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Abstract. Non-self-adjoint second-order differential operators with a con-
stant delay are studied. Properties of spectral characteristics are estab-
lished and the inverse problem of recovering operators from their spectra
is investigated. For this nonlinear inverse problem an algorithm for con-
structing the global solution is developed.
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1. Introduction

In various real-world processes, the future behavior of the system depends not
only on its present state and rate of change of the state (corresponding to the
values of the function and its derivatives at the current point), but also on the
states in the past. Such processes described by functional differential equations
with delay, arise in physics, biology and especially in engineering and control
theory (see the monographs [5,8]).

In this paper we study an inverse spectral problem for non-self-adjoint
Sturm-Liouville differential operators on a finite interval with a constant delay
and with complex-valued potentials. Inverse spectral problems consist in recov-
ering operators from their spectral characteristics. The greatest success in the
inverse spectral theory has been achieved for the classical Sturm-Liouville oper-
ator (see [3,6,7,11] and the references therein) and afterwards for higher-order
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differential operators and other classes of differential operators and systems
[11]. The classical methods of the inverse spectral theory (the transformation
operator method [3,6,7] and the method of spectral mappings [3,11]), which
allow one to obtain global solutions of inverse problems for differential oper-
ators, are not applicable for differential operators with deviating argument.
Therefore, the general inverse spectral theory for differential operators with
delay has not yet been constructed, and there are only isolated results in this
direction [1,2,4,9,10].

We consider the boundary value problems L; = L;(q, h), j = 0,1, of the
form

- ()+Q()(9C—a)—/\y() 0<z<m, (1)
y'(0) = hy(0) =y (m) = 0.

Here A is the spectral parameter, a € [7/3,7/2), h is a complex number, ¢(z)
is a complex-valued function, ¢(x) € L(a,n) and ¢(z) = 0 a.e. on (0, a).
Let C(x,)\),S(z,A) and ¢(z,A) be solutions of Eq. (1) satisfying the

initial conditions
C(0,\) = S(0,\) = p(0,\) =1, S(0,\) = C'(0,\) =0, ©'(0,\) = h.

Then ¢(x,\) = C(x,\) + hS(x, \). For each fixed x, the functions CU)(z, \),
SU) (2, A) and ) (x, ), j = 0,1, are entire in A of order 1/2. Denote

AN =W(m,N), j=0,1

The eigenvalues {\,; },,>0 of the boundary value problem L; coincide with the
zeros of the entire function A;(X). The function A;()) is called the character-
istic function for L;. In this paper we study the inverse problem of recovering
the potential ¢(z) and the coefficient h provided that the spectra {\;}n>0,
j = 0,1, are given. If a > /2, then the corresponding inverse problem becomes
linear. In this paper we pay attention to the essentially nonlinear case when
a € [r/3,7/2) (the case a < m/3 requires separate investigations). In this
paper we obtain a global constructive procedure for the solution of the inverse
problem and establish its uniqueness.

2. Properties of Spectral Characteristics

Let A = p?. The functions C(z, A) and S(z,\) are the unique solutions of the
following integral equations

C(z,\) = cos px +/ G(z,t, \)C(t — a, \) dt,

sin px

S(x,\) = ) —|—/ G(z,t,\)S(t —a,\) dt,
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q(t) sin p(x — 1)

where G(z,t,\) = . Solving these equations we get

C(xz,\) = cos px + Cy(z, \) + Ca(x, N),

S(@,A) = T2 4 51(2,0) + S (@, ), (2)
where
1 xr
Cy(z,\) = p / q(t) sin p(z — t) cos p(t — a) dt,
1 x
Si(z,\) = — / q(t) sin p(xz — t) sin p(t — a) dt,
P™ Ja

for > a, and Cy(z, \) = S1(z,\) = 0 for € [0, a]. Similarly,

Cy(z,\) = G(z,t,\)C1(t — a, \) dt,

2a

Sa(o ) = [ Glat NS - a0t 3)

for x > 2a, and Ca(z,\) = Sa(z,A) = 0 for x € [0,2a]. In particular, this
yields for z > a:

Ol(I,A):M/ q(t dt——/ t)sinp(2t — x — a) dt,

2
Sl(x7)\):—COSp2(Zz_a)/ q()dt—|—2 2/ q(t) cos p(2t — x — a) dt,

(4)
and consequently,
Asi - 1 (7
Cy(m,A) = Asinp(r—a) 1 / q(t)sin p(2t — 7 — a) dt,
p 2p Ja (5)
~ Acosp(m —a) 1 [
Si(m,\) = B E— + 3,2 /a q(t) cos p(2t —m — a) dt,
Ci(m,A) = Acosp(m —a) + % / q(t) cos p(2t — m — a) dt,

‘ (6)

Asinp(mr—a) 1

Si(m,A) = ; % /a q(t)sin p(2t — m — a) dt,

1 T
where A := 5/ q(t) dt. Substituting (4) into (3) we obtain for x > 2a:

Ca(xz, ) = /z: G(z,t,\) (W /utia q(s)ds — % /:7(1 q(s)sinp(2s — t) ds) dt,

cos p(t — 2a)

t—a 1 [t—a
202 q(s)ds + 22 / q(s) cos p(2s — t) ds) dt

(7)

Sa(a, A) = /2: Gzt \) (—
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Denote

A = /W a(t)dt /t_aq(s)ds, Q1(t) = g(t) /:_aq(s)ds, Qs(t) = q(t) /t;q(s)ds,

2a a

Qs(t) = /+ a(s)a(s — t)ds, Q=(€) = Qi(€/2+ 7/2 + a)

—Q2(§/2+ 7/2) F Qs(£/2+ m/2).
It follows from (7) that

Aj cos p(m — 2a 1 m—2a
02(779\):_% 72/ Q-+ () cos pé€ dE,
P 8p —(m—2a) (8)
_ Aysinp(m — 2a) 1 /772‘1 )
So(m,A) = 18 Crl Q— (&) sin p€ d¢,
Aq cosp(m —2a 1 [T )
Cymx) = ALEBATZ2 L LT e sin e
v R (9)
Ay sin p(m — 2a) 1 /7r 2a
S5 W,A:——_i _ Ccos d€.
5( ) 4p2 8p2 —(r—20) Q-(§) p€ dg
Since A;(A) == 0 (m,N\), 5 =0,1,and ¢(z,\) = C(x, \) +hS(z, \), it follows
from (2 ) (5)-(6) and (8)~(9) that
Ao(N) = cos prr + hsin pr n Asinp(m —a) hAcospQ(ﬁ —a) N do(p)7
p p 2p
(10)
A1(X) = —psinpm + hcos pm + Acos p(m — a) + hAsin p(m — a) " dlép)’
p
(1)

do(p) = —/7T q(t)sinp(2t —m —a)dt + % /7T q(t)cosp(2t —m —a)dt

~ Ajcosp(m —2a)

2p
hA; sin p(m — 2a) 1 /(77—211)
- +- Q+ (&) cos p& d¢
2p? 49 ) (x—2a) +(§) cosp
h (m—2a) ( ) ( )
1,2 Q- (&) sin pg dE, 12
4p2 —(7—2a)

T h K
dy(p) = / q(t)cosp(2t —m —a)dt + - / q(t)sinp(2t —m — a)dt
Ay si -2
4 Ausin p(m — 2a)
2p
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Q- (€) sin p€ dé

hA; cos p(m — 2a) 1 fr—2a)
_ : 4
2p 4p J_(x—2a)

h (m—2a)
i [ NCEGIEY (13)

Using (10)—(13) by the well-known arguments (see, for example [3]) we obtain
the following facts.

Lemma 1. For n — oo,

VAo = (n+1/2) 4 (h+ Acos(n + 1/2)a)/(z7n) + o(1/n),
VAni = n+ (h+ Acosna)/(7n) + o(1/n). (14)

Lemma 2. The specification of the spectra {\n;}n>0, j = 0,1, uniquely deter-
mines the characteristic functions via

oo

R )

n=0 n=1

3. Solution of the Inverse Problem

Let the spectra {A,;}n>0, 7 = 0,1, be given. Our goal is to find the potential
q(z) and the coefficient h. First of all, by (15) we construct the characteristic
functions Aj()), j = 0,1. Then, using (10) or (11) we can find the coeffi-
cients h and A. Indeed, it follows from (10) that Asinan = (—1)"*1(Ag(n?) —

(=1)™n + o(1), as n — oo, and consequently,
A= lim (=1)™H(sinany) " (Ao(n3) — (—1)"")ng, (16)

where ny, are such that |sinang| > ¢ > 0. Using (10) again we infer
h= lim ((zn £1/2)A0((2n + 1/2)?) — Asin(2n + 1/2)(m — a)). (17)

Note that we can also calculate A and h using (14). Since A and h are known,
we can construct the functions d;(p), j = 0,1, with the help of (10) and (11).

In order to simplify calculations we assume that ¢(z) and ¢'(x) are abso-
lutely continuous on [a, 7]. The general case requires slightly different calcula-
tions. Integration by parts in (12)—(13) yields

2pdo(p) = Bocosp(m —a) + / g(t) cos p(2t — m — a)dt — A; cos p(m — 2a)

hA sinp(mr —2a) 1 [("=24) ‘
_ : v [ oy @ cospt e
h (m—2a) )
+5- Q- (&) sin p¢ d¢, (18)

2p —(7r—2a)
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T

2pdi(p) = By sinp(m — a) + / g(t)sinp(2t — 7 — a)dt + Ay sin p(m — 2a)

a

hA; cos p(m — 2a 1 [m—29) .
e T IECEYY:
P —(m—2a)
h (m—2a)
. Q_(€) cospt de, (19)
P J—(r—2a)

where g(z) = —¢'(z) + 2hq(z), Bo = q(m) — q(a), B1 = q(7) + q(a). Using
(18)—(19) we can find By, By and A;. Indeed, it follows from (18)—(19) that
for real p, |p| — oo,

2pdo(p) = Bg cos p(m — a) — Ay cos p(m — 2a) + o(1), (20)
2pdy(p) = By sinp(m — a) + Aj sin p(m — 2a) + o(1). (21)

Taking in (21) p, = nw/(7 — a), we get for n — oc:
2pnd1(pn) = Ay sin(ann) +o(1), a = (7 —2a)/(r —a) < 1,
and consequently,
Al = 2m£i1r_>nDO (pmkdl (P, ) (sin amkﬂ')_1>, (22)
where my, are such that |sinamym| > § > 0. Using (20)—(21) we infer
Bi = lim (2pn1d1(pn1) — Ay Sin pni (7 — 2a)), pn1 = (20 +1/2)7/(r — a),
By = nh_)ngo (2pn0do(pn0) + Aj cos ppo(m — Qa))7 pno = 2n7/(m — a).
(23)

Since By and Bj are known, we calculate ¢(a) and ¢(7) by the formulas
q(m) = (B1+Byp)/2 and g(a) = (B1—By)/2. Let us now construct the functions

hA; si -2
d%(p) = 2pdo(p) — By cos p(m — a) + Ay cos p(m — 2a) + — sin p(m a)’

p
di(p) = 2pdy(p) — Bysinp(m — a) — A sinp(m — 2a) + hAy cos p(r = 2a) .
' (24)
It follows from (18)—(19) that
™ 1 (m—2a)
B(e) = [ altycosp(2t —m —aie+ 5 [ oy @r(Ereos e

h (m—2a)

2% ) r o Q- (&) sin p¢ d¢,
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™ (m—2a)
d:(p) = / (1) sin p(2t — 7 — a)dt + / ORIV

h (m—2a)

+ Q- (&) cos pg de.

2p —(m—2a)
Integration by parts yields

(r—a)

204(p) = bosin p( — a) + wisinplr —20) — [ gal€)sin pé g

~(r—a)

(r—2a)
[ a@sinpe s (25)

—(m—2a)
(r—a)

2pd;(p) = by cos p(m — a) + wy cos p(m — 2a) + / 9o (&) cos p& d¢

—(m—a)

(m—2a)

+[ G eospee, (26)
—(7—2a)

where G(£) = Q' (§) — hQ-(£), 90(&§) = 91(( + 7+ a)/2)/2, g1(z) = ¢'(2),

bo = g(a) + g(7), by = g(a) — g(7), wo = Q4(7 — 2a) + Q(—(7 — 2a)),

w1 = Q4(m —2a) — Q4+ (—(m — 2a)). Using (25)—(26) by similar arguments as

above we can find by, by, wp and w1:

wo = 2mli£100 (pmkdé(pmk)(sin ozmkﬂ')fl),

' (27)

w1 =2 lim (prkd’l‘(ka)(cos a(2ry + 1/2)71')_1)7
T —>00

bo = Tim (20d5(o) = wosin pl(m — 20)), ph = (2n+ 1/2)7/(x — ),

b= Tim (2p}d;(ph) — wi cos ph(r = 2a)), ph = 20/ (x — a),
(28)
where 7, are such that |cos a(2r; + 1/2)7| > § > 0.
Since by and by are known, we calculate g(a) and g(m) by the formulas
g(m) = (bg —b1)/2 and g(a) = (bg + b1)/2, and consequently, we can find ¢'(a)
and ¢'(7) via ¢'(a) = —g(a) + 2hq(a), ¢'(7) = —g(7) + 2hq(n). Let us now
construct the functions
Do(p) = 2pdi(p) — bp sin p(m — a) — wy sin p(7 — 2a), } (29)
D1 (p) = 2pd;(p) — by cos p(m — a) — w cos p(m — 2a).
It follows from (25)—(26) that

(—a) (r—a)
Dofp) = [ @l Dilp) = | L Eeospede, (30
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where

R(&) = g0(&) + G($), (31)

and G(§) =0 for £ ¢ (—(7m—2a), 7 — 2a). Using (30) we construct the function
R(&). Since G(§) = 0 for £ ¢ (—(w — 2a),m — 2a), we find the function go(§)
for £ ¢ (—(m — 2a), 7™ — 2a) via go(§) = R(§). This yields

q"(x) — 2hg'(z) = —2R1(x), = € [a,3a/2]U[r —a/2,7], (32)

where R;(z) := R(2x — m — a). Since ¢(a), ¢ (a), () and ¢'(7) are known, we
can construct the potential ¢(x) for = € [a,3a/2] U [r — a/2, 7] by solving the
linear equation (32).

Moreover, it follows from (31) that

q¢"(x) = 2hq'(x) = —2R1(2) + Q' (v + a/2) — Q5(x — a/2) + Q5(x — a/2)
—2hQ1(x + a/2) + 2hQa(x — a/2) + 2hQ3(x — a/2), x € [3a/2, 7 — a/2].
(33)

Since ¢(z) is known for = € [a, 3a/2]U [r — a/2, 7], then equation (33) is linear
with respect to ¢(x), and the solution exists. In particular, if a € [27/5,7/2),
then the right-hand side in (33) is the known function. Solving linear equation
(33), we can find ¢(z) for « € [3a/2, ™ — a/2]. Thus, the solution of the inverse
problem can be found by the following algorithm.

Algorithm 1. Let the spectra {\n;}n>0, 7 = 0,1, be given.
1) Construct the characteristic functions Aj(N), 7 =0,1 by (15).
2) Calculate A and h using (16)-(17).
3) Find the functions d;(p), j = 0,1, with the help of (10) and (11).
4) Calculate By, By and Ay, using (22)—(25).
5) Find q(m) = (B1 + Bo)/2 and q(a) = (B1 — By)/2.
6) Construct the functions dj(p), j = 0,1, by (24).
7) Calculate wo, w1, by and by, using (27)-(28).
8) Find g(a) = (bo + b1)/2 and g(m) = (bo — b1)/2.
9) Calculate ¢'(a) = —g(a) + 2hq(a) and ¢'(7) = —g(7) + 2hq(7).
10) Construct the functions D;j(p), j = 0,1, by (29).
11) Find the function R(§) using (30).
12) Calculate the potential q(z) for x € [a,3a/2]U[r —a/2, ] by solving equa-
tion (32).
13) Calculate the potential q(x) for x € [3a/2,m — a/2] using (33) and knowl-
edge q(x) for x € [a,3a/2] U [r — a/2,7].
We note that for a > 27/5 the uniqueness of the solution of the inverse
problem is obvious; for a < 27/5 one needs a separate investigation.

Remark. Similar results are valid for the boundary value problems P;, j = 1,2,
generated by Eq. (1) and the Robin boundary conditions

y'(0) = hy(0) =0, y'(7) + Hjy(r) =0,
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where H; are complex numbers, and Hy # H. The eigenvalues {jin;}n>0 of
P; coincide with the zeros of the entire functions

9;(A) = ¢'(m, A) + Hjep(m, N). (34)

The inverse problem here is formulated as follows: Given the spectra {Nnj}nZO,
Jj = 1,2, construct the potential ¢(x) and the coefficients h, Hy, Hy. It follows
from (34) that

0;(A) = A1(A) + H;j Ag(N). (35)

Using (35) one can reduce this inverse problem to the inverse problem for the
boundary value problem L;, which was solved above.
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