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Convexity Properties of Some Entropies (II)

Ioan Raşa

Abstract. This is a continuation of the author’s paper “Convexity prop-
erties of some entropies”, published in Raşa (Results Math 73:105, 2018).
We consider the sum Fn(x) of the squared fundamental Bernstein poly-
nomials of degree n, in relation with Rényi entropy and Tsallis entropy
for the binomial distribution with parameters n and x. Several functional
equations and inequalities for these functions are presented. In particu-
lar, we give a new and simpler proof of a conjecture asserting that Fn

is logarithmically convex. New combinatorial identities are obtained as a
byproduct. Rényi entropies and Tsallis entropies for more general fami-
lies of probability distributions are considered. The paper ends with three
new conjectures.
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1. Introduction

Consider the sum of the squared fundamental Bernstein polynomials, i.e.,

Fn(x) :=
n∑

k=0

((
n

k

)
xk(1 − x)n−k

)2

, x ∈ [0, 1].

For obvious reasons it is called also the index of coincidence for the binomial
distribution with parameters n and x. In this context Fn(x) is related to the
Rényi entropy Rn(x) and the Tsallis entropy Tn(x) corresponding to the same
distribution:

Rn(x) = − log Fn(x), Tn(x) = 1 − Fn(x).

For more details, see [4,5,13,14,16] and the references therein.
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A conjecture of the author, asserting that Fn is a convex function, was
validated in [8,11,12]; details can be found in [14] and [16]. A second conjecture,
asserting the logarithmic convexity of Fn, was formulated by the author in [13].
It was proved in [16]; for related results see [2].

Several functional/differential equations satisfied by Fn and some associ-
ated functions were involved in the above mentioned proofs.

One aim of this paper is to give a new and simpler proof of the second
conjecture. This will be achieved after establishing new functional equations
satisfied by Fn.

Another aim is to present new inequalities for Fn(x), Rn(x), Tn(x). Sev-
eral representations of the polynomial Fn(x) are known, and several combi-
natorial identities were deduced from them. We provide a new representation
and new combinatorial identities.

The indices of coincidence, and the Rényi and Tsallis entropies for more
general families of probability distributions are briefly discussed; details and
proofs will appear elsewhere.

The last section is devoted to the presentation of three new conjectures.
Throughout the paper we use the notation X := x(1 − x), x ∈ [0, 1].

Then X ′ = 1 − 2x, (X ′)2 = 1 − 4X.

2. A Functional Equation Satisfied by Fn

Consider the Legendre polynomials (see [3, 22.3.1])

Pn(t) := 2−n
n∑

k=0

(
n

k

)2

(t + 1)k (t − 1)n−k, n ≥ 0.

As in [11,12], set

t =
2x2 − 2x + 1

1 − 2x
∈ [1,∞), x ∈ [0, 1

2 ).

Then (see [12, (2.3)], [14, (24)]),

Fn(x) =
(
t −

√
t2 − 1

)n

Pn(t), (2.1)

or, equivalently,

Pn(t) = (1 − 2x)−n
Fn(x). (2.2)

The polynomials Pn(t) satisfy several functional/differential equations. Using
them and (2.1), (2.2), similar equations for Fn(x) were obtained in [14, Th.
10]. Here we present another equation of this type.

Theorem 2.1. The polynomials Fn(x) satisfy

x(1 − x)F ′
n(x) = n(1 − 2x) (Fn(x) − Fn−1(x)) , n ≥ 1. (2.3)
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Proof. According to [3, 22.8.1], we have

(1 − t2)P ′
n(t) + ntPn(t) = nPn−1(t). (2.4)

From t = (1 − 2X)/X ′ it follows easily that

dx

dt
=

1 − 4X

4X
. (2.5)

Now (2.2) and (2.5) imply

P ′
n(t) =

(X ′)1−n

4X
(X ′F ′

n(x) + 2nFn(x)) . (2.6)

Combining (2.4) with (2.2) and (2.6), we get

XX ′F ′
n(x) = n(1 − 4X) (Fn(x) − Fn−1(x)) . (2.7)

Since 1 − 4X = (X ′)2 , (2.7) implies (2.3). �

Remark 2.1. The above proof of (2.3) is based on the property (2.4) of the
Legendre polynomials. (2.3) can be also derived from (3.1) below; we shall use
this fact, even in a more general context, in a forthcoming paper.

3. Inequalities for Fn, Rn, Tn

The following integral representation of Fn can be found in [14, (29)]; for a
more general result see the proof of Theorem 1 in [7].

Fn(x) =
1
π

∫ 1

0

[
t + (1 − t)(1 − 2x)2

]n dt√
t(1 − t)

, n ≥ 0. (3.1)

Using it, we can prove

Theorem 3.1. The following inequalities hold for x ∈ [0, 1], n ≥ 1 :

F 2
n(x) ≤ Fn−1(x)Fn+1(x), (3.2)

Fn(x) ≤ (Fn−1(x) + Fn+1(x)) /2, (3.3)

(1 − 2X)Fn−1(x) ≤ Fn(x) ≤ Fn−1(x), (3.4)

Fn+1(x) ≤ 1 + (4n − 2)X
1 + (4n + 2)X

Fn−1(x). (3.5)

Proof. It is easy to verify that
[
t + (1 − t)(1 − 2x)2

]n+1
s2 + 2

[
t + (1 − t)(1 − 2x)2

]n
s

+
[
t + (1 − t)(1 − 2x)2

]n−1 ≥ 0, (3.6)

for all t ∈ [0, 1], x ∈ [0, 1], n ≥ 1, s ∈ R.
From (3.1) and (3.6) we derive

Fn+1(x)s2 + 2Fn(x)s + Fn−1(x) ≥ 0, s ∈ R,
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and this implies (3.2). For s = −1 we get (3.3). On the other hand, (3.2)
entails

Fn(x)
Fn−1(x)

≥ Fn−1(x)
Fn−2(x)

≥ · · · ≥ F1(x)
F0(x)

=
1 − 2X

1
,

which proves the first inequality in (3.4). The second one is a direct conse-
quence of (3.1).

It was proved in [14, (30)] that Fn satisfies the functional equation

(n + 1)Fn+1(x) + n(1 − 4X)Fn−1(x) − (2n + 1)(1 − 2X)Fn(x) = 0. (3.7)

Using (3.3) and (3.7) we get

Fn−1(x) + Fn+1(x)
2

≥ Fn(x) =
(n + 1)Fn+1(x) + n(1 − 4X)Fn−1(x)

(2n + 1)(1 − 2X)
,

and this leads immediately to (3.5). �

Remark 3.1. The inequality (3.3) and the second inequality in (3.4) can be
deduced also from [7, (15)].

Concerning the Rényi entropy Rn(x) = − log Fn(x) and the Tsallis en-
tropy Tn(x) = 1 − Fn(x), from (3.2) and (3.3) we obtain the following

Corollary 3.1. The inequalities

Rn(x) ≥ (Rn−1(x) + Rn+1(x)) /2,

Tn(x) ≥ (Tn−1(x) + Tn+1(x)) /2,

hold for all x ∈ [0, 1] and n ≥ 1. In other words, the sequences (Rn(x))n≥0

and (Tn(x))n≥0 are concave.

4. Fn(x) is a log-Convex Function: New Proof

As mentioned in the Introduction, the logarithmic convexity of the function
Fn(x) was conjectured in [13] and proved in [16]. Here we present a new and
simpler proof.

First, from the above results we derive other functional equations satisfied
by the polynomials Fn(x).

Theorem 4.1. The following equations hold for n ≥ 2:

X2F ′′
n = n(n − 1) (X ′)2 (Fn − 2Fn−1 + Fn−2) + 2nX(Fn−1 − Fn), (4.1)

(
X2/n

) (
F ′′
nFn − (F ′

n)2
)

= (X ′)2
[
(n − 1)

(
FnFn−2 − F 2

n−1

) − (Fn−1 − Fn)2
]

+ 2XFn(Fn−1 − Fn). (4.2)
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Proof. Taking the derivative in (2.3) we get

XF ′′
n − (n − 1)X ′F ′

n + 2nFn = 2nFn−1 − nX ′F ′
n−1. (4.3)

On the other hand, from (2.3) we obtain

F ′
n = (nX ′/X) (Fn − Fn−1)

and a corresponding expression of F ′
n−1; substituting them into (4.3) yields

(4.1).
Combining (4.1) and (2.3) we get, after some elementary calculation,

Eq. (4.2). �

As a consequence of Theorems 3.1 and 4.1 , we obtain

Corollary 4.1. Fn is logarithmically convex, i.e., log Fn is convex.

Proof. According to (3.2), FnFn−2 − F 2
n−1 ≥ 0, and (4.2) shows that

(
X2/n

) (
F ′′
nFn − (F ′

n)2
)

≥ 2XFn (Fn−1 − Fn) − (1 − 4X) (Fn−1 − Fn)2

= (Fn−1 − Fn) [(1 − 2X)Fn − (1 − 4X) Fn−1] .

Using (3.4) we see that (1 − 4X) Fn−1 = (1 − 2X)Fn−1 − 2XFn−1 ≤ Fn −
2XFn−1 ≤ (1 − 2X)Fn.

This shows that F ′′
nFn − F ′

n
2 ≥ 0, i.e., log Fn is a convex function. This

concludes the proof. �

Remark 4.1. From the fact that Fn(x) is log-convex it follows that the Rényi
entropy Rn(x) is concave. The Tsallis entropy Tn(x) is log-concave as a con-
sequence of the inequalities F ′′

n ≥ 0 and Fn ≤ 1 (see also [16, Cor.1]). The
corresponding properties of the Shannon entropy were studied in [15].

5. A New Representation of Fn(x) and Some Combinatorial
Identities

From (3.1) we get by elementary calculation

Fn(x) =
1
π

n∑

k=0

(
n

k

)
(1 − 4X)k B

(
n − k +

1
2
, k +

1
2

)
,

and consequently

Fn(x) = 4−n
n∑

k=0

(
2n − 2k

n − k

)(
2k

k

)
(1 − 4X)k . (5.1)

Under a slightly different form, this formula was obtained in [8, (6)] by
using a different method.
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We have also (see [4, (21)])

Fn(x) =
n∑

k=0

(−1)k
(

n

k

)(
2k

k

)
Xk. (5.2)

Comparing (5.1) and (5.2), the combinatorial identities (28) and (29) in [4]
were obtained.

Here we will get a new representation of Fn(x) and will compare it with
(5.1) and (5.2).

Theorem 5.1. For n ≥ 0 and x ∈ [0, 1],

Fn(x) =
n∑

j=0

(
n

j

)(
2j

j

)
Xj (1 − 4X)n−j

. (5.3)

Proof. For 0 < x ≤ 1
2 , let s := 1

X − 4. Then s is invertible as a function of x,
s ≥ 0 and s = 0 iff x = 1

2 . Define

Un(s) :=
Fn(x)
Xn

, n ≥ 0. (5.4)

Then Un(0) = 4nFn( 12 ) =
(

2n

n

)
.

From (2.3) we derive immediately

d

dx

Fn(x)
Xn

= −n
X ′

X2

Fn−1(x)
Xn−1

. (5.5)

Now (5.5) combined with (5.4) and ds
dx = − X′

X2 produces

d

ds
Un(s) = nUn−1(s).

It follows that

Un(s) = n

∫ s

0

Un−1(θ)dθ +
(

2n

n

)
.

By induction we get

Un(s) =
n∑

k=0

(
n

k

)(
2k

k

)
sn−k,

and (5.4) shows that

Fn(x) = XnUn

(
1 − 4X

X

)
.

This implies (5.3) for x ∈ (0, 1
2 ]. (5.3) is obviously valid for x = 0, and by

symmetry it is valid on [0, 1]. This concludes the proof. �
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Let us return to (5.3) and expand Xj (1 − 4X)n−j in powers of 1 − 4X;
then write Fn(x) as a polynomial of degree n in the variable 1 − 4X and
compare with (5.1). The result is the following combinatorial identity:

k∑

j=0

(−1)k−j4j
(

n

j

)(
n − j

n − k

)(
2n − 2j

n − j

)
=

(
2k

k

)(
2n − 2k

n − k

)
. (5.6)

Similarly, if in (5.3) we write the right-hand side as a polynomial in X
and then compare with (5.2), we obtain

k∑

j=0

(
−1

4

)j (
n

j

)(
2j

j

)(
n − j

k − j

)
= 4−k

(
n

k

)(
2k

k

)
, (5.7)

where k = 0, 1, . . . , n.
For k = n, both (5.6) and (5.7) reduce to (3.85) in [10].

Remark 5.1. Other combinatorial identities, obtained by comparing different
expressions of the same function, can be found in [6]. Purely combinatorial
proofs of such identities are presented in [1].

Remark 5.2. More general families of probability distributions are associated
with other classes of positive linear operators, as the classical Baskakov, Szász-
Mirakjan, Meyer-König and Zeller, Bleimann-Butzer-Hahn operators, or the
operators introduced by Baskakov in 1957. The indices of coincidence and the
corresponding Rényi and Tsallis entropies for these families were investigated
in [13–16]. In a forthcoming paper, the above results involving Fn(x), Rn(x),
Tn(x) will be translated into this more general context, in specific forms. In
particular, it will be shown that the sequences of Rényi and Tsallis entropies
are concave, exactly as in Corollary 3.1.

6. New Conjectures

In relation with the above results, we present here three new conjectures.
6.1. For k = 0, 1, . . . , n and x ∈ [0, 1], let

bn,k(x) :=
(

n

k

)
xk(1 − x)n−k (6.1)

be the fundamental Bernstein polynomials. Let Bn be the classical Bernstein
operators on C[0, 1], i.e.,

Bnf(x) =
n∑

k=0

bn,k(x)f
(

k

n

)
, n ≥ 1, f ∈ C[0, 1], x ∈ [0, 1].

Let (ak)k=0,1,...,n be a convex sequence of non-negative numbers, i.e., 2ak ≤
ak−1 + ak+1, k = 1, . . . , n − 1. Consider the piecewise linear function wn ∈
C[0, 1] with wn

(
2k−1
2n

)
= 0, for k = 1, . . . , n, and wn

(
k
n

)
= ak for k =

0, 1, . . . , n.
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Conjecture 6.1. B2nwn is a convex function.

Remark 6.1. It is a pleasant calculation to verify that the sequence ak :=(
n

k

)2

/

(
2n

2k

)
, k = 0, 1, . . . , n, is convex, and for the corresponding function

wn we have Fn(x) = B2nwn(x).

6.2. Let r ∈ [0, 1) be given. Consider the function

Fn,r(x) :=
n∑

k=0

bn,k(x)bn,k(x − r), x ∈ [r, 1].

Notice that Fn,0(x) = Fn(x), x ∈ [0, 1].

Conjecture 6.2. Fn,r is a log-convex function.

6.3. Following a suggestion of C. A. Micchelli, T.N.T. Goodman proved in [9]
that Bnf is log-concave whenever f ∈ C[0, 1] is log-concave. In November
2017, at the University of Bielsko-Bia�la, the author of this paper formulated

Conjecture 6.3. If f ∈ C[0, 1] is log-concave, then
n∑

i+j=h
0≤i≤n−1
0≤j≤n

(
n − 1

i

)(
n

j

)[
(n − 1 − i)f

(
j

n

)
Δ2

1/nf

(
i

n

)

− (n − j)Δ1
1/nf

(
i

n

)
Δ1

1/nf

(
j

n

)]
≤ 0,

for all n ≥ 1, h ∈ {0, 1, . . . , 2n−2}.(Here Δ1
tf(a) = f(a+ t)−f(a), Δ2

tf(a) =
f(a + 2t) − 2f(a + t) + f(a)).

If this conjecture is true, it implies Goodman’s result.
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