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Abstract. We consider a pencil of the first-order integro-differential oper-
ators with the convolution kernel dependent on the spectral parameter.
The inverse problem is studied, which consists in recovering the kernel
from the spectrum. We develop a constructive procedure for solution and
obtain necessary and sufficient conditions for the solvability of the inverse
problem.
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1. Introduction and Main Results

The paper concerns the inverse spectral theory for integro-differential opera-
tors. Inverse spectral problems consist in reconstruction of operators, by us-
ing their spectral characteristics. The most complete theory of such problems
was developed for differential operators (see the monographs [1–4]). However,
integro-differential operators are often more adequate for description of various
processes in physics, biology, economics and engineering [5]. Inverse spectral
theory for intergo-differential operators has not been sufficiently developed yet.
It consists of fragmentary results, not forming a general picture (see [6–13] and
references therein).
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In this paper, we solve an inverse problem for a pencil of integro-
differential operators with a kernel, depending on the spectral parameter. We
note that investigation of inverse problems for differential pencils causes prin-
cipal difficulties, comparing with usual differential operators (see e.g. [14]).
Inverse problems for integro-differential equations with coefficients, depending
on the spectral parameter, as far as we know, have not been studied before.

We investigate the boundary value problem L for the first-order integro-
differential equation

iy′(x) +
∫ x

0

M(x − t, λ)y(t) dt = λy(x), 0 < x < π, (1)

with the boundary condition y(0) = y(π), where the convolution kernel de-
pends linearly on the spectral parameter: M(x, λ) = M0(x) + λM1(x).

Define the class of functions

L2,π := {f : (π − x)f(x) ∈ L2(0, π)}.

We assume that the functions M0 and M1 are real-valued, the function M1 is
absolutely continuous on [0, π), M0 and M ′

1 belong to L2,π, and M1(0) = 0.
The main results of the paper are Theorems 1 and 2, providing necessary

and sufficient conditions on the spectrum of the problem L.

Theorem 1. The boundary value problem L has a countable set of complex
eigenvalues, which can be numbered as {λn}n∈Z, counting with their multiplic-
ities, so that the following asymptotic relation holds

λn = 2n + κn, {κn} ∈ l2. (2)

Theorem 2. For arbitrary complex numbers {λn}n∈Z, satisfying the asymp-
totic relation (2), there exists a unique boundary value problem L in the form
described above, such that {λn}n∈Z is the spectrum of L.

Moreover, we develop a constructive procedure for solving the following
inverse problem.

Inverse Problem 1. Given the spectrum {λn}n∈Z of L, construct the functions
M0 and M1.

Note that the case, when M1 = 0 and M0 is complex-valued, has been
studied in [15]. In that case, the spectrum {λn}n∈Z is also sufficient for recov-
ering L, and the theorem similar to Theorem 2 is valid.

In order to solve Inverse Problem 1 and to prove Theorem 2, we develop an
approach of [7,12]. Our method is based on the reduction of the inverse problem
to the system of nonlinear integral Eq. (15), called the main equations. In
Sect. 2, we derive the system (15) and prove its unique solvability (Lemma 2).
In Sect. 3, we prove the main results and obtain Algorithm 1 for solution of
the inverse problem.
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2. Main Equations of the Inverse Problem

Denote by e(x, λ) the solution of Eq. (1), satisfying the initial condition e(0, λ)
= 1. Obviously, the eigenvalues of L coincide with the zeros of the entire char-
acteristic function Δ(λ) := e(π, λ) − e(0, λ). Introduce the following notations
for convolutions

(f ∗ g)(x) =
∫ x

0

f(x − t)g(t) dt,

f∗1 = f, f∗n = f∗(n−1) ∗ f, n ≥ 1, f∗0 ∗ g = g ∗ f∗0 = g.

The solution e(x, λ) admits the representation

e(x, λ) = exp(−iλx) +
∫ x

0

P (x, t, λ) exp(−iλ(x − t)) dt, (3)

where

P (x, t, λ) =
∞∑

ν=1

iν
(x − t)ν

ν!
M∗ν(t, λ). (4)

The relations (3) and (4) can be obtained similarly to [7], where Eq. (1) with
M(x, λ) ≡ M(x) has been considered.

Formal calculations show that

Δ(λ) = exp(−iλπ) − 1 +
∫ π

0

v(t, λ) exp(−iλ(π − t)) dt, (5)

where

v(t, λ) =
∞∑

ν=1

iν
(π − t)ν

ν!
(M0 + λM1)∗ν(t)

=
∞∑

ν=1

iν
(π − t)ν

ν!

ν∑
n=0

ν!
n!(ν − n)!

λn(M∗(ν−n)
0 ∗ M∗n

1 )(t) =
∞∑

n=0

λnFn(t),

(6)

Fn(t) =
∞∑

s=max{1−n,0}

in+s(π − t)n+s

n!s!
(M∗s

0 ∗ M∗n
1 )(t), n ≥ 0. (7)

Below we use the symbol C for various constants, independent of t, λ,
etc. Denote the functions

gn(x) :=
xn

n!
, n ≥ 0, f ∗ g−1 = g−1 ∗ f = f, M̃1 := M ′

1.

Lemma 1. For n ≥ 0, the function Fn belongs to Wn
2 [0, π], and the following

estimate holds

‖F (n)
n ‖L2(0,π) ≤ Cn

[n/2]!
.

Moreover, F
(k)
n (0) = F

(k)
n (π) = 0, 0 ≤ k < n.
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Proof. Rewrite the relation (7) in the form

Fn(t) =
∞∑

s=max{1−n,0}
Fns(t),

(8)
Fns(t) :=

in+s(π − t)n+s

n!s!
(M∗s

0 ∗ M∗n
1 )(t), n ≥ 0.

Note that

M1 = M̃1 ∗ g0, M∗n
1 = M̃∗n

1 ∗ gn−1, (f ∗ gn)′ = f ∗ gn−1, n ≥ 0.

Using the latter formulas, we obtain

F (k)
ns (t) =

in+s(n + s)!
n!s!

k∑
j=0

(−1)jgn+s−j(π − t)(M∗s
0 ∗ M̃∗n

1 ∗ gn−k+j−1)(t),

0 ≤ k ≤ n, s ≥ 0, n + s ≥ 1. (9)

Since the functions M0 and M̃1 belong to L2,π, one can easily show (see e.g.
[12]), that for n + s ≥ 2, ν = 0, n + s, the function gν(π − t)(M∗s

0 ∗ M̃∗n ∗
gn−1−ν)(t) is absolutely continuous on [0, π], and

∣∣∣gν(π − t)(M∗s
0 ∗ M̃∗n

1 ∗ gn+s−1−ν)(t)
∣∣∣ ≤ Cn+s

[(n + s)/2]!
, t ∈ [0, π],

where [x] is an integer part of x. Consequently, the relation (9) for 0 ≤ k < n

and n + s ≥ 2 yields that the functions F
(k)
ns are absolutely continuous on

[0, π], and F
(k)
ns (0) = F

(k)
ns (π) = 0. For n + s ≥ 2 the functions F

(n)
ns are also

absolutely continuous on [0, π] and satisfy the estimate
∣∣∣F (n)

ns (t)
∣∣∣ ≤ Cn+s

[(n + s)/2]!
, t ∈ [0, π].

It remains to consider the two cases, when n + s = 1:

F01(t) = i(π − t)M0(t) ∈ L2(0, π),

F10(t) = i(π − t)(M̃1 ∗ g0)(t) ∈ W 1
2 [0, π], F10(0) = F10(π) = 0.

Thus, we have for all n, s ≥ 0, n + s ≥ 1, that F
(n)
ns ∈ L2(0, π) and

∥∥∥F (n)
ns

∥∥∥
L2(0,π)

≤ Cn+s

[(n + s)/2]!
.

Note that
∞∑

s=0

Cn+s

[(n + s)/2]!
≤ C1 · Cn

[n/2]!
,

where C1 is a constant. Consequently, the series
∞∑

s=max{0,1−n}
F (n)

ns , n ≥ 0,
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converge in L2(0, π). Taking (8) into account, we arrive at the assertion of the
Lemma. �

In view of Lemma 1, integration by parts yields

λn

∫ π

0

Fn(t) exp(−iλ(π − t)) dt = in
∫ π

0

F (n)
n (t) exp(−iλ(π − t)) dt. (10)

The relations (5), (6) and (10) imply

Δ(λ) = exp(−iλπ) − 1 +
∫ π

0

w(t) exp(−iλ(π − t)) dt, (11)

where

w(t) =
∞∑

n=0

inF (n)
n (t). (12)

Lemma 1 implies w ∈ L2(0, π).
Define the following functions for n ≥ 1, j = 0, n:

Qnj [M ] := M
∗(n−j)
0 ∗ M̃∗j

1 , ϕnj(x) :=
in+j

j!(n − j)!
(π − x)n−1,

Φnj(x, t) :=
in+jn!

j!(n − j)!

j∑
s=1

gn−s(π − x)gs−1(x − t).

⎫⎪⎪⎬
⎪⎪⎭

(13)

Substituting (7) into (12), we derive the relation

w(x) = (π − x)
∞∑

n=1

n∑
j=0

(
ϕnj(x)Qnj [M ](x) +

∫ x

0

Φnj(x, t)Qnj [M ](t) dt

)
.

(14)

Considering the real part and the imaginary part of (14) separately, we
arrive at the system of two nonlinear integral equations with respect to real
functions M0 and M̃1:

fν(x) =

∞∑
n=1

n∑
j=0

(
ψνnj(x)Qnj [M ](x) +

∫ x

0
Ψνnj(x, t)Qnj [M ](t) dt

)
, ν = 0, 1,

(15)

where
ψ0nj(x) = −iIm ϕnj(x), ψ1nj(x) = −Re ϕnj(x),

Ψ0nj(x, t) = −iIm Φnj(x, t), Ψ1nj(x, t) = −Re Φnj(x, t),

f0(x) = −iIm w(x)/(π − x), f1(x) = −Re w(x)/(π − x)

⎫⎪⎪⎬
⎪⎪⎭

(16)

The following Lemma claims the unique solvability of (15), and plays a
crucial role in investigation of Inverse Problem 1.

Lemma 2. The system of main Eq. (15) with the coefficients, defined by (16),
has the unique solution (M0, M̃1), M0 ∈ L2,π, M̃1 ∈ L2,π, for any w ∈ L2(0, π).
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The proof of Lemma 2 is based on Proposition 1, which is a special case
of [16, Theorem 3].

Proposition 1. Let ψνnj(x) and Ψνnj(x, t), ν = 0, 1, n ∈ N, j = 0, n, be
arbitrary functions, square integrable on (0, b) and S := {(x, t) : 0 < t < x <
b}, respectively, and satisfying the estimates

‖ψνnj‖L2(0,b) ≤ An, ‖Ψνnj‖L2(S) ≤ An, ν = 0, 1, n ∈ N, j = 0, n, (17)

for some fixed A > 0 independent of ν, n and j. Assume that ψν1j(x) =
δνj, ν, j = 0, 1, where δνj is the Kronecker delta. Then for every functions
fν ∈ L2(0, b), ν = 0, 1, the system (15) has the unique solution (M0, M̃1),
M0 ∈ L2(0, b), M̃1 ∈ L2(0, b).

Proof of Lemma 2. Let w be an arbitrary function from L2(0, π). Obviously,
the functions ψνnj , Ψνnj and fν , ν = 0, 1, n ∈ N, j = 0, n, defined by (16),
satisfy the conditions of Proposition 1 for every b ∈ (0, π). Hence (15) has the
unique solution (M0, M̃1), M0 ∈ L2(0, b), M̃1 ∈ L2(0, b) for every b ∈ (0, π). It
remains to prove that M0 ∈ L2,π and M̃1 ∈ L2,π.

We represent the functions in the form M0(x) = M01(x) + M02(x),
M̃1(x) = M11(x)+M12(x), so that Mν1(x) = 0 for x ∈ (π/2, π) and Mν2(x) =
0 for x ∈ (0, π/2), ν = 0, 1. Note that Mν12 ∗ Mν22 ≡ 0 on (0, π), νk = 0, 1,
k = 1, 2. Consequently, we have

Qnj [M ] = Qnj [M(1)] + (n − j)M02 ∗ Qn−1,j [M(1)]

+jM12 ∗ Qn−1,j−1[M(1)], n ≥ 2, j = 0, n, (18)

where

Qnj [M(1)] := M
∗(n−j)
01 ∗ M∗j

11 , n ≥ 1, j = 0, n.

Denote

b0nj := n − j, b1nj := j, n ≥ 2, j = 0, n.

Substituting (18) into (15), we obtain the following relation for x > π/2:

fν(x) = Mν2(x) +
1∑

j=0

∫ x

0

Ψν1j(x, t)Mj2(t) dt +
∞∑

n=2

n∑
j=0

ψνnj(x)Qnj [M(1)](x)

+
∞∑

n=1

n∑
j=0

∫ x

0

Ψνnj(x, t)Qnj [M(1)](t) dt +
∞∑

n=2

n∑
j=0

1∑
ξ=0

bξnj

(
ψνnj(x)(Mξ2 ∗ Qn−1,j−ξ[M(1)])(x)

+
∫ x

0

Ψνnj(x, t)(Mξ2 ∗ Qn−1,j−ξ[M(1)])(t) dt

)
, ν = 0, 1.
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Multiplying this relation by (π − x), we arrive at the system of linear Volterra
integral equations

μν(x) = zν(x) +
1∑

ξ=0

∫ x

π/2

Kνξ(x, t)zξ(t) dt, π/2 < x < π, ν = 0, 1, (19)

where

zν(x) = (π − x)Mν2(x),

μν(x) = (π − x)
(

fν(x) −
∞∑

n=2

n∑
j=0

ψνnj(x)Qnj [M(1)](x)

−
∞∑

n=1

n∑
j=0

∫ x

0

Ψνnj(x, t)Qnj [M(1)](t) dt

)
,

Kνξ(x, t) =
π − x

π − t

(
Ψν1ξ(x, t) +

∞∑
n=2

n∑
j=0

bξnj

(
ψνnj(x)Qn−1,j−ξ[M(1)](x − t)

+
∫ x−t

0

Ψνnj(x, t + s)Qn−1,j−ξ[M(1)](s) ds

))
, ν, ξ = 0, 1.

Note that fν ∈ L2(0, π), Ψν1ξ ∈ L2(T ), ν, ξ = 0, 1, T := {(x, t) : π/2 <
t < x < π}. Using the estimates∣∣∣∣π − x

π − t

∣∣∣∣ < 1, π/2 < t < x < π, |Qnj [M(1)](x)| ≤ Cn

[n/2]!
, n ≥ 2,

together with (17), we conclude that μν ∈ L2(π/2, π), Kνξ ∈ L2(T ), ν, ξ = 0, 1.
Consequently, the Volterra integral Eq. (19) has the unique solution (z0, z1),
zν ∈ L2(0, π), ν = 0, 1, so we arrive at the assertion of the Lemma. �

3. Proofs of the Main Results

In this section, we prove Theorems 1 and 2, and also provide an algorithm for
solving Inverse Problem 1.

Proof of Theorem 1. Using (11), we obtain the following relation for the char-
acteristic function:

Δ(λ) = exp(−iλπ/2)

(
−2i sin λπ

2 +
∫ π/2

−π/2

w
(
s + π

2

)
exp(iλs) ds

)
. (20)

Applying to (20) the standard technique (see [4, Theorem 1.1.3]), based on
Rouché‘s theorem, we derive the asymptotic relations (2) for the zeros
of Δ(λ). �

Relying on (2) and (20), one can prove the following Proposition similarly
to [11, Lemmas 1 and 2].



148 Page 8 of 10 N. P. Bondarenko Results Math

Proposition 2. The characteristic function is uniquely determined by its zeros
by the formula

Δ(λ) = −iπ exp(−iλπ/2)(λ − λ0)
∞∏

n=−∞
n�=0

λn − λ

2n
exp

(
λ

2n

)
. (21)

For arbitrary complex numbers {λn}n∈Z of the form (2), the function
Δ(λ), determined by (21), has the form (20) with a certain function w ∈
L2(0, π).

Proof of Theorem 2. Consider an arbitrary sequence of complex numbers
{λn}n∈Z, satisfying the asymptotic relations (2). Let Δ(λ) be the functions,
constructed by (21). By Proposition 2, Δ(λ) admits the representation (20)
with some function w ∈ L2(0, π). Define the functions fν , ψνnj and Ψνnj for
ν = 0, 1, n ∈ N, j = 0, n, by (16). Then, by Lemma 2, the main Eq. (15)
have the unique solution (M0, M̃1), M0 ∈ L2,π, M̃1 ∈ L2,π. Define M1(x) :=∫ x

0
M̃1(t) dt, and conisder the boundary value problem L with the kernel M(x, λ)

= M0(x)+λM1(x), constructed by the found functions. By necessity, the char-
acteristic function of L has the form (20) with the function w, satisfying the
relation (14), equivalent to the system of the main Eq. (15). Thus, the char-
acteristic function of L coincides with the function Δ(λ), constructed by the
given numbers {λn}n∈Z. Hence the spectrum of L coincides with {λn}n∈Z. �

The proof of Theorem 2 leads to the following algorithm for solving In-
verse Problem 1.

Algorithm 1. Let the complex numbers {λn}n∈Z be given.

1. Construct the function Δ(λ) as an infinite product by (21).
2. Find the function w(t), inverting the Fourier transform (20) by the for-

mula

w(t) =
1
π

∞∑
n=−∞

Δ(2n) exp(−2int).

3. Construct the functions ϕnj(x), Φnj(x, t), n ∈ N, j = 0, n, using (13),
and then fν(x), ψνnj(x), Ψνnj(x, t), ν = 0, 1, n ∈ N, j = 0, n, using (16).

4. Find the functions M0(x) and M̃1(x) as the solution of the main Eq. (15),
put M1(x) :=

∫ x

0
M̃1(t) dt.
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