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Abstract. Let X be a real Banach space, C a closed bounded convex sub-
set of X with the origin as an interior point, and pC the Minkowski func-
tional generated by the set C. This paper is concerned with the problem
of generalized best approximation with respect to pC . A property (ε∗)
concerning a subspace of X∗ is introduced to characterize generalized
proximinal subspaces in X. A set C with feature as above in the space
l1 of absolutely summable sequences of real numbers and a continuous
linear functional f on l1 are constructed to show that each point in an
open half space determined by the kernel of f admits a generalized best
approximation from the kernel but each point in the other open half space
does not.
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1. Introduction

Throughout this paper, (X, ‖ · ‖) is a real Banach space with the topological
dual X∗, and C denotes a bounded closed convex subset of X with the origin as
an interior point. Recall that the Minkowski functional pC : X → R generated
by the set C is defined by

pC(x) := inf{t > 0 : x ∈ tC}, ∀ x ∈ X. (1)

Let M be a nonempty subset of X, x ∈ X, and y0 ∈ M . Then y0 is called
a generalized best approximation following [1] or a best dC-approximation
following [8] to x from M if
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pC(y0 − x) = dC(x,M),

where

dC(x,M) := inf{pC(y − x) : y ∈ M} (2)

is the distance with respect to pC from the point x to the set M . The set of
all best dC-approximations to x from M is denoted by PC

M (x), i.e.,

PC
M (x) := {y0 ∈ M : pC(y0 − x) = dC(x,M)}, (3)

which is called the generalized projection onto M . The set M is called dC-
proximinal if PC

M (x) is nonempty for each x ∈ X.
In 1998, De Blasi and Myjak [1] first investigated this kind of generalized

best approximation problem and established the corresponding well posedness
under the assumption that the modulus of convexity of C is positive in real
Banach spaces, the main results of which then were extended by Li [6] to more
general setting. Further, Li and Ni [7] explored the relationships between the
existence of generalized best approximations and directional derivatives of the
function dC(·,M). Recently, Ferreira and Németh [5] considered characteriza-
tion issue of generalized best approximations from closed convex sets in R

n,
and Luo and Wang [9] studied the representation and continuity issue of a
generalized projection onto a closed hyperplane in real Banach spaces.

Note that when C is the closed unit ball BX of X (hence, pC is the norm
of X), (2) and the generalized best approximation are reduced, respectively,
to the distance function of M and to the classical best approximation, which
has been studied deeply and extensively since the late 1950s; see [2,12,13] and
references therein. In particular, via the Ascoli theorem (i.e., the distance for-
mula from a point to a hyperplane in X) and the so-called property (ε∗) defined
for a subspace in the dual space X∗, various characterizations of proximinal
linear subspaces of normed spaces have been obtained; see [12, Theorem 2.1,
p. 94–p. 95].

In this paper, we intend to study the possibility of extending [12, Theo-
rem 2.1] to the setting of generalized approximation. The organization of this
paper is as follows. In Sect. 2, we first list some basic properties of Minkowski
functionals, and then give the characterizations for the kernel of a continuous
linear functional to be dC-proximinal. In Sect. 3, based on results obtained
in Sect. 2 and some extension property of continuous linear functionals, we
obtain further characterization results of dC-proximinal linear subspaces in
real normed spaces (see Theorem 1), which correspond partially to results
given in [12, Theorem 2.1]. In Sect. 4, we construct a bounded closed convex
set C with the origin as an interior point in the space l1 of absolutely summa-
ble sequences of real numbers and a continuous linear functional f on l1 such
that f attains its supremum on C but −f does not, which is different from
the case of norm (in fact, in normed spaces X, f ∈ X∗ attains its supremum
on the closed unit ball BX if and only if −f attains its supremum on BX),



Vol. 74 (2019) Characterizations of Generalized Proximinal Subspaces Page 3 of 14 88

and which also show that assertion (ii) of Theorem 1 of the present paper can-
not be strengthened to the version of assertion (ii) of [12, Theorem 2.1] (see
Theorem 1 and Corollary 1 below).

2. Preliminaries

For a nonempty subset A of X, we denote by intA, bdA, A, and A
w

the
interior, the boundary, the closure, and the weak closure of A, respectively.
Recall that C is a closed bounded convex subset of X with 0 ∈ intC, and that
pC is the Minkowski functional given by (1). Define the polar C◦ of the set C
by

C◦ := {f ∈ X∗ : 〈f, x〉 = f(x) ≤ 1, ∀x ∈ C}.

Then C◦ is a nonempty weakly∗ compact convex subset of X∗ with 0 ∈ intC◦.
So we can define similarly the polar C◦◦ of the set C◦, i.e.,

C◦◦ := {F ∈ X∗∗ : 〈F, f〉 = F (f) ≤ 1, ∀ f ∈ C◦}.

We first list some useful properties of the Minkowski functional pC which
can be proved easily by definition.

Proposition 1. Let x, y ∈ X, and x∗ ∈ X∗. Then
(i) pC(x) ≥ 0 and pC(x) = 0 ⇔ x = 0.
(ii) x ∈ C ⇔ pC(x) ≤ 1 and x ∈ bdC ⇔ pC(x) = 1.
(iii) p(x + y) ≤ p(x) + p(y) and pC(tx) = tpC(x) for each t ≥ 0.
(iv) pC(x) = supy∗∈C◦ y∗(x) and pC◦(x∗) = supx∈C x∗(x).
(v) x∗(x) ≤ pC(x)pC◦(x∗).
(vi) There exist positive numbers m1 and m2 such that

m1‖x‖ ≤ pC(x) ≤ m2‖x‖.

In the remainder of this paper, we always assume that M is a closed
subspace of X. For f ∈ X∗, f |M denotes the restriction to M of f and ker(f)
stands for the kernel of f defined by ker(f) := {x ∈ X : f(x) = 0}. For x1, x2 ∈
X, we say that x1 and x2 lie on different sides of ker(f) if f(x1)f(x2) < 0.
Now define

M⊥ := {f ∈ X∗ : f |M = 0}, and (M⊥)⊥ := {x ∈ X : f(x) = 0,∀f ∈ M⊥},

Then M⊥ is a weakly∗ closed subspaces of X∗, and

(M⊥)⊥ = M
w

= M = M, (4)

where the first equality holds by the bipolar theorem (see, for e.g., [11, Theorem
1.5, p.126]), and the second one is due to the Mazur theorem (see, e.g., [10,
Theorem 2.5.16, p.216]. For a linear subspace Γ of X∗ and x ∈ X, define

pC,Γ (x) := sup{f(x) : f ∈ Γ ∩ C◦}.
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Then,

pC,M⊥(x) ≤ pC(x) (5)

by Proposition 1 (iv). Thus, by (5), the separation theorem, and the definition
of dC-approximation, it is not difficult to verify that the following charac-
terization results of the best dC-approximation from a closed subspace of X
hold.

Lemma 1. Let x ∈ X\M and y0 ∈ M . Then the following statements are
equivalent.

(i) y0 ∈ PC
M (x).

(ii) There exists f ∈ X∗ such that

f |M = 0, pC◦(f) = 1, and f(y0 − x) = pC(y0 − x). (6)

(iii) pC,M⊥(y0 − x) = pC(y0 − x).

By [9, Proposition 5] (see also [3, Proposition 4.3] or [4, Proposition 2.5.6,
p.177] for a slightly more general form), we have the following result.

Lemma 2. Let f ∈ X∗\{0} and x ∈ X. Then

dC(x, ker(f)) =

⎧
⎨

⎩

− f(x)
pC◦ (f) , if f(x) < 0,

f(x)
pC◦ (−f) , if f(x) ≥ 0.

Lemma 3. Let f be as in Lemma 2. Then the following statements are equiv-
alent.

(i) ker(f) is dC-proximinal.
(ii) There exist two distinct points z1, z2 ∈ X\{0} on the different sides of

ker(f) such that 0 ∈ PC
ker(f)(z1) ∩ PC

ker(f)(z2).
(iii) pC◦(f) and pC◦(−f) are attainable on C.

Proof. (i)⇒(ii). Suppose that ker(f) is dC-proximinal and take x ∈ X\ker(f)
with f(x) > 0. Then there exists y1 ∈ ker(f) such that pC(y1 − x) =
dC(x, ker(f)). Let z1 := x − y1. Then f(z1) > 0 (clearly, z1 
= 0), and

pC(0 − z1) = dC(x, ker(f)) =
f(x)

pC◦(−f)
=

f(z1)
pC◦(−f)

= dC(z1, ker(f))

thanks to Lemma 2; hence, 0 ∈ PC
ker(f)(z1). Similarly, we can show that there

is z2 ∈ X\{0} with f(z2) < 0 such that 0 ∈ PC
ker(f)(z2). Thus (i)⇒(ii) is true.

(ii)⇒(iii). Suppose that (ii) holds. Then z1, z2 /∈ ker(f) because
f(z1)f(z2) < 0. We may assume that f(z1) < 0 and f(z2) > 0. Thus Lemma 2
guarantees that

pC(−z1) = dC(z1, ker(f)) = − f(z1)
pC◦(f)
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and

pC(−z2) = dC(z2, ker(f)) =
f(z2)

pC◦(−f)
.

It follows that pC◦(f) = f
(

−z1
pC(−z1)

)
and pC◦(−f) = (−f)

(
−z2

pC(−z2)

)
. This

means that both pC◦(f) and pC◦(−f) are attainable on C.
(iii)⇒(i). Suppose that (iii) holds. Since pC◦(f) is attainable on C, there

is x̄ ∈ C such that f(x̄) = pC◦(f); hence pC(x̄) = 1 by Proposition 1 (ii) and
(v). Let x ∈ X with f(x) < 0, and let y := x − f(x)

f(x̄) x̄. Then y ∈ ker(f), and

pC(y − x) = −f(x)
f(x̄)

pC(x̄) = − f(x)
pC◦(f)

= dC(x, ker(f)),

so y ∈ PC
M (x). In the same way, we can show that if pC◦(−f) is attainable

on C, then PC
M (x) 
= ∅ for each x ∈ X with f(x) > 0. Therefore, ker(f) is

dC-proximinal.
�

Recall from [10, Definition 1.7.3, p.51] that X/M is the quotient space
with respect to M , defined by

X/M := {x̃ := x + M : x ∈ X} with the norm ‖x̃‖ := inf
y∈M

‖x − y‖,

and that QM : X → X/M is the corresponding quotient mapping defined by
QM (x) = x̃ for each x ∈ X. Then the dual mapping Q∗

M : (X/M)∗ → M⊥ of
QM is a linear isometry onto M⊥ (see [10, Theorem 1.10.17, p.95]), where

〈Q∗
Mφ, x〉 = 〈φ,QMx〉 = 〈φ, x̃〉, ∀φ ∈ (X/M)∗,∀x ∈ X.

So, the dual mapping Q∗∗
M : (M⊥)∗ → (X/M)∗∗ of Q∗

M is also a linear isometry
onto (X/M)∗∗, where,

〈Q∗∗
MF, φ〉 = 〈F,Q∗

Mφ〉, ∀F ∈ (X⊥)∗, ∀φ ∈ (X/M)∗.

Now, we define functionals p̃C on X/M , p̃C
∗ on (X/M)∗, and p̃C

∗∗ on (X/M)∗∗

as follows:

p̃C(x̃) := inf
y∈M

pC(x − y), ∀ x̃ ∈ X/M,

p̃C
∗(φ) := sup{φ(x̃) : x̃ ∈ X/M, p̃C(x̃) ≤ 1}, ∀φ ∈ (X/M)∗,

and

p̃C
∗∗(Φ) := sup{Φ(φ) : φ ∈ (X/M)∗, p̃C

∗(φ) ≤ 1}, ∀Φ ∈ (X/M)∗∗.

Then p̃C , p̃C
∗, p̃C

∗∗ are respectively sublinear on X/M , (X/M)∗, and
(X/M)∗∗. Moreover, we have the following useful result.

Lemma 4. pC◦(Q∗
Mφ) = p̃C

∗(φ), ∀φ ∈ (X/M)∗.
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Proof. Let φ ∈ (X/M)∗. Then Q∗
Mφ ∈ M⊥ ⊆ X∗. Since {x̃ : x ∈ C} ⊆ {ỹ ∈

X/M : p̃C(ỹ) ≤ 1}, one has that

pC◦(Q∗
Mφ) = sup

x∈C
〈Q∗

Mφ, x〉 = sup
x∈C

〈φ, x̃〉 ≤ sup{〈φ, ỹ〉 : ỹ ∈ X/M, p̃C(ỹ) ≤ 1}

= p̃C
∗(φ).

On the other hand, let x ∈ X and y ∈ M . Noting that 〈Q∗
Mφ, y〉 = 0, we

obtain from Proposition 1(v) that

〈φ, x̃〉 = 〈Q∗
Mφ, x〉 = 〈Q∗

Mφ, x − y〉 ≤ pC◦(Q∗
Mφ)pC(x − y).

It follows that 〈φ, x̃〉 ≤ pC◦(Q∗
Mφ)p̃C(x̃) because y ∈ M is arbitrary. This

implies that p̃C
∗(φ) ≤ pC◦(Q∗

Mφ). Therefore, Lemma 4 follows. �

3. Main Results

We begin with the following notion, which is a generalization of the property
(ε∗) (see [12, p. 195]) in the approximation based on norms to the context of
generalized approximations.

Definition 1. Let Γ be a linear subspace of X∗. Then Γ is said to have the
property (ε∗) with respect to C if for each x ∈ X there exists y ∈ X such that

f(y) = f(x) for each f ∈ Γ and pC(y) = pC,Γ (x). (7)

The main results of this paper are contained in the following theorem,
giving various characterizations for a closed subspace of X to be dC-proximinal
and extending [12, Theorem 2.1, p. 94–p. 95] to the setting of generalized
approximation.

Theorem 1. Let M be a closed subspace of X. Consider the following state-
ments.

(i) M is dC-proximinal.
(ii) In each linear subspace Mx := M+̇span{x} with x ∈ X\M , there exist

two distinct nonzero points z1 and z2 on the different sides of M such
that 0 ∈ PC

M (z1) ∩ PC
M (z2), where we regard M as a hyperplane in Mx.

(iii) For each x ∈ X\M and each f ∈ (Mx)∗ with the property f |M = 0,
there is z ∈ Mx\{0} such that f(z) = pC(z)p(C∩Mx)◦(f).

(iv) M⊥ has the property (ε∗) with respect to C.
(v) For each F ∈ (M⊥)∗ there exists an element y ∈ X such that

f(y) = F (f) for all f ∈ M⊥ and pC(y) = p(C◦ ⋂
M⊥)◦(F ).

Then (i)⇔(ii)⇔(iii)⇔(iv)⇐(v). If, in addition, X/M is reflexive, then all the
above statements are equivalent.
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Proof. (i)⇒(ii). Suppose that (i) hold. Then for each x ∈ X\M , M is dC-
proximinal in Mx = M+̇span{x}. Hence, (ii) holds by Lemma 3 because M is
a hyperplane in Mx.

(ii)⇒(iii). Suppose that (ii) holds. Let x ∈ X\M and let f ∈ M∗
x satisfy

f |M = 0. If f(x) = 0, then the assertion in (iii) is trivial. If f(x) 
= 0, then
M = ker(f). By (ii), we may take z ∈ Mx\{0} with f(z) > 0 such that
0 ∈ PC

M (−z). Thus Lemma 1 guarantees that there exits f1 ∈ M∗
x such that

f1|M = 0, p(C
⋂

Mx)◦(f1) = 1, and f1(z) = pC(z). (8)

Obviously, f1(x) 
= 0 (otherwise, f1(Mx) = {0}). Putting α := f(x), β :=
f1(x), and λ := αβ−1, one has that

f(y + tx) = tα = αβ−1(tβ) = λf1(y + tx), ∀ y ∈ M, ∀ t ∈ R.

Hence, f = λf1 and λ > 0 [noting that f(z) > 0 by the choice of z and
f1(z) > 0 by (8)]. Multiplying the equality f1(z) = pC(z)p(C ⋂

Mx)◦(f1) by λ,
one obtains that f(z) = pC(z)p(C∩Mx)◦(f), i.e., the assertion in (iii) holds for
x with f(x) 
= 0.

(iii)⇒ (iv) Suppose that (iii) holds. Below we show that M⊥ has the
property (ε∗) with respect to C. To do this, let x ∈ X. If x ∈ M , it is easy
to see that (7) holds for y = 0 and Γ := M⊥. If x ∈ X\M , by the separation
theorem, there exists f ∈ X∗ such that f(x) > 0 and f |M = 0. For convenience
put fx := f |Mx

. By (iii), there exists z0 ∈ Mx\{0} with pC(z0) = 1 such that
f(z0) = p(C∩Mx)◦(fx) > 0. Let y0 := −x + f(x)

f(z0)
z0. Then y0 ∈ M . Moreover,

since M = ker(fx), Lemma 2 yields

pC(y0 + x) =
f(x)
f(z0)

=
f(x)

p(C∩Mx)◦(fx)
= dC(−x,M),

that is, y0 ∈ PC
M (−x). Thus by Lemma 1,

pC(y0 + x) = pC,M⊥(y0 + x) = pC,M⊥(x).

Since g(y0+x) = g(x) for all g ∈ M⊥, it follows that y := y0+x and Γ := M⊥

satisfy the conditions from (7).
Combining the above two cases, one sees that M⊥ has the property (ε∗)

with respect to C.
(iv)⇒(i). Suppose (iv) holds. Let x ∈ X\M . Then by (iv), there exists

y0 ∈ X such that f(y0) = f(−x) for each f ∈ M⊥ and pC(y0) = pC,M⊥(−x).
Let z0 := y0 + x. Then f(z0) = 0 for each f ∈ M⊥. It follows from (4) that
z0 ∈ (M⊥)⊥ = M . Moreover,

pC(z0 − x) = pC(y0) = pC,M⊥(−x) = pC,M⊥(z0 − x).

This and Lemma 1 imply that z0 ∈ PC
M (x), and so (i) holds.
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(v)⇒(iv). Let x ∈ X. Then by the proof of (iii)⇒(iv), we may assume that
x ∈ X\M . Now define a continuous linear functional F on M⊥ by F (f) := f(x)
for each f ∈ M⊥. Then, by (v), there exists y ∈ X such that

f(y) = F (f) for each f ∈ M⊥ and pC(y) = p(C◦∩M⊥)◦(F ).

This implies that f(y) = f(x) for each f ∈ M⊥, and

pC(y) = sup{F (f) : f ∈ C◦ ∩ M⊥} = sup{f(x) : f ∈ C◦ ∩ M⊥} = pC,M⊥(x);

hence, M⊥ has the property (ε∗) with respect to C. Thus the proofs of
(i)⇔(ii)⇔(iii)⇔(iv)⇐(v) are complete.

If X/M is additionally reflexive, to complete the proof of Theorem 1,
it suffices to show that (i)⇒(v). To this end, suppose that (i) holds and let
F ∈ (M⊥)∗. Then Q∗∗

MF ∈ (X/M)∗∗. Since X/M is reflexive, there is x ∈ X
such that

〈Q∗∗
MF, φ〉 = 〈φ, x̃〉, ∀φ ∈ (X/M)∗. (9)

But M being dC-proximinal, there exists z ∈ M such that p̃C(x̃) = pC(z + x).
Let y := z + x. Then

ỹ = x̃ and p̃C(x̃) = pC(y). (10)

Further, for each f ∈ M⊥, take φ ∈ (X/M)∗ such that Q∗
Mφ = f . Then

〈F, f〉 = 〈F,Q∗
Mφ〉 = 〈Q∗∗

MF, φ〉 = 〈φ, x̃〉 = 〈Q∗
Mφ, y〉 = 〈f, y〉,

where the third equality is true by (9) and the forth one is due to (10). Hence,
the first assertion in (v) holds.

To show the second assertion in (v), we first show the following result:

p̃C
∗∗(Q∗∗

MF ) = p̃C(x̃). (11)

In fact, if x ∈ M , then x̃ = 0, and hence 〈Q∗∗
MF, φ〉 = 0 for each φ ∈ (X/M)∗

by (9). Thus, p̃C
∗∗(Q∗∗

MF ) = p̃C(x̃) = 0. If x /∈ M , then p̃C(x̃) 
= 0 as M is
closed, and we obtain from (9) and (10) that

p̃C
∗∗(Q∗∗

MF ) = sup{〈Q∗∗
MF, φ〉 : φ ∈ (X/M)∗, p̃C

∗(φ) ≤ 1}
= sup{〈φ, x̃〉 : φ ∈ (X/M)∗, p̃C

∗(φ) ≤ 1}
= p̃C(x̃) sup

{〈

φ,
x̃

p̃C(x̃)

〉

: φ ∈ (X/M)∗, p̃C
∗(φ) ≤ 1

}

≤ p̃C(x̃).

On the other hand, since p̃C is a nonnegative sublinear functional on X/M
and p̃C(x̃) 
= 0, by [3, Proposition 3.2], there exists a linear functional φ0 on
X/M satisfying

φ0(w̃) ≤ Lp̃C(w̃), ∀ w̃ ∈ X/M (12)

for some L > 0, such that

sup{φ0(w̃) : w̃ ∈ X/M, p̃C(w̃) ≤ 1} = 1 and φ0(x̃) = p̃C(x̃). (13)
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It follows from (12), the definition of p̃C , and Proposition 1 (v) that φ0(w̃) ≤
Lm2‖w̃‖, and hence |φ0(w̃)| ≤ Lm2‖w̃‖ for each w̃ ∈ X/M . This means φ0 ∈
(X/M)∗. Furthermore, by (9), (13) and the definition of p̃C

∗(φ0), one has that

p̃C(x̃) = 〈φ0, x̃〉 = 〈Q∗∗
MF, φ0〉 ≤ p̃C

∗∗(Q∗∗
MF )p̃C

∗(φ0) = p̃C
∗∗(Q∗∗

MF );

hence (11) holds. Note from Lemma 4 and the isometry property of Q∗
M that

p̃C
∗∗(Q∗∗

MF ) = sup{〈F,Q∗
Mφ〉 : φ ∈ (X/M)∗, p̃C

∗(φ) ≤ 1}
= sup{〈F, f〉 : f ∈ M⊥, pC◦(f) ≤ 1}
= p(C◦∩M⊥)◦(F ).

One obtains from (10) and (11) that

pC(y) = p(C◦∩M⊥)◦(F ).

Hence, the second assertion in (v) is true, and the proof of (i)⇒(v) is complete.
�

When C is the closed unit ball of X, we have the following corollary,
which is exactly [12, Theorem 2.1, p. 94–p. 95] in the real case.

Corollary 1. Let M be a closed subspace of X. Consider the following state-
ments.

(i) M is proximinal.
(ii) In each linear subspace Mx := M+̇span{x} with x ∈ X\M , there exists

a nonzero point z ∈ Mx such that 0 ∈ PM (z), where and in the sequel,
PM denotes the usual metric projection onto M .

(iii) For each x ∈ X\M and each f ∈ (Mx)∗ with f |M = 0, there exists
y ∈ Mx\{0} such that f(y) = ‖y‖‖f‖.

(iv) M⊥ has the property (ε∗), i.e., for each x ∈ X there exists y ∈ X such
that f(y) = f(x) for all f ∈ M⊥ and ‖y‖ = sup{|f(x)| : f ∈ X∗, ‖f‖ ≤
1}.

(v) For each F ∈ (M⊥)∗ there exists an element y ∈ X such that

f(y) = F (f) for all f ∈ M⊥ and ‖y‖ = sup{|F (f)| : f ∈ M⊥, ‖f‖ ≤ 1}.

Then (i)⇔(ii)⇔(iii)⇔(iv)⇐(v). If, in addition, X/M is reflexive, then
all the above statements are equivalent.

4. An Example

The following example illustrates that there exist a Banach space X, a bounded
closed convex set C in X with 0 ∈ intC, and a continuous linear functional f
on X such that pC◦(f) is attainable on C, but pC◦(−f) is not.
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Example 1. Let l1 be the space of all absolutely summable sequences in R

endowed the norm defined by

‖x‖ :=
∞∑

i=1

|ξi|, ∀x :=
∞∑

i=1

ξiei ∈ l1,

where {ei}∞
i=1 is the natural base of l1. Then the dual of l1 is l∞, i.e., the space

of all bounded sequences in R with the norm defined by

‖f‖ := sup
i≥1

|ηi|, ∀ f := (ηi) ∈ l∞.

Furthermore, let f := (1, 1
2 , . . . , n−1

n , . . .) ∈ l∗1 = l∞. Then ‖f‖ = 1. Let

W1 := co({e1} ∪ (ker(f) ∩ Bl1)),

W2 := co
({

−1
2
e1

}

∪ {−ei}∞
i=2 ∪ (ker(f) ∩ Bl1)

)

,

and C = W1 ∪ W2, where and in the sequel, Bl1 denotes the closed unit ball of
l1, and co(A) stands for the convex hull of the set A ⊆ X. Then C is bounded
and closed and C ⊆ Bl1 . Below we first show that C is a convex set containing
the origin as an interior.

(i) C is convex.
It suffices to show that W1∪W2 is convex. To do this, let x, y ∈ W1∪W2,

and λ ∈ (0, 1). We have to show that z := (1 − λ)x + λy ∈ W1 ∪ W2. Clearly,
z ∈ Bl1 as x, y ∈ Bl1 . Since W1 and W2 are convex, we may assume that
x ∈ W1 and y ∈ W2, so f(x) ≥ 0 and f(y) ≤ 0 by the representation of f ∈ l∗1.
When f(x) = 0, one has x ∈ ker(f) ∩ Bl1 ⊆ W2; hence, z ∈ W2. Similarly,
when f(y) = 0, one obtains that z ∈ W1. Below we assume that f(x) > 0 and
f(y) < 0. Define the function φ by

φ(t) := f(x + t(y − x)), ∀ t ∈ R.

Then φ is strictly decreasing on R, φ(0) > 0, and φ(1) < 0. Take t0 := f(x)
f(x)−f(y)

and set z′ := x + t0(y − x). Then, f(z′) = φ(t0) = 0, and ‖z′‖ ≤ 1 (noting
that t0 ∈ (0, 1)); hence z′ ∈ ker(f) ∩ Bl1 ⊆ W1 ∩ W2. Consider the following
two cases. When φ(λ) = f(z) > 0, then t0 ∈ (λ, 1), and z can be rewritten
as z = (1 − λ′)x + λ′z′ with λ′ = λ

t0
∈ (0, 1). Hence, z ∈ W1 (noting that

x, z′ ∈ W1). When φ(λ) = f(z) ≤ 0, then t0 ∈ (0, λ], and

z = (1 − λ̃)z′ + λ̃y with λ̃ =
λ − t0
1 − t0

∈ [0, 1);

hence z ∈ W2. Therefore, W1 ∪ W2 is convex.
(ii) C contains the origin as an interior.
In fact, let W3 := co({− 1

2e1} ∪ (ker(f) ∩ Bl1)). It suffices to show that
Bl1(

1
4 ) ⊆ W1 ∪ W3 because W1 ∪ W3 ⊂ C, where and in the sequel, Bl1(

1
4 )



Vol. 74 (2019) Characterizations of Generalized Proximinal Subspaces Page 11 of 14 88

stands for the closed ball centered at zero with radius 1
4 . To do this, let x :=

∑∞
i=1 ξiei ∈ Bl1(

1
4 ). Then

|f(x)| ≤ ‖x‖ =
∞∑

i=1

|ξi| ≤ 1
4
. (14)

Consider two cases as follows.
Case 1: f(x) ≥ 0. Let

x̃ := e1 + t̃(x − e1) with t̃ =
1

1 − f(x)
≥ 1.

Then f(x̃) = 0 (noting that f(e1) = 1). Moreover, one checks that

‖x̃‖ = |1 + t̃(ξ1 − 1)| + t̃

∞∑

i=2

|ξi| ≤ |ξ1 − f(x)|
1 − f(x)

+
1
4 − |ξ1|
1 − f(x)

< 1

by (14). Hence, x̃ ∈ ker(f) ∩ Bl1 ⊆ W1, and we can rewrite x as x = (1 −
1
t̃
)e1 + 1

t̃
x̃ ∈ W1.

Case 2: f(x) < 0. In the same manner as above, let

x̂ := −e1
2

+ t̂
(
x +

e1
2

)
with t̂ =

1
1 + 2f(x)

> 1.

Then f(x̂) = 0, and

‖x̂‖ =
∣
∣
∣
∣−

1
2

+ t̂

(

ξ1 +
1
2

)∣
∣
∣
∣ + t̂

∞∑

i=2

|ξi| ≤ |ξ1 − f(x)|
1 + 2f(x)

+
1
4 − |ξ1|

1 + 2f(x)
≤ 1

again by (14). This implies that x̂ ∈ ker(f) ∩ Bl1 , so x can be expressed as

x =
(

1 − 1
t̂

)(
−e1

2

)
+

1
t̂
x̂ ∈ W3.

Combining the two cases above, we have that Bl1(
1
4 ) ⊆ W1 ∪ W3.

Then we show that pC◦(f) = 1 and pC◦(f) is attainable on C. Indeed,
let x :=

∑∞
i=1 ξiei ∈ W1. Then

f(x) = ξ1 +
∞∑

i=2

i − 1
i

ξi ≤
∞∑

i=1

|ξi| = ‖x‖ ≤ 1. (15)

Note that C = W1 ∪ W2 and that f(y) ≤ 0 for all y ∈ W2. One has from
Proposition 1 (iv) that

pC◦(f) = sup{f(x) : x ∈ W1 ∪ W2} = sup{f(x) : x ∈ W1}.

This and (15) imply that pC◦(f) ≤ 1. Thus, pC◦(f) = 1 because f(e1) = 1
(noting that e1 ∈ W1), and pC◦(f) is attainable on C.

Finally we show that pC◦(−f) = 1 and pC◦(−f) cannot attain on C. We
only verify the latter assertion because the proof of the former is similar to that
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for pC◦(f) = 1. Suppose, on the contrary, that there exists x :=
∑∞

i=1 ξ̄iei ∈ C
such that −f(x) = 1. Then,

−1 = f(x) = ξ̄1 +
∞∑

i=2

i − 1
i

ξ̄i.

This implies that ξ̄i = 0(i ≥ 2) and ξ̄1 = −1; hence, x = −e1. Since C =
W1 ∪ W2 and −e1 
∈ W1 (noting that f(x) ≥ 0 for all x ∈ W1), one has that
−e1 ∈ W2, which will derive a contradiction. In fact, take g := (1, 0, 0, . . .) ∈
l∞. Then

g(w) ≥ −1
2
, ∀w ∈ W2; (16)

hence, −e1 /∈ W2 because g(−e1) = −1, as desired. To show assertion (16), we
first show that (16) holds for all w ∈ ker(f) ∩ Bl1 . To do this, let w := (ηi) ∈
ker(f) ∩ Bl1 . Then

∞∑

i=1

|ηi| ≤ 1 and η1 +
∞∑

i=2

i − 1
i

ηi = 0. (17)

It follows from the equality in (17) that |η1| ≤ ∑∞
i=2 |ηi|, and hence, |η1| ≤ 1

2

by the inequality in (17). Therefore, g(w) = η1 ≥ − 1
2 , and (16) holds for all

w ∈ ker(f) ∩ Bl1 . To proceed, let w ∈ W2 and set

w := λ1

(
−e1

2

)
+

k∑

i=2

λi(−ei) + μw′, (18)

where k ∈ N, each λi and μ belong to [0, 1],

k∑

i=1

λi + μ = 1, (19)

and w′ ∈ ker(f)∩Bl1 . Then, by the definition of g and the conclusion obtained
just, one has from (18) and (19) that

g(w) = −1
2
λ1 + μg(w′) ≥ −1

2
λ1 − 1

2
μ ≥ −1

2
,

which completes the proof of (16).

Remark 1. With the notations in Example 1 and the proofs of (iii)⇒(i) and
(i)⇒(ii) in Lemma 3, we see that for each x ∈ X with f(x) < 0, PC

ker(f)(x) 
= ∅,
and that for each x ∈ X with f(x) > 0, PC

ker(f)(x) = ∅. This differs completely
from the case of norm: For a subspace M of a normed space X and x ∈ X,
PM (x) 
= ∅ if and only if PM (−x) 
= ∅.



Vol. 74 (2019) Characterizations of Generalized Proximinal Subspaces Page 13 of 14 88

Acknowledgements

The authors would like to thank the referees for their careful reading and
valuable suggestions. In particular, for the proofs of the implications (ii)⇒(iii)
and (iii)⇒(iv) in Theorem 1, the authors adopted the methods of one of them,
which simplified the corresponding presentation. The research of the first two
authors is supported in part by the Natural Sciences Foundation of Zhejiang
Province (Grant No. LY16A010009).

References

[1] De Blasi, F.S., Myjak, J.: On a generalized best approximation problem. J.
Approx. Theory 94, 54–72 (1998)

[2] Braess, D.: Nonlinear Approximation Theory. Springer, Berlin (1986)
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