = ||z|2G(z) + H(z)| ≥ |H(z)| − ρ2
1|G(z)|

≥ ρ1||c1| − |d1|| − Λρ3
1 = ρ1 − Λρ3

1 = σ1.

Hence, F (Uρ1) contains a Schlicht disk Uσ1 .
Finally, for F1(z) = a1Λ|z|2z +d1z with |a1| = |d1| = 1, we have G1(z) =

a1Λz,H1(z) = d1z. It is easy to verify that G1(0) = H1(0) = 0, λF (0) =
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1,ΛG1(z) = |a1Λ| ≤ Λ and |H1(z)| = |d1||z| < 1 for all z ∈ U . Applying
Lemma 2.5, we obtain that both of ρ1 and σ1 are sharp. This completes the
proof. �
Remark 3.5. For the harmonic mapping H(z) in the unit disk U with λH(0) =
1 and |H(z)| < M for all z ∈ U , it follows from Lemma 2.6 that M ≥ 1.
Theorem 3.4 provides the sharp version of Landau-type theorem of biharmonic
mappings for the case Λ ≥ 0 and M = 1. For the case of Λ ≥ 0 and M > 1,
we first consider an example as follows.

Example 3.6. Suppose that M > 1 and Λ ≥ 0. Let F2(z) = −Λ|z|2z+Mz 1−Mz
M−z

be a biharmonic mapping of U . Then F2(z) is univalent in the disk Uρ2 , where
ρ2 is the unique positive root in (0, 1) of the equation

M2 − M2(M2 − 1)
(M − r)2

− 3Λr2 = 0, (3.7)

and F2(Uρ2) contains a Schlicht disk Uσ2 , with

σ2 = Mρ2
1 − Mρ2

M − ρ2
− Λρ3

2. (3.8)

Both of ρ2 and σ2 are sharp.

Proof. We first prove F2(z) is univalent in the disk Uρ2 . To this end, for any
z1, z2 ∈ Ur(0 < r < ρ2) with z1 �= z2, simple computation yields that

|F2(z1) − F2(z2)| ≥ |H(z1) − H(z2)| − ∣∣Λ|z1|2z1 − Λ|z2|2z2

∣∣
= M2|z1 − z2|

∣∣∣∣1 − M(z1 + z2) + z1z2

(M − z1)(M − z2)

∣∣∣∣
−Λ

∣∣∣|z1|2(z1 − z2) + z2(|z1| + |z2|)(|z1| − |z2|)
∣∣∣

≥ M2|z1 − z2|
∣∣∣∣1 − M2 − 1

(M − z1)(M − z2)

∣∣∣∣ − 3Λr2|z1 − z2|

≥ |z1 − z2|
[
M2

(
1 − M2 − 1

(M − r)2

)
− 3Λr2

]
.

It is easy to verify that the function

g1(r) := M2 − M2(M2 − 1)
(M − r)2

− 3Λr2

is continuous and strictly decreasing on [0, 1], g0(0) = 1 > 0, and

g1(1) = −
( 2M2

M − 1
+ 3Λ

)
< 0.

There, by the mean value theorem, there is a unique real ρ2 ∈ (0, 1) such that
g1(ρ2) = 0. We obtain that

|F2(z1) − F2(z2)| > |z1 − z2|
(

M2 − M2(M2 − 1)
(M − ρ2)2

− 3Λρ2
2

)
= 0.
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Then, we have F2(z1) �= F2(z2), which proves the univalence of F2(z) in the
disk Uρ2 .

Next, we prove the sharpness of ρ2. To this end, we need to prove that
F2(z) is not univalent in the disk Ur for each r ∈ (ρ2, 1].

In fact, consider the real differentiable function

h1(x) = Mx
1 − Mx

M − x
− Λx3, x ∈ [0, 1]. (3.9)

Because the continuous function

h′
1(x) = M

1 − Mx

M − x
+ Mx

1 − M2

(M − x)2
− 3Λx2 = g1(x)

is strictly decreasing on [0, 1] and h′
1(ρ2) = g1(ρ2) = 0, we obtain that h′

1(x) =
0 for x ∈ [0, 1] if and only if x = ρ2. So h1(x) is strictly increasing on [0, ρ2] and
strictly decreasing on [ρ2, 1]. Since h1(0) = 0, there is a unique real r4 ∈ (ρ2, 1]
such that h1(r4) = 0 if h1(1) ≤ 0, and

σ2 = Mρ2
1 − Mρ2

M − ρ2
− Λρ3

2 = h1(ρ2) > h1(0) = 0. (3.10)

For every fixed r ∈ (ρ1, 1], set x1 = ρ1 + ε, where

ε =
{

min
{

r−ρ2
2 , r4−ρ2

2

}
, if h1(1) ≤ 0,

r−ρ2
2 , if h1(1) > 0,

by the mean value theorem, there is a unique δ ∈ (0, ρ2) such that x2 :=
ρ2 − δ ∈ (0, ρ2) and h1(x1) = h1(x2).

Let z1 = x1 and z2 = x2, then z1, z2 ∈ Ur (r ∈ (ρ1, 1]) with z1 �= z2.
Directly computation leads to

F2(z1) = F2(x1) = h1(x1) = h1(x2) = F2(z2),

which implies that F2(z) is not univalent in the disk Ur for each r ∈ (ρ2, 1].
Hence, the univalent radius ρ2 is sharp.

Finally, noticing that F2(0) = 0, for any z = ρ2e
iθ ∈ ∂Uρ2 and z′ = ρ2 ∈

∂Uρ2 , we have

|F2(z) − F2(0)| =
∣∣∣∣ − Λ|z|2z + Mz

1 − Mz

M − z

∣∣∣∣
≥ Mρ2

∣∣∣∣1 − Mz

M − z

∣∣∣∣ − Λρ3
2 = Mρ2

∣∣∣∣
1
M − z

1 − 1
M z

∣∣∣∣ − Λρ3
2

≥ Mρ2

1
M − |z|

1 − 1
M |z| − Λρ3

2 = Mρ2
1 − Mρ2

M − ρ2
− Λρ3

2 = σ2,

and

|F2(z′) − F2(0)| = |F2(ρ2)| = |h1(ρ2)| = h1(ρ2) = σ2.

Hence, F2(Uρ2) contains a Schlicht disk Uσ2 , and the radius σ2 is sharp. This
completes the proof. �
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Next, applying Lemma 2.7 and Example 3.6, we may verify the following
sharp form of the Landau-type theorem for certain biharmonic mapping in the
unit disk U .

Theorem 3.7. Suppose that M > 1 and Λ ≥ 0. Let F (z) = |z|2G(z) + H(z) be
a biharmonic mapping of U , where G(z) is harmonic in U , satisfying G(0) =
λF (0) − 1 = 0,ΛG(z) ≤ Λ for all z ∈ U , and H(z) =

∑∞
n=1 cnzn +

∑∞
n=1 dnzn

is harmonic in U , satisfying the following inequality

∞∑
n=2

n(|cn| + |dn|)rn−2 ≤ (M2 − 1)(2M − r)
(M − r)2

, 0 ≤ r ≤ r0

=
1

M +
√

M2 − 1
. (3.11)

Then F is univalent in the disk Uρ2 and F (Uρ2) contains a Schlicht disk Uσ2 ,
where ρ2 is the unique positive root in (0, 1) of Eq. (3.7) and σ2 is given by
(3.8). This result is sharp with F2(z) = −Λ|z|2z +Mz 1−Mz

M−z being an extremal
mapping.

Proof. Since λF (0) = 1, we have

||c1| − |d1|| = λH(0) = λF (0) = 1. (3.12)

We first prove F is univalent in the disk Uρ2 . To this end, note that
ρ2 ≤ r0, for any z1, z2 ∈ Ur (0 < r < ρ2) with z1 �= z2, by all hypotheses of
Theorem 3.7 and Lemma 2.7, we obtain that

|F (z1) − F (z2)| ≥ |z1 − z2|
[
||c1| − |d1|| −

∞∑
n=2

(|cn| + |dn|)nrn−1 − 3Λr2

]

≥ |z1 − z2|
[
1 − (M2 − 1)(2Mr − r2)

(M − r)2
− 3Λr2

]

= |z1 − z2|
[
M2 − M2(M2 − 1)

(M − r)2
− 3Λr2

]

> |z1 − z2|
[
M2 − M2(M2 − 1)

(M − ρ2)2
− 3Λρ2

2

]
= 0.

Then, we have F (z1) �= F (z2), which proves the univalence of F in the disk
Uρ1 .

Next, noticing that F (0) = 0, for any z = ρ2e
iθ ∈ ∂Uρ2 , it follows from

(2.8) that
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|F (z) − F (0)| = ||z|2G(z) + H(z)| ≥
∣∣∣∣

∞∑
n=1

(cnzn + dnzn)
∣∣∣∣ − ρ2

2|G(z)|

≥ ρ2||c1| − |d1|| −
∞∑

n=2

(|cn| + |dn|)ρn
2 − Λρ3

2

= ρ2 −
∫ ρ2

0

∞∑
n=2

n(|cn| + |dn|)rn−1dr − Λρ3
2

≥ ρ2 −
∫ ρ2

0

(M2 − 1)(2Mr − r2)
(M − r)2

dr − Λρ3
2

= ρ2 − (M2 − 1)ρ2
2

M − ρ2
− Λρ3

2 = Mρ2
1 − Mρ2

M − ρ2
− Λρ3

2 = σ2.

Hence, F (Uρ2) contains a Schlicht disk Uσ2 .
Finally, we prove the sharpness of ρ2 and σ2. We consider the biharmonic

mapping F2(z) = −Λ|z|2z +Mz 1−Mz
M−z . Let G(z) = −Λz, H(z) = Mz 1−Mz

M−z for
z ∈ U . Then G(z),H(z) are harmonic mappings in U , and G(0) = H(0) = 0,
λF (0) = 1,ΛG(z) = Λ ≤ Λ for all z ∈ U . Note that

Mz
1 − Mz

M − z
= z −

∞∑
n=2

M2 − 1
Mn−1

zn, z ∈ U,

∞∑
n=2

M2 − 1
Mn−1

nrn−1 =
(M2 − 1)(2Mr − r2)

(M − r)2
, 0 ≤ r < 1,

we obtain that F2(z) satisfies all hypotheses of Theorem 3.7. Applying Exam-
ple 3.6, we obtain that both of ρ2 and σ2 are sharp. The proof of Theorem 3.7
is complete. �

Corollary 3.8. Suppose that M > 1 and Λ ≥ 0. Let F (z) = |z|2G(z)+H(z) be
a biharmonic mapping of U , where G(z) is harmonic in U , satisfying G(0) =
λF (0) − 1 = 0,ΛG(z) ≤ Λ for all z ∈ U , and H(z) =

∑∞
n=1 cnzn +

∑∞
n=1 dnzn

is harmonic in U , satisfying the following inequality

|cn| + |dn| ≤ M2 − 1
Mn−1

, n = 2, 3, . . . . (3.13)

Then F is univalent in the disk Uρ2 and F (Uρ2) contains a Schlicht disk Uσ2 ,
where ρ2 is the unique positive root in (0, 1) of Eq. (3.7) and σ2 is given by
(3.8). This result is sharp with F2(z) = −Λ|z|2z +Mz 1−Mz

M−z being an extremal
mapping.

Setting Λ = 0 in Theorem 3.7, we have the following corollary.

Corollary 3.9. Suppose that M > 1. Let H(z) be a harmonic mapping of U

with λH(0) = 1, and H(z) =
∑∞

n=1 cnzn +
∑∞

n=1 dnzn satisfying the inequality
(3.11). Then H is univalent in the disk Ur0 and H(Ur0) contains a Schlicht
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disk UR0 , where R0 = Mr2
0 and r0 is given by (1.2). This result is sharp with

H0(z) = Mz 1−Mz
M−z being an extremal mapping.

Finally, note that

|H0(z)| = M |z|
∣∣∣1 − Mz

M − z

∣∣∣∣ < M for all z ∈ U,

and H0(z) satisfies (3.11) and (3.12). It is natural to pose three conjectures as
follows:

Conjecture 3.10. Suppose that M > 1 and Λ ≥ 0. Let F (z) = |z|2G(z) + H(z)
be a biharmonic mapping of the unit disk U , where G(z), H(z) are harmonic
in U , satisfying G(0) = H(0) = 0, λF (0) = 1,ΛG(z) ≤ Λ and |H(z)| < M for
all z ∈ U . Then F is univalent in the disk Uρ2 and F (Uρ2) contains a Schlicht
disk Uσ2 , where ρ2 is the unique positive root in (0, 1) of Eq. (3.7) and σ2 is
given by (3.8). The two radiuses ρ2, σ2 are sharp, with the extremal mapping
F2(z) = −Λ|z|2z + Mz 1−Mz

M−z .

Conjecture 3.11. Suppose that M > 1. Let H(z) be a harmonic mapping of the
unit disk U with H(0) = 0, λH(0) = 1, and |H(z)| < M for all z ∈ U . Then H
is univalent in the disk Ur0 and H(Ur0) contains a Schlicht disk UR0 , where
R0 = Mr2

0 and r0 is given by (1.2). This result is sharp with H0(z) = Mz 1−Mz
M−z

being an extremal mapping.

Conjecture 3.12. Suppose that M > 1. Let H(z) =
∑∞

n=1 cnzn +
∑∞

n=1 dnzn

be a harmonic mapping of the unit disk U with λH(0) = 1 and |H(z)| < M
for all z ∈ U . Then
∞∑

n=2

n(|cn| + |dn|)rn−2 ≤ (M2 − 1)(2M − r)
(M − r)2

, 0 ≤ r ≤ r0 =
1

M +
√

M2 − 1
.

The inequality is sharp, with the extremal mapping H0(z) = Mz 1−Mz
M−z .

Remark 3.13. If Conjecture 3.12 holds true, it follows from Theorem 3.7 and
Corollary 3.9 that Conjectures 3.10 and 3.11 also hold true.
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