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Asymptotic Behavior and Global Structure
of Oscillatory Bifurcation Diagrams

Tetsutaro Shibata

Abstract. This paper is concerned with the nonlinear eigenvalue problem

−u′′(t) = λf(u(t)), u(t) > 0, t ∈ I := (−1, 1), u(±1) = 0.

Here, f(u) = u2n+1 + sin(u2)
u

(n = 0, 1, 2, . . .) and λ > 0 is a bifurcation
parameter. Since f(u) > 0 for u > 0, λ is a continuous function of the
maximum norm α = ‖uλ‖∞ of the solution uλ associated with λ, and is
expressed as λ = λ(α). In this paper, by the argument of the stationary
phase method, we establish the precise asymptotic formulas for λ(α) as
α → ∞, which seem to be new, and α → 0 for the better understanding
the global structure of λ(α).
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1. Introduction

This paper is concerned with the following nonlinear eigenvalue problems

− u′′(t) = λf(u(t)), t ∈ I := (−1, 1), (1.1)
u(t) > 0, t ∈ I, (1.2)

u(−1) = u(1) = 0, (1.3)

where f(u) = u2n+1 + (sin(u2))/u (u > 0), f(0) := 0 (n = 0, 1, 2, . . .) and
λ > 0 is a bifurcation parameter. Since f(u) > 0 for u > 0, we know from [10]
that for any given α > 0, there exists a unique classical solution pair (λ, uα)
of (1.1–1.3) satisfying α = ‖uα‖∞. Furthermore, λ is parameterized by α as
λ = λ(α) and is a continuous function for α > 0.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-019-1072-1&domain=pdf
http://orcid.org/0000-0001-6930-5126


145 Page 2 of 13 T. Shibata Results Math

A large number of researches about global and local structure of bifurcation
diagrams has been carried out, since many topics have been proposed from
mathematical physics, biology, engineering, and they have been investigated
by many authors intensively. We refer to [2,3,5] and the references therein.
It should be mentioned that oscillatory phenomena of bifurcation curves are
one of the important topics to think about. Besides, the study of oscillatory
bifurcation curves is expected to develop a new aspect in the field of bifurcation
theory. We refer to [6–9,12–15] and the references therein.

The Eqs. (1.1)–(1.3) with f(u) = u + sin
√

u has been studied in Cheng
[4], which was motivated by [1]. It was proposed as a model equation which
produces an oscillatory bifurcation curve. It was proved in [4] that there exists
arbitrary many solutions near λ = π2/4.

Theorem 1.1 [4, Theorem 6]. Let f(u) = u + sin
√

u (u ≥ 0). Then for any
integer r ≥ 1, there is δ > 0 such that if λ ∈ (π2/4 − δ, π2/4 + δ), then
(1.1)–(1.3) has at least r distinct solutions.

It seems reasonable to expect that, in the situation of Theorem 1.1, λ(α)
oscillates and intersects the line λ = π2/4 infinitely many times for α � 1. To
obtain a positive answer to this question, the following asymptotic formula for
λ(α) has been established in [14].

Theorem 1.2 [14, Theorem 1.1].

(i) Let f(u) = u + sin
√

u (u ≥ 0). Then as α → ∞,

λ(α) =
π2

4
− π3/2α−5/4 sin

(√
α − π

4

)
+ o(α−5/4). (1.4)

(ii) Let f(u) = u + sin(u2). Then as α → ∞,

λ(α) =
π2

4
− π3/2

2
α−2 sin

(
α2 − 1

4
π

)
+ o(α−2). (1.5)

Theorem 1.2 was proved by the time-map method and the asymptotic
formulas for some special functions. Especially, Fresnel’s integral played an
important role in the proof of Theorem 1.2 (ii).

Besides, by using the time-map formula and stationary phase method, the
precise asymptotic formula for λ(α) of (1.1)–(1.3) with more general nonlinear
term f(u) = u + up sin(uq) (0 ≤ p < 1, 0 < q ≤ 1) as α → ∞ was established
in [15].

Theorem 1.3 [15]. Let f(u) = u + up sin(uq) (u ≥ 0), where 0 ≤ p < 1 and
0 < q ≤ 1 are fixed constants. Then as α → ∞,

λ(α) =
π2

4
− π3/2

√
2q

αp−1−(q/2) sin
(
αq − π

4

)
+ o(αp−1−(q/2)). (1.6)
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Figure 1. λ(α) for (1.6) (p + q > 1)

The following is the rough graph of the bifurcation curve in (1.6) with p+q > 1.
Theorem 1.3 gives us the clear picture about the total shape of bifurcation
curve of (1.1) with f(u) = u + up sin(uq).

Unfortunately, however, the case where p < 0 has not been treated in
[15]. The reason why is as follows. In the proof of Theorem 1.3, the standard
argument of stationary phase method in [9, Lemmas 2.24 and 2.25] can be
applicable, because the phase function appeared there has only one stationary
point. However, to treat the case where f(u) = u2n+1 + (sin(u2))/u (u > 0)
by the stationary phase method, two stationary points appear in the phase
function, and it makes the argument difficult (Fig. 1).

The purpose of this paper is to overcome this difficulty and treat the
case where p = −1, q = 2 (as Theorem 1.2 (ii)) and n = 0, 1, 2, . . . in order to
obtain a new asymptotic behavior of oscillatory bifurcation curves. It seems
that the bifurcation problems with such kind of nonlinear terms have not been
considered yet.
Now we state our main results.

Theorem 1.4. (Main Theorem) Let f(u) = u2n+1 +
sin(u2)

u
(u > 0) and

f(0) := 0 (n = 0, 1, 2, . . .). Then as α → ∞,

λ(α) = (n + 1)α−2n

×
{

C2
n − √

πα−(2n+3)

(
1√

n + 1
sin

(
α2 − π

4

)
+

n + 1√
2

)

+O(α−(2n+4))
}

, (1.7)

where

Cn :=
∫ 1

0

1√
1 − s2n+2

ds. (1.8)
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Figure 2. λ(α) for n = 0

We remark that the second term of (1.7) includes both oscillatory term and
a constant. This phenomenon characterizes the difference between the asymp-
totic behavior of bifurcation curves in Theorems 1.3 and 1.4. As far as the
author knows, it does not seem that such formula was obtained before.

We next establish the asymptotic formulas for λ(α) as α → 0 to obtain
the whole structure of λ(α).

Theorem 1.5 (Main Theorem). Let f(u) = u2n+1 +
sin(u2)

u
(u > 0), f(0) := 0

(n = 0, 1, 2, . . .). Then as α → 0, the following asymptotic formulas for λ(α)
hold.

(i) Let n = 0. Then

λ(α) =
π2

8
+

5
768

π2α4 + o(α4). (1.9)

(ii) Let n = 1, Then

λ(α) =
π2

4
− 3

16
π2α2 + o(α2). (1.10)

(iii) Let n = 2. Then

λ(α) =
π2

4
− 25

192
π2α4 + o(α4). (1.11)

(iv) Let n ≥ 3. Then

λ(α) =
π2

4
+

5
192

π2α4 + o(α4). (1.12)

The proof of Theorem 1.5 is carried out easily by time-map method and Taylor
expansion theorem. By Theorems 1.4 and 1.5, we find that the rough shape of
λ(α) is like the graph below (Figs. 2, 3).
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Figure 3. λ(α) for n ≥ 1

2. Proof of Theorem 1.4

In what follows, we denote by C the various positive constants independent of
α. In this section, let α � 1, and for u ≥ 0, let f(u) = u2n+1 + g(u), where

g(u) =
sin(u2)

u
and

G(u) :=
∫ u

0

g(s)ds. (2.1)

It is known that if (uα, λ(α)) ∈ C2(Ī) × R+ satisfies (1.1)–(1.3), then

uα(t) = uα(−t), 0 ≤ t ≤ 1, (2.2)
uα(0) = max

−1≤t≤1
uα(t) = α, (2.3)

u′
α(t) > 0, −1 < t < 0. (2.4)

By (1.1), we have
(
u′′

α(t) + λ
(
uα(t)2n+1 + g(uα(t))

))
u′

α(t) = 0.

By this, (2.3) and putting t = 0, we obtain

1
2
u′

α(t)2 + λ

(
1

2n + 2
uα(t)2n+2 + G(uα(t))

)
= constant

= λ

(
1

2n + 2
α2n+2 + G(α)

)
.

This along with (2.4) implies that for −1 ≤ t ≤ 0,

u′
α(t) =

√
2λ

√
(α2n+2 − uα(t)2n+2)/(2n + 2) + (G(α) − G(uα(t))). (2.5)

Let n = 0. We fix an arbitrary constant 0 < ε 
 1. Let 0 ≤ s ≤ ε/α. Then

|G(α) − G(αs)| ≤
∣∣∣∣
∫ ε

αs

sin(x2)
x

dx

∣∣∣∣ +
∣∣∣∣
∫ α

ε

sin(x2)
x

dx

∣∣∣∣
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≤
∫ ε

αs

xdx +
∫ α

ε

1
x

dx

≤ ε(ε − αs) +
1
ε
(α − ε) ≤ 1

ε
(α − αs). (2.6)

Let ε/α ≤ s ≤ 1. Then

|G(α) − G(αs)| ≤
∫ α

αs

1
x

dx ≤
∫ α

αs

1
ε
dx ≤ 1

ε
α(1 − s). (2.7)

By (2.6) and (2.7), for 0 ≤ s ≤ 1, we obtain
∣∣∣∣
G(α) − G(αs)

α2(1 − s2)

∣∣∣∣ ≤ C
α(1 − s2)
α2(1 − s2)

≤ Cα−1 
 1. (2.8)

Let n ≥ 1. For 0 ≤ s ≤ 1, we have

|G(α) − G(αs)| ≤
∣∣∣∣
∫ α

αs

sin(x2)
x

dx

∣∣∣∣ ≤
∣∣∣∣
∫ α

αs

xdx

∣∣∣∣ =
1
2
α2(1 − s2). (2.9)

By this, for 0 ≤ s ≤ 1, we obtain
∣∣∣∣

G(α) − G(αs)
α2n+2(1 − s2n+2)

∣∣∣∣ ≤ C
α2(1 − s2)

α2n+2(1 − s2n+2)
≤ Cα−2n 
 1. (2.10)

By (2.5), (2.8) and (2.10), putting θ = uα(t) = αs and Taylor expansion, we
obtain

√
λ

n + 1

=
∫ 0

−1

u′
α(t)√

(α2n+2 − uα(t)2n+2) + 2(n + 1)(G(α) − G(uα(t)))
dt

=
∫ α

0

1√
(α2n+2 − θ2n+2) + 2(n + 1)(G(α) − G(θ))

dθ

= α−n

∫ 1

0

1√
1 − s2n+2

× 1√
1 + 2(n + 1)(G(α) − G(αs))/(α2n+2(1 − s2n+2))

ds

= α−n

∫ 1

0

1√
1 − s2n+2

×
{

1 − (n + 1)(G(α) − G(αs))
α2n+2(1 − s2n+2)

(1 + O(α−1))
}

ds

= α−n

(
Cn − (n + 1)α−(2n+2)(1 + O(α−1))

∫ 1

0

G(α) − G(αs)
(1 − s2n+2)3/2

ds

)
.

(2.11)
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We put

K(α) :=
∫ 1

0

G(α) − G(αs)
(1 − s2n+2)3/2

ds. (2.12)

To calculate K(α), we introduce the following Lemma 2.1, which is the special
case of stationary phase methods. Namely, the phase function w(x) has two
stationary points.

Lemma 2.1. Assume that h ∈ C2[0, 1]. Consider

I(μ) :=
∫ 1

0

h(x)eiμw(x)dx, (2.13)

where w(x) = cos2(πx/2). Then as μ → ∞,

I(μ) =
√

1
μπ

h(0)ei(μ−π/4) +
√

1
μπ

h(1)eiπ/4 + O(μ−1). (2.14)

In particular,

Is(μ) := ImI(μ) =
∫ 1

0

h(x) sin (μw(x))

=
√

1
μπ

(
h(0) sin

(
μ − π

4

)
+

1√
2
h(1)

)
+ O(μ−1). (2.15)

Proof. The proof is a variant of [9, Lemmas 2.24 and 2.25]. For completeness,
we give the proof. We note that both x = 0 and x = 1 are stationary points of
w(x). Therefore, [9, Lemma 2.25] cannot be applied directly. So, let I(μ) :=
I1(μ) + I2(μ), where

I1(μ) :=
∫ 1/2

0

h(x)eiμw(x)dx, I2(μ) :=
∫ 1

1/2

h(x)eiμw(x)dx. (2.16)

We put x = t/2 and w̃(t) = w(x). Since w̃′′(0) = −π2/8, by [7, Lemma 2], we
obtain

I1(μ) =
1
2

∫ 1

0

h

(
1
2
t

)
eiμw̃(t)dt

=
1
4
h(0)ei(μw̃(0)−π/4)

√
2π

μ|w̃′′(0)|

=
√

1
μπ

h(0)ei(μ−π/4) + O(μ−1). (2.17)

We know from [9, Lemma 2.24] that for a given constant a > 0 and h1(t) ∈
C2[0, a], as μ → ∞,

∫ a

0

h1(t)eiμt2dt =
1
2

√
π

μ
eiπ/4h1(0) + O(μ−1). (2.18)
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Let x = 1 − y, t = sin(πy/2) and h1(y) := h(1 − y). By (2.16) and (2.18), we
obtain

I2(μ) =
∫ 1/2

0

h(1 − y)eiμ sin2(πy/2)dy

=
∫ 1/2

0

h1(y)eiμ sin2(πy/2)dy

=
2
π

∫ 1/
√
2

0

h1

(
2
π

sin−1 t

)
1√

1 − t2
eiμt2dt

=
1√
μπ

h(1)eiπ/4 + O(μ−1). (2.19)

By (2.16), (2.17) and (2.19), we obtain (2.14). Thus the proof is complete. �

We emphasize that Lemma 2.1 is able to be applied to the case where the phase
function w(x) has two stationary points x = 0 and x = 1, namely, w′(0) =
w′(1) = 0. In a standard stationary phase method, only x = 0 is allowed to
be the stationary point (cf. [9, Lemmas 2.25]). We also refer to [11, Theorem
2.3], in which the cases where w(x) with many stationary points have been
considered. However, since the proof of [11, Theorem 2.3] is rather complicated,
it seems that the proof of Lemma 2.1 above is more straghtforward and easy
to understand.

Lemma 2.2. As α → ∞,

K(α) =
√

π

2
α−1

(
1

(n + 1)3/2
sin

(
α2 − π

4

)
+

1√
2

)
+ O(α−2). (2.20)

Proof. We put s = sin θ in (2.12). Then by integration by parts, we obtain,

K(α) =
∫ π/2

0

G(α) − G(α sin θ)
(1 − sin2 θ)3/2(1 + sin2 θ + · · · + sin2n θ)3/2

cos θdθ

=
∫ π/2

0

1
cos2 θ

G(α) − G(α sin θ)
(1 + sin2 θ + · · · + sin2n θ)3/2

dθ (2.21)

=
[
tan θ

G(α) − G(α sin θ)
(1 + sin2 θ + · · · + sin2n θ)3/2

]π/2

0

+
∫ π/2

0

α sin θg(α sin θ)
(1 + sin2 θ + · · · + sin2n θ)3/2

dθ

+ 3
∫ π/2

0

(G(α) − G(α sin θ))

× sin2 θ(1 + 2 sin2 θ + · · · + n sin2(n−1) θ)
(1 + sin2 θ + · · · + sin2n θ)5/2

dθ

:= K0(α) + K1(α) + 3K2(α). (2.22)
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By l’Hôpital’s rule, we obtain

lim
θ→π/2

G(α) − G(α sin θ)
cos θ

= lim
θ→π/2

α cos θg(α sin θ)
sin θ

= 0. (2.23)

Therefore, we see that K0(α) = 0. Next, by putting θ = π/2−y and y = πx/2,
we obtain

K1(α) =
∫ π/2

0

α sin θg(α sin θ)
(1 + sin2 θ + · · · + sin2n θ)3/2

dθ

=
∫ π/2

0

1
(1 + sin2 θ + · · · + sin2n θ)3/2

sin(α2 sin2 θ)dθ

=
∫ π/2

0

1
(1 + cos2 y + · · · + cos2n θ)3/2

sin(α2 cos2 y)dy

=
π

2

∫ 1

0

1(
1 + cos2

(
π
2x

)
+ · · · + cos2n

(
π
2x

))3/2

× sin
(
α2 cos2

(π

2
x
))

dx. (2.24)

We put μ = α2 and h(x) =
(
1 + cos2

(
π
2x

)
+ cos2n

(
π
2x

))−3/2. By direct cal-
culation, we obtain h(0) = (n + 1)−3/2 and h(1) = 1. Then by Lemma 2.1, we
obtain

K1(α) =
√

π

2
α−1

(
(n + 1)−3/2 sin

(
α2 − π

4

)
+

1√
2

)
+ O(α−2). (2.25)

Finally, we calculate K2(α). We put

M(θ) :=
∫ θ

0

sin2 x(1 + sin2 x + · · · + n sin2(n−1) x)
(1 + sin2 x + sin2n x)5/2

dx. (2.26)

By this and integration by parts, we obtain

K2(α) =
∫ π/2

0

M ′(θ)(G(α) − G(α sin θ))dθ

= [M(θ)(G(α) − G(α sin θ))]π/2
0 + α

∫ π/2

0

M(θ) cos θg(α sin θ)dθ

= α

∫ π/2

0

M(θ) cos θg(α sin θ)dθ. (2.27)

By this, putting θ = π/2 − y, y = πt/2, we obtain



145 Page 10 of 13 T. Shibata Results Math

K2(α) =
∫ π/2

0

M(θ)
cos θ

sin θ
sin(α2 sin2 θ)dθ

=
∫ π/2

0

M
(π

2
− y

) sin y

cos y
sin(α2 cos2 y)dy

=
π

2

∫ 1

0

k(t) sin
(
α2 cos2

(π

2
t
))

dt, (2.28)

where

k(t) := M
(π

2
(1 − t)

)
tan

(π

2
t
)

. (2.29)

It is clear that k(t) is C2[0, 1). The regularity of k(t) near t = 1 is obtained
as follows. We put x := 1 − t and v(x) := k(t). Then by Taylor expansion, for
0 < x 
 1, we have

M
(π

2
x
)

=
π3

24
x3 + O(x5). (2.30)

By this, for 0 < x 
 1, we obtain

v(x) =
M

(
π
2x

)

sin
(

π
2x

) cos
(π

2
x
)

=
π2

12x2 + O(x4)

1 − π2

24x2 + O(x4)
cos

(π

2
x
)

. (2.31)

This assures C2-regularity of v(x) near x = 0, namely, k(t) is C2 near t = 1.
Since k(0) = k(1) = 0 by direct calculation, by Lemma 2.1, we obtain K2(α) =
O(α−2). By this and (2.25), we obtain (2.20). Thus the proof is complete. �

Now Theorem 1.4 is a direct consequence of (2.11) and Lemma 2.2. Thus the
proof is complete. �

3. Proof of Theorem 1.5

In this section, let 0 < α 
 1.

Proof of Theorem 1.5 (i). Let n = 0. Then it follows from (1.1) and Taylor
expansion that

− u′′
α(t) = λ(2uα(t) − 1

6
uα(t)5(1 + o(1))). (3.1)

By this and the same argument as that to obtain (2.5), for −1 ≤ t ≤ 0, we
have

u′
α(t) =

√
2λ

√
α2 − u2 − 1

36
(α6 − u6)(1 + o(1)). (3.2)

By this, putting uα(t) = αs, Taylor expansion and direct calculation, we obtain
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√
λ =

1√
2

∫ 0

−1

u′
α(t)√

α2 − u2 − 1
36 (α6 − u6)(1 + o(1))

dt

=
1√
2

∫ 1

0

1√
1 − s2 − 1

36α4(1 − s6)(1 + o(1))
ds

=
1√
2

∫ 1

0

1
√

1 − s2
√

1 − 1
36α4(1 + s2 + s4)(1 + o(1))

ds

=
1√
2

∫ 1

0

1√
1 − s2

{
1 +

1
72

α4(1 + s2 + s4)(1 + o(1))
}

ds

=
1√
2

(
π

2
+

5
384

πα4 + o(α4)
)

. (3.3)

This implies (1.9). Thus the proof is complete. �

Proof of Theorem 1.5 (ii). Let n = 1. Then it follows from (1.1) and Taylor
expansion that

− u′′
α(t) = λ(uα(t) + uα(t)3(1 + o(1))). (3.4)

By this and the same argument as that to obtain (2.5), for −1 ≤ t ≤ 0, we
have

u′
α(t) =

√
λ

√
α2 − u2 +

1
2
(α4 − u4)(1 + o(1)). (3.5)

By this, putting uα(t) = αs and the same calculation as that to obtain (3.3),
we obtain

√
λ =

∫ 0

−1

u′
α(t)√

α2 − u2 + 1
2 (α4 − u4)(1 + o(1))

dt

=
∫ α

0

1√
α2 − θ2 + 1

2 (α4 − θ4)(1 + o(1))
dθ

=
∫ 1

0

1√
1 − s2

1√
1 + 1

2α2(1 + s2)(1 + o(1))
ds

=
∫ 1

0

1√
1 − s2

{
1 − 1

4
α2(1 + s2)(1 + o(1))

}
ds

=
∫ 1

0

1√
1 − s2

ds − 1
4
α2

∫ 1

0

1 + s2√
1 − s2

ds + o(α2)

=
π

2
− 3

16
πα2 + o(α2). (3.6)

By this, we obtain (1.10). Thus the proof is complete. �
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Proof of Theorem 1.5 (iii) and (iv). It follows from (1.1) and Taylor expan-
sion that

− u′′
α(t) = λ

(
uα(t) +

5
6
uα(t)5(1 + o(1))

)
(n = 2), (3.7)

−u′′
α(t) = λ

(
uα(t) − 1

6
uα(t)5(1 + o(1))

)
(n ≥ 3). (3.8)

By this, and the same argument as (3.2) and (3.3), we obtain (1.11) and (1.12).
Thus the proof is complete. �
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[3] Cano-Casanova, S., López-Gómez, J.: Blow-up rates of radially symmetric large
solutions. J. Math. Anal. Appl. 352, 166–174 (2009)

[4] Cheng, Y.J.: On an open problem of Ambrosetti, Brezis and Cerami. Differ.
Integral Equ. 15, 1025–1044 (2002)
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