

An Inverse Problem for an Integro-Differential Equation with a Convolution Kernel Dependent on the Spectral Parameter

Natalia P. Bondarenk[o](http://orcid.org/0000-0003-2513-1472)

Abstract. We consider a pencil of the first-order integro-differential operators with the convolution kernel dependent on the spectral parameter. The inverse problem is studied, which consists in recovering the kernel from the spectrum. We develop a constructive procedure for solution and obtain necessary and sufficient conditions for the solvability of the inverse problem.

Mathematics Subject Classification. 34A55, 34B08, 34B09, 34B10, 34L20, 34L40, 47E05.

Keywords. Pencil of integro-differential operators, inverse spectral problems, nonlinear integral equations, necessary and sufficient conditions.

1. Introduction and Main Results

The paper concerns the inverse spectral theory for integro-differential operators. Inverse spectral problems consist in reconstruction of operators, by using their spectral characteristics. The most complete theory of such problems was developed for *differential* operators (see the monographs [\[1](#page-8-0)[–4](#page-8-1)]). However, *integro-differential* operators are often more adequate for description of various processes in physics, biology, economics and engineering [\[5](#page-8-2)]. Inverse spectral theory for intergo-differential operators has not been sufficiently developed yet. It consists of fragmentary results, not forming a general picture (see $[6-13]$ $[6-13]$ and references therein).

In this paper, we solve an inverse problem for a pencil of integrodifferential operators with a kernel, depending on the spectral parameter. We note that investigation of inverse problems for differential pencils causes principal difficulties, comparing with usual differential operators (see e.g. [\[14](#page-8-6)]). Inverse problems for integro-differential equations with coefficients, depending on the spectral parameter, as far as we know, have not been studied before.

We investigate the boundary value problem L for the first-order integrodifferential equation

$$
iy'(x) + \int_0^x M(x - t, \lambda)y(t) dt = \lambda y(x), \quad 0 < x < \pi,\tag{1}
$$

with the boundary condition $y(0) = y(\pi)$, where the convolution kernel depends linearly on the spectral parameter: $M(x, \lambda) = M_0(x) + \lambda M_1(x)$.

Define the class of functions

$$
L_{2,\pi} := \{ f \colon (\pi - x) f(x) \in L_2(0, \pi) \}.
$$

We assume that the functions M_0 and M_1 are *real-valued*, the function M_1 is absolutely continuous on $[0, \pi)$, M_0 and M'_1 belong to $L_{2,\pi}$, and $M_1(0) = 0$.

The main results of the paper are Theorems [1](#page-1-0) and [2,](#page-1-1) providing necessary and sufficient conditions on the spectrum of the problem L.

Theorem 1. *The boundary value problem* L *has a countable set of complex eigenvalues, which can be numbered as* $\{\lambda_n\}_{n\in\mathbb{Z}}$ *, counting with their multiplicities, so that the following asymptotic relation holds*

$$
\lambda_n = 2n + \varkappa_n, \quad \{\varkappa_n\} \in l_2. \tag{2}
$$

Theorem 2. For arbitrary complex numbers $\{\lambda_n\}_{n\in\mathbb{Z}}$, satisfying the asymp*totic relation* [\(2\)](#page-1-2)*, there exists a unique boundary value problem* L *in the form described above, such that* $\{\lambda_n\}_{n\in\mathbb{Z}}$ *is the spectrum of* L.

Moreover, we develop a constructive procedure for solving the following inverse problem.

Inverse Problem 1. Given the spectrum $\{\lambda_n\}_{n\in\mathbb{Z}}$ of L, construct the functions M_0 and M_1 .

Note that the case, when $M_1 = 0$ and M_0 is complex-valued, has been studied in [\[15](#page-8-7)]. In that case, the spectrum $\{\lambda_n\}_{n\in\mathbb{Z}}$ is also sufficient for recovering L, and the theorem similar to Theorem [2](#page-1-1) is valid.

In order to solve Inverse Problem [1](#page-1-3) and to prove Theorem [2,](#page-1-1) we develop an approach of [\[7](#page-8-8),[12\]](#page-8-9). Our method is based on the reduction of the inverse problem to the system of nonlinear integral Eq. [\(15\)](#page-4-0), called *the main equations*. In Sect. [2,](#page-2-0) we derive the system [\(15\)](#page-4-0) and prove its unique solvability (Lemma [2\)](#page-4-1). In Sect. [3,](#page-6-0) we prove the main results and obtain Algorithm [1](#page-7-0) for solution of the inverse problem.

2. Main Equations of the Inverse Problem

Denote by $e(x, \lambda)$ the solution of Eq. [\(1\)](#page-1-4), satisfying the initial condition $e(0, \lambda)$ $= 1.$ Obviously, the eigenvalues of L coincide with the zeros of the entire characteristic function $\Delta(\lambda) := e(\pi, \lambda) - e(0, \lambda)$. Introduce the following notations for convolutions

$$
(f * g)(x) = \int_0^x f(x - t)g(t) dt,
$$

$$
f^{*1} = f, \quad f^{*n} = f^{*(n-1)} * f, \quad n \ge 1, \quad f^{*0} * g = g * f^{*0} = g.
$$

The solution $e(x, \lambda)$ admits the representation

$$
e(x,\lambda) = \exp(-i\lambda x) + \int_0^x P(x,t,\lambda) \exp(-i\lambda(x-t)) dt,
$$
 (3)

where

$$
P(x,t,\lambda) = \sum_{\nu=1}^{\infty} i^{\nu} \frac{(x-t)^{\nu}}{\nu!} M^{*\nu}(t,\lambda).
$$
 (4)

The relations (3) and (4) can be obtained similarly to $[7]$ $[7]$, where Eq. (1) with $M(x, \lambda) \equiv M(x)$ has been considered.

Formal calculations show that

$$
\Delta(\lambda) = \exp(-i\lambda\pi) - 1 + \int_0^\pi v(t,\lambda)\exp(-i\lambda(\pi - t))\,dt,\tag{5}
$$

where

$$
v(t,\lambda) = \sum_{\nu=1}^{\infty} i^{\nu} \frac{(\pi - t)^{\nu}}{\nu!} (M_0 + \lambda M_1)^{*\nu}(t)
$$

=
$$
\sum_{\nu=1}^{\infty} i^{\nu} \frac{(\pi - t)^{\nu}}{\nu!} \sum_{n=0}^{\nu} \frac{\nu!}{n!(\nu - n)!} \lambda^n (M_0^{*(\nu - n)} * M_1^{*n})(t) = \sum_{n=0}^{\infty} \lambda^n F_n(t),
$$

(6)

$$
F_n(t) = \sum_{s=\max\{1-n,0\}}^{\infty} \frac{i^{n+s}(\pi-t)^{n+s}}{n!s!} (M_0^{*s} * M_1^{*n})(t), \quad n \ge 0.
$$
 (7)

Below we use the symbol C for various constants, independent of t , λ , etc. Denote the functions

$$
g_n(x) := \frac{x^n}{n!}, n \ge 0, \quad f * g_{-1} = g_{-1} * f = f, \quad \tilde{M}_1 := M'_1.
$$

Lemma 1. *For* $n \geq 0$ *, the function* F_n *belongs to* $W_2^n[0, \pi]$ *, and the following estimate holds*

$$
||F_n^{(n)}||_{L_2(0,\pi)} \leq \frac{C^n}{[n/2]!}.
$$

Moreover, $F_n^{(k)}(0) = F_n^{(k)}(\pi) = 0, 0 \le k \le n$.

Proof. Rewrite the relation [\(7\)](#page-2-3) in the form

$$
F_n(t) = \sum_{s=\max\{1-n,0\}}^{\infty} F_{ns}(t),
$$

\n
$$
F_{ns}(t) := \frac{i^{n+s}(\pi - t)^{n+s}}{n!s!} (M_0^{ss} * M_1^{*n})(t), \quad n \ge 0.
$$
\n(8)

Note that

$$
M_1 = \tilde{M}_1 * g_0, \quad M_1^{*n} = \tilde{M}_1^{*n} * g_{n-1}, \quad (f * g_n)' = f * g_{n-1}, \quad n \ge 0.
$$

Using the latter formulas, we obtain

$$
F_{ns}^{(k)}(t) = \frac{i^{n+s}(n+s)!}{n!s!} \sum_{j=0}^{k} (-1)^j g_{n+s-j}(\pi - t) (M_0^{*s} * \tilde{M}_1^{*n} * g_{n-k+j-1})(t),
$$

0 \le k \le n, $s \ge 0$, $n+s \ge 1$. (9)

Since the functions M_0 and \tilde{M}_1 belong to $L_{2,\pi}$, one can easily show (see e.g. [\[12\]](#page-8-9)), that for $n + s \geq 2$, $\nu = \overline{0, n + s}$, the function $g_{\nu}(\pi - t)(M_0^{ss} * \tilde{M}^{*n} *$ $g_{n-1-\nu}(t)$ is absolutely continuous on [0, π], and

$$
\left| g_{\nu}(\pi - t)(M_0^{*s} * \tilde{M}_1^{*n} * g_{n+s-1-\nu})(t) \right| \leq \frac{C^{n+s}}{[(n+s)/2]!}, \quad t \in [0, \pi],
$$

where [x] is an integer part of x. Consequently, the relation [\(9\)](#page-3-0) for $0 \leq k < n$ and $n + s \geq 2$ yields that the functions $F_{ns}^{(k)}$ are absolutely continuous on $[0, \pi]$, and $F_{ns}^{(k)}(0) = F_{ns}^{(k)}(\pi) = 0$. For $n + s \geq 2$ the functions $F_{ns}^{(n)}$ are also absolutely continuous on $[0, \pi]$ and satisfy the estimate

$$
\left| F_{ns}^{(n)}(t) \right| \le \frac{C^{n+s}}{[(n+s)/2]!}, \quad t \in [0, \pi].
$$

It remains to consider the two cases, when $n + s = 1$:

$$
F_{01}(t) = i(\pi - t)M_0(t) \in L_2(0, \pi),
$$

\n
$$
F_{10}(t) = i(\pi - t)(\tilde{M}_1 * g_0)(t) \in W_2^1[0, \pi], \quad F_{10}(0) = F_{10}(\pi) = 0.
$$

Thus, we have for all $n, s \geq 0$, $n + s \geq 1$, that $F_{ns}^{(n)} \in L_2(0, \pi)$ and

$$
\left\| F_{ns}^{(n)} \right\|_{L_2(0,\pi)} \leq \frac{C^{n+s}}{[(n+s)/2]!}.
$$

Note that

$$
\sum_{s=0}^{\infty} \frac{C^{n+s}}{[(n+s)/2]!} \leq C_1 \cdot \frac{C^n}{[n/2]!},
$$

where C_1 is a constant. Consequently, the series

$$
\sum_{s=\max\{0,1-n\}}^{\infty} F_{ns}^{(n)}, \quad n \ge 0,
$$

converge in $L_2(0, \pi)$. Taking [\(8\)](#page-3-1) into account, we arrive at the assertion of the Lemma. L emma. \Box

In view of Lemma [1,](#page-2-4) integration by parts yields

$$
\lambda^n \int_0^\pi F_n(t) \exp(-i\lambda(\pi - t)) dt = i^n \int_0^\pi F_n^{(n)}(t) \exp(-i\lambda(\pi - t)) dt. \tag{10}
$$

The relations (5) , (6) and (10) imply

$$
\Delta(\lambda) = \exp(-i\lambda\pi) - 1 + \int_0^\pi w(t) \exp(-i\lambda(\pi - t)) dt,
$$
\n(11)

where

$$
w(t) = \sum_{n=0}^{\infty} i^n F_n^{(n)}(t).
$$
 (12)

Lemma [1](#page-2-4) implies $w \in L_2(0, \pi)$.

Define the following functions for $n \geq 1$, $j = \overline{0, n}$:

$$
Q_{nj}[M] := M_0^{*(n-j)} * \tilde{M}_1^{*j}, \quad \varphi_{nj}(x) := \frac{i^{n+j}}{j!(n-j)!} (\pi - x)^{n-1},
$$

$$
\Phi_{nj}(x,t) := \frac{i^{n+j}n!}{j!(n-j)!} \sum_{s=1}^j g_{n-s}(\pi - x)g_{s-1}(x-t).
$$
 (13)

Substituting (7) into (12) , we derive the relation

$$
w(x) = (\pi - x) \sum_{n=1}^{\infty} \sum_{j=0}^{n} \left(\varphi_{nj}(x) Q_{nj}[M](x) + \int_{0}^{x} \Phi_{nj}(x, t) Q_{nj}[M](t) dt \right).
$$
\n(14)

Considering the real part and the imaginary part of [\(14\)](#page-4-4) separately, we arrive at the system of two nonlinear integral equations with respect to real functions M_0 and M_1 :

$$
f_{\nu}(x) = \sum_{n=1}^{\infty} \sum_{j=0}^{n} \left(\psi_{\nu nj}(x) Q_{nj}[M](x) + \int_0^x \Psi_{\nu nj}(x, t) Q_{nj}[M](t) dt \right), \quad \nu = 0, 1,
$$
\n(15)

where

$$
\psi_{0nj}(x) = -i\mathrm{Im}\,\varphi_{nj}(x), \quad \psi_{1nj}(x) = -\mathrm{Re}\,\varphi_{nj}(x), \n\Psi_{0nj}(x,t) = -i\mathrm{Im}\,\Phi_{nj}(x,t), \quad \Psi_{1nj}(x,t) = -\mathrm{Re}\,\Phi_{nj}(x,t), \nf_0(x) = -i\mathrm{Im}\,w(x)/(\pi - x), \quad f_1(x) = -\mathrm{Re}\,w(x)/(\pi - x)
$$
\n(16)

The following Lemma claims the unique solvability of [\(15\)](#page-4-0), and plays a crucial role in investigation of Inverse Problem [1.](#page-1-3)

Lemma 2. *The system of main Eq.* [\(15\)](#page-4-0) *with the coefficients, defined by* [\(16\)](#page-4-5)*, has the unique solution* (M_0, M_1) *,* $M_0 \in L_{2,\pi}$ *,* $M_1 \in L_{2,\pi}$ *, for any* $w \in L_2(0, \pi)$ *.*

The proof of Lemma [2](#page-4-1) is based on Proposition [1,](#page-5-0) which is a special case of [\[16](#page-8-10), Theorem 3].

Proposition 1. Let $\psi_{\nu n j}(x)$ and $\Psi_{\nu n j}(x,t)$, $\nu = 0,1$, $n \in \mathbb{N}$, $j = \overline{0, n}$, be *arbitrary functions, square integrable on* $(0, b)$ *and* $S := \{(x, t): 0 < t < x <$ b}*, respectively, and satisfying the estimates*

$$
\|\psi_{\nu nj}\|_{L_2(0,b)} \le A^n, \quad \|\Psi_{\nu nj}\|_{L_2(\mathcal{S})} \le A^n, \quad \nu = 0, 1, n \in \mathbb{N}, j = \overline{0, n}, (17)
$$

for some fixed $A > 0$ *independent of* ν , *n* and *j.* Assume that $\psi_{\nu 1j}(x) =$ $\delta_{\nu j}$, $\nu, j = 0, 1$, where $\delta_{\nu j}$ *is the Kronecker delta. Then for every functions* $f_{\nu} \in L_2(0, b), \ \nu = 0, 1$, the system [\(15\)](#page-4-0) has the unique solution (M_0, M_1) , $M_0 \in L_2(0, b)$, $M_1 \in L_2(0, b)$.

Proof of Lemma [2.](#page-4-1) Let w be an arbitrary function from $L_2(0, \pi)$. Obviously, the functions $\psi_{\nu n j}$, $\Psi_{\nu n j}$ and f_{ν} , $\nu = 0, 1, n \in \mathbb{N}$, $j = \overline{0, n}$, defined by [\(16\)](#page-4-5), satisfy the conditions of Proposition [1](#page-5-0) for every $b \in (0, \pi)$. Hence [\(15\)](#page-4-0) has the unique solution $(M_0, \tilde{M}_1), M_0 \in L_2(0, b), \tilde{M}_1 \in L_2(0, b)$ for every $b \in (0, \pi)$. It remains to prove that $M_0 \in L_{2,\pi}$ and $M_1 \in L_{2,\pi}$.

We represent the functions in the form $M_0(x) = M_{01}(x) + M_{02}(x)$, $M_1(x) = M_{11}(x) + M_{12}(x)$, so that $M_{\nu_1}(x) = 0$ for $x \in (\pi/2, \pi)$ and $M_{\nu_2}(x) =$ 0 for $x \in (0, \pi/2), \nu = 0, 1$. Note that $M_{\nu_1,2} * M_{\nu_2,2} \equiv 0$ on $(0, \pi), \nu_k = 0, 1$, $k = 1, 2$. Consequently, we have

$$
Q_{nj}[M] = Q_{nj}[M_{(1)}] + (n-j)M_{02} * Q_{n-1,j}[M_{(1)}] +jM_{12} * Q_{n-1,j-1}[M_{(1)}], \quad n \ge 2, \quad j = \overline{0, n},
$$
(18)

where

$$
Q_{nj}[M_{(1)}] := M_{01}^{*(n-j)} * M_{11}^{*j}, \quad n \ge 1, j = \overline{0, n}.
$$

Denote

$$
b_{0nj} := n - j
$$
, $b_{1nj} := j$, $n \ge 2$, $j = \overline{0, n}$.

Substituting [\(18\)](#page-5-1) into [\(15\)](#page-4-0), we obtain the following relation for $x > \pi/2$:

$$
f_{\nu}(x) = M_{\nu 2}(x) + \sum_{j=0}^{1} \int_{0}^{x} \Psi_{\nu 1j}(x, t) M_{j2}(t) dt + \sum_{n=2}^{\infty} \sum_{j=0}^{n} \psi_{\nu nj}(x) Q_{nj}[M_{(1)}](x)
$$

+
$$
\sum_{n=1}^{\infty} \sum_{j=0}^{n} \int_{0}^{x} \Psi_{\nu nj}(x, t) Q_{nj}[M_{(1)}](t) dt + \sum_{n=2}^{\infty} \sum_{j=0}^{n} \sum_{\xi=0}^{1} b_{\xi nj}
$$

$$
\left(\psi_{\nu nj}(x) (M_{\xi 2} * Q_{n-1, j-\xi}[M_{(1)}])(x) + \int_{0}^{x} \Psi_{\nu nj}(x, t) (M_{\xi 2} * Q_{n-1, j-\xi}[M_{(1)}])(t) dt\right), \quad \nu = 0, 1.
$$

Multiplying this relation by $(\pi - x)$, we arrive at the system of linear Volterra integral equations

$$
\mu_{\nu}(x) = z_{\nu}(x) + \sum_{\xi=0}^{1} \int_{\pi/2}^{x} K_{\nu\xi}(x, t) z_{\xi}(t) dt, \quad \pi/2 < x < \pi, \quad \nu = 0, 1, (19)
$$

where

$$
z_{\nu}(x) = (\pi - x)M_{\nu 2}(x),
$$

\n
$$
\mu_{\nu}(x) = (\pi - x)\left(f_{\nu}(x) - \sum_{n=2}^{\infty} \sum_{j=0}^{n} \psi_{\nu nj}(x)Q_{nj}[M_{(1)}](x)\right)
$$

\n
$$
-\sum_{n=1}^{\infty} \sum_{j=0}^{n} \int_{0}^{x} \Psi_{\nu nj}(x,t)Q_{nj}[M_{(1)}](t) dt\right),
$$

\n
$$
K_{\nu\xi}(x,t) = \frac{\pi - x}{\pi - t} \left(\Psi_{\nu 1\xi}(x,t) + \sum_{n=2}^{\infty} \sum_{j=0}^{n} b_{\xi nj} \left(\psi_{\nu nj}(x)Q_{n-1,j-\xi}[M_{(1)}](x-t) + \int_{0}^{x-t} \Psi_{\nu nj}(x,t+s)Q_{n-1,j-\xi}[M_{(1)}](s) ds\right)\right), \quad \nu, \xi = 0, 1.
$$

Note that $f_{\nu} \in L_2(0, \pi)$, $\Psi_{\nu 1\xi} \in L_2(\mathcal{T})$, $\nu, \xi = 0, 1, \mathcal{T} := \{(x, t): \pi/2 <$ $t < x < \pi$. Using the estimates

$$
\left|\frac{\pi-x}{\pi-t}\right| < 1, \quad \pi/2 < t < x < \pi, \qquad |Q_{nj}[M_{(1)}](x)| \le \frac{C^n}{[n/2]!}, \quad n \ge 2,
$$

together with [\(17\)](#page-5-2), we conclude that $\mu_{\nu} \in L_2(\pi/2, \pi)$, $K_{\nu\xi} \in L_2(\mathcal{T})$, $\nu, \xi = 0, 1$. Consequently, the Volterra integral Eq. [\(19\)](#page-6-1) has the unique solution (z_0, z_1) , $z_{\nu} \in L_2(0, \pi)$, $\nu = 0, 1$, so we arrive at the assertion of the Lemma.

3. Proofs of the Main Results

In this section, we prove Theorems [1](#page-1-0) and [2,](#page-1-1) and also provide an algorithm for solving Inverse Problem [1.](#page-1-3)

Proof of Theorem [1.](#page-1-0) Using [\(11\)](#page-4-6), we obtain the following relation for the characteristic function:

$$
\Delta(\lambda) = \exp(-i\lambda\pi/2) \left(-2i\sin\frac{\lambda\pi}{2} + \int_{-\pi/2}^{\pi/2} w\left(s + \frac{\pi}{2}\right) \exp(i\lambda s) \, ds \right). \tag{20}
$$

Applying to (20) the standard technique (see [\[4](#page-8-1), Theorem 1.1.3]), based on Rouché's theorem, we derive the asymptotic relations (2) for the zeros of $\Delta(\lambda)$.

Relying on [\(2\)](#page-1-2) and [\(20\)](#page-6-2), one can prove the following Proposition similarly to $[11,$ $[11,$ Lemmas 1 and 2.

Proposition 2. *The characteristic function is uniquely determined by its zeros by the formula*

$$
\Delta(\lambda) = -i\pi \exp(-i\lambda \pi/2)(\lambda - \lambda_0) \prod_{\substack{n = -\infty \\ n \neq 0}}^{\infty} \frac{\lambda_n - \lambda}{2n} \exp\left(\frac{\lambda}{2n}\right).
$$
 (21)

For arbitrary complex numbers $\{\lambda_n\}_{n\in\mathbb{Z}}$ *of the form* [\(2\)](#page-1-2), the function $\Delta(\lambda)$ *, determined by* [\(21\)](#page-7-1)*, has the form* [\(20\)](#page-6-2) *with a certain function* $w \in \mathbb{R}$ $L_2(0, \pi)$.

Proof of Theorem [2.](#page-1-1) Consider an arbitrary sequence of complex numbers ${\lambda_n}_{n\in\mathbb{Z}}$, satisfying the asymptotic relations [\(2\)](#page-1-2). Let $\Delta(\lambda)$ be the functions, constructed by [\(21\)](#page-7-1). By Proposition [2,](#page-6-3) $\Delta(\lambda)$ admits the representation [\(20\)](#page-6-2) with some function $w \in L_2(0, \pi)$. Define the functions f_{ν} , ψ_{ν} and Ψ_{ν} for $\nu = 0, 1, n \in \mathbb{N}, j = \overline{0, n}$, by [\(16\)](#page-4-5). Then, by Lemma [2,](#page-4-1) the main Eq. [\(15\)](#page-4-0) have the unique solution $(M_0, \tilde{M}_1), M_0 \in L_{2,\pi}, \tilde{M}_1 \in L_{2,\pi}$. Define $M_1(x) :=$ $\int_0^x \tilde{M}_1(t) dt$, and conisder the boundary value problem L with the kernel $M(x, \lambda)$ $= M_0(x) + \lambda M_1(x)$, constructed by the found functions. By necessity, the characteristic function of L has the form (20) with the function w, satisfying the relation (14) , equivalent to the system of the main Eq. (15) . Thus, the characteristic function of L coincides with the function $\Delta(\lambda)$, constructed by the given numbers $\{\lambda_n\}_{n\in\mathbb{Z}}$. Hence the spectrum of L coincides with $\{\lambda_n\}_{n\in\mathbb{Z}}$. \Box

The proof of Theorem [2](#page-1-1) leads to the following algorithm for solving Inverse Problem [1.](#page-1-3)

Algorithm 1. Let the complex numbers $\{\lambda_n\}_{n\in\mathbb{Z}}$ be given.

- 1. Construct the function $\Delta(\lambda)$ as an infinite product by [\(21\)](#page-7-1).
- 2. Find the function $w(t)$, inverting the Fourier transform [\(20\)](#page-6-2) by the formula

$$
w(t) = \frac{1}{\pi} \sum_{n = -\infty}^{\infty} \Delta(2n) \exp(-2int).
$$

- 3. Construct the functions $\varphi_{ni}(x)$, $\Phi_{ni}(x,t)$, $n \in \mathbb{N}$, $j = \overline{0,n}$, using [\(13\)](#page-4-7), and then $f_{\nu}(x)$, $\psi_{\nu nj}(x)$, $\Psi_{\nu nj}(x,t)$, $\nu = 0, 1, n \in \mathbb{N}$, $j = \overline{0, n}$, using [\(16\)](#page-4-5).
- 4. Find the functions $M_0(x)$ and $\tilde{M}_1(x)$ as the solution of the main Eq. [\(15\)](#page-4-0), put $M_1(x) := \int_0^x \tilde{M}_1(t) dt$.

Acknowledgements

This work was supported by Grant 17-11-01193 of the Russian Science Foundation.

References

- [1] Marchenko, V.A.: Sturm–Liouville Operators and Their Applications. Naukova Dumka, Kiev (1977) (Russian); English transl., Birkhauser (1986)
- [2] Levitan, B.M.: Inverse Sturm–Liouville Problems. Nauka, Moscow (1984) (Russian); English transl. VNU Science Press, Utrecht (1987)
- [3] Pöschel, J., Trubowitz, E.: Inverse Spectral Theory. Academic Press, New York (1987)
- [4] Freiling, G., Yurko, V.: Inverse Sturm–Liouville Problems and Their Applications. Nova Science Publishers, Huntington, NY (2001)
- [5] Lakshmikantham, V., Rama Mohana Rao, M.: Theory of Integro-Differential Equations. Stability and Control: Theory, Methods and Applications, vol. 1. Gordon and Breach Science Publishers, Singapore (1995)
- [6] Yurko, V.A.: An inverse problem for integro-differential operators. Math. Notes **50**(5–6), 1188–1197 (1991)
- [7] Buterin, S.A.: On an inverse spectral problem for a convolution integrodifferential operator. Results Math. **50**(3–4), 73–181 (2007)
- [8] Kuryshova, Y.: An inverse spectral problem for differential operators with integral delay. Tamkang J. Math. **42**(3), 295–303 (2011)
- [9] Wang, Y., Wei, G.: The uniqueness for Sturm–Liouville problems with after effect. Acta Math. Sci. **32A**(6), 1171–1178 (2012)
- [10] Buterin, S.A., Choque Rivero, A.E.: On inverse problem for a convolution integrodifferential operator with Robin boundary conditions. Appl. Math. Lett. **48**, 150–155 (2015)
- [11] Bondarenko, N., Buterin, S.: On recovering the Dirac operator with an integral delay from the spectrum. Results Math. **71**(3–4), 1521–1529 (2017)
- [12] Bondarenko, N.P., Buterin, S.A.: An inverse spectral problem for integrodifferential Dirac operators with general convolution kernels. Applica. Anal. (2018). <https://doi.org/10.1080/00036811.2018.1508653>
- [13] Ignatyev, M.: On an inverse spectral problem for the convolution integrodifferential operator of fractional order. Results Math. **73**, 34 (2018). [https://](https://doi.org/10.1007/s00025-018-0800-2) doi.org/10.1007/s00025-018-0800-2
- [14] Yurko, V.A.: An inverse problem for pencils of differential operators. Matem. Sbornik **191**, 137–160 (2000)
- [15] Buterin, S.A.: On an inverse spectral problem for first-order integro-differential operators with discontinuities. Appl. Math. Lett. **78**, 65–71 (2018)
- [16] Buterin, S., Malyugina, M.: On global solvability and uniform stability of one nonlinear integral equation. Results Math. **73**, 117 (2018)

Natalia P. Bondarenko Department of Applied Mathematics and Physics Samara National Research University Moskovskoye Shosse 34 Samara Russia 443086 e-mail: BondarenkoNP@info.sgu.ru

and

Department of Mechanics and Mathematics Saratov State University Astrakhanskaya 83 Saratov Russia 410012

Received: January 17, 2019. Accepted: July 16, 2019.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.