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On Zeros of Some Entire Functions
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Abstract. Let

A(α)
q (a; z) =

∞∑

k=0

(a; q)kqαk2
zk

(q; q)k
,

where α > 0, 0 < q < 1. In a paper of Ruiming Zhang, he asked under

what conditions the zeros of the entire function A
(α)
q (a; z) are all real

and established some results on the zeros of A
(α)
q (a; z) which present a

partial answer to that question. In the present paper, we will set up some

results on certain entire functions which includes that A
(α)
q (ql; z), l ≥ 2

has only infinitely many negative zeros that gives a partial answer to
Zhang’s question. In addition, we establish some results on zeros of certain
entire functions involving the Rogers–Szegő polynomials and the Stieltjes–
Wigert polynomials.

Mathematics Subject Classification. 30C15, 33D15, 30C10.

Keywords. zeros of entire functions, Pólya frequence sequence, Vitali’s
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1. Introduction

Recall that entire functions are functions that are holomorphic in the whole
complex plane. Given an entire function f(z) =

∑∞
k=0 akzk, then the order of

f(z) can be computed by [5, (2.2.3)]

ρ(f) = lim sup
k→∞

k log k

− log ak
. (1.1)

Following [11], we define the entire function A
(α)
q (a; z) by

A(α)
q (a; z) =

∞∑

k=0

(a; q)kqαk2
zk

(q; q)k
,
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where α > 0, 0 < q < 1 and

(a; q)0 = 1, (a; q)k =
k−1∏

j=0

(1 − aqj) (k ≥ 1).

It is easily seen that

A
( 1
2 )

q (q−n; z) =
∞∑

k=0

(q−n; q)kq
k2
2 zk

(q; q)k
= (q; q)nSn(zq

1
2−n; q),

A(1)
q (0; z) =

∞∑

k=0

qk2
zk

(q; q)k
= Aq(−z),

where Aq(z) and Sn(z; q) are the Ramanujan entire function and the Stieltjes–
Wigert polynomial respectively [10]. So A

(α)
q (a; z) generalizes both Aq(z) and

Sn(z; q). It is well-known that both of them have only real positive zeros.
Therefore, Zhang [18] asked under what conditions the zeros of the entire func-
tion A

(α)
q (a; z) are all real. In that paper, Zhang proved that A

(α)
q (−a; z) (a ≥

0, α > 0, 0 < q < 1) has only infinitely many negative zeros and A
(α)
q (q−n; z)

(n ∈ N, α ≥ 0, 0 < q < 1) has only finitely many positive zeros, which gave
a partial answer to that question. In addition, Zhang obtained a result on
the negativity of zeros of an entire function including many well-known entire
functions.

Our motivation for the present work emanates from Zhang’s question.
In this paper, we will establish the following results which present a partial
answer to Zhang’s question.

Theorem 1.1. Let α > 0 and 0 < q < 1. Then

(i) if l ≥ 2 is an integer, then A
(α)
q (ql; z) has only infinitely many real zeros

and all of them are negative;
(ii) if m and n are nonnegative integers such that at least one of them is

positive, {lj}m
j=1 are integers not less than 2, 0 < qj < 1 (1 ≤ j ≤ m)

and νr > −1, 0 < qr < 1 (1 ≤ r ≤ n), then the function
∞∑

k=0

m∏

j=1

(qlj
j ; qj)k

(qj ; qj)k

qαk2

∏n
r=1(qr, q

νr+1
r ; qr)k

zk

has only infinitely many real zeros and all of them are negative;
(iii) if m ≥ 0 and n ≥ 1 are integers, {lj}m

j=1 are integers not less than 2 and
νr ≥ 0 (1 ≤ r ≤ m), then the function

∞∑

k=0

∏m
j=1(lj)k

(k!)m+n
∏n

r=1(νr + 1)k
zk

where (a)k is defined by (a)0 = 1, (a)k = a(a + 1) · · · (a + k − 1) (k ≥ 1),
has only infinitely many real zeros and all of them are negative.
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It should be mentioned that in [13, Theorem 4] Katkova et al. proved
that there exists a constant q∞ (≈ 0.556415) such that the function A

(α)
q (q; z)

has only real zeros if and only if q ≤ q∞. So the similar result for A
(α)
q (ql; z)

does not hold for l = 1.
The Gaussian binomial coefficients are q-analogs of the binomial coeffi-

cients, which are given by
[
n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k
.

We now introduce the definition of the Rogers–Szegő polynomials which were
first investigated by Rogers [15] and then by Szegő [16]. The Rogers–Szegő
polynomials are defined by

hn(x, y|q) =
n∑

k=0

[
n

k

]

q

xkyn−k.

If q is replaced by q−1 in the Rogers–Szegő polynomials, then we obtain the
Stieltjes–Wigert polynomials (see [16]):

gn(x, y|q) =
n∑

k=0

[
n

k

]

q

qk(k−n)xkyn−k.

From [18, Theorem 5], we know that hn(x|q) has only negative zeros for q ≥ 1
and gn(x|q) has only negative zeros for 0 < q ≤ 1, where hn(x|q) and gn(x|, q)
are defined by

hn(x|q) := hn(x, 1|q) =
n∑

k=0

[
n

k

]

q

xk

and

gn(x|q) := gn(x, 1|q) =
n∑

k=0

[
n

k

]

q

qk(k−n)xk.

Motivated by Zhang’s work, we will establish the following results on
zeros of certain entire functions involving the Rogers–Szegő polynomials and
the Stieltjes–Wigert polynomials.

Theorem 1.2. Let 0 < q < 1. If α is positive number and 0 < x, y < 1, then
∞∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn

has infinitely many real zeros and all of them are negative; if −1 < x, y < 0
and α ≥ 1

2 , then
∞∑

n=0

gn(x, y|q)
(q; q)n

qαn2
zn

has infinitely many real zeros and all of them are positive.
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Remark 1.1. (i) Applying the method which is used in the proof of Theo-
rem 1.2, we can deduce the following results: let 0 < q < 1; if α is positive
number and 0 < x < 1, then

∞∑

n=0

hn(x|q)
(q; q)n

qαn2
zn

has infinitely many real zeros and all of them are negative; if −1 < x < 0
and α ≥ 1

2 , then
∞∑

n=0

g−
n (x|q)
(q; q)n

qαn2
zn

has infinitely many real zeros and all of them are positive, where g−
n (x|q)

= gn(x,−1|q). But we need the following results:
∣∣∣∣
hn(x|q)
(q; q)n

∣∣∣∣ ≤ 1
(q, x; q)∞

,

∣∣∣∣
g−

n (x|q)
(q; q)n

∣∣∣∣ ≤ 1
(q, |x|; q)∞

which can be derived easily.
(ii) We can establish certain results on the Rogers–Szegő polynomials and the

Stieltjes–Wigert polynomials by using similar method. These are analo-
gous to (ii) and (iii) of Theorem 1.1

We also set up the following result which is analogous to
[18, Theorem 7].

Theorem 1.3. Suppose r and s are two positive integers, aj(1 ≤ j ≤ r) and
bk(1 ≤ k ≤ s) are r+s positive numbers and α > 0, 0 < q < 2− 1

α . Then there
exists K0 ∈ Z>0 such that for all integers K ≥ K0, the function

∞∑

k=K

(a1)k(a2)k · · · (ar)k

(b1)k(b2)k · · · (bs)k
qαk2

zk

has only infinitely many real zeros and all of them are negative.

In the next section, we will provide some lemmas which are crucial in
the proof of Theorems 1.1 and 1.2 . Section 3 is devoted to our proof of
Theorems 1.1–1.3.

2. Preliminaries

In order to prove Theorems 1.1 and 1.2, we need some auxiliary results. We
first recall from [7] that a real entire function f(z) is of Laguerre-Pólya class
if

f(z) = czme−αz2+βz
∞∏

k=1

(
1 +

z

zk

)
e−z/zk ,

where c, β, zk ∈ R, α ≥ 0,m ∈ Z≥0 and
∑∞

k=1 z−2
k < +∞.
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Let us recall that a real sequence {an}∞
n=0 is called a Pólya frequence

(or PF) sequence if the infinite matrix (aj−i)∞
i,j=0 is totally positive, i.e. all

its minors are nonnegative, where we use the notation ak = 0 if k < 0. This
concept can be extended to finite sequences in the obvious way by completing
the sequence with zero terms.

Lemma 2.1 (see [2]).The sequence {ak}∞
k=0 is a PF sequence if and only if the

convergent series
∑∞

k=0 akzk satisfies

∞∑

k=0

akzk = czmeγz
∞∏

k=1

1 + αkz

1 − βkz
,

where c ≥ 0, γ ≥ 0, αk ≥ 0, βk ≥ 0,m ∈ Z
+ and

∑∞
k=1(αk + βk) < +∞.

It was proved in [6] that

∞∑

k=0

qk2

k!
xk

is a real entire function and in Laguerre-Pólya class for |q| < 1 and x ∈ R. Then

by [7, Theorem C], we obtain that { qk2

k! }∞
k=0 is a PF sequence for 0 < q < 1.

Lemma 2.2 (see [8, p. 1047] and [14]). Let {ak}m
k=0 and {bk}n

k=0 be sequences
of nonnegative numbers. Then

(i) the sequence {ak}m
k=0 is a a PF sequence if and only if the polynomial∑m

k=0 akzk has only nonpositive zeros;
(ii) if the sequences {ak}m

k=0 and {bk}n
k=0 are PF sequences, then so is the

sequence {ak · bk}∞
k=0;

(iii) if the sequences {ak}m
k=0 and {bk}n

k=0 are PF sequences, then so is the
sequence {k! · ak · bk}∞

k=0.

We also need the following results, namely, Vitali’s theorem [17] and
Hurwitz’s theorm [1, §5, Theorem 2].

Lemma 2.3 (Vitali’s theorem). Let {fn(z)} be a sequence of functions analytic
in a domain D and assume that fn(z) → f(z) point-wise in D. Then fn(z) →
f(z) uniformly in any subdomain bounded by a contour C, provided that C is
contained in D.

Lemma 2.4 (Hurwitz’s theorm). If the functions {fn(z)} are nonzero and an-
alytic in a region Ω, and fn(z) → f(z) uniformly on every compact subset of
Ω, then f(z) either identically zero or never equal to zero in Ω.

We conclude this section with following result which is very important in
the proof of Theorem 1.2.
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Lemma 2.5. Let x, y be two real numbers and α > 0, 0 < q < 1. Then the
functions

∞∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn and

∞∑

n=0

gn(x, y|q)
(q; q)n

qαn2
zn

are all entire functions.

Proof. We first consider the function
∑∞

n=0
hn(x,y|q)
(q;q)n

qαn2
zn. For |x| ≤ 1, |y| ≤

1, by [9, (1.3.15)], we have

|hn(x, y|q)| ≤
n∑

k=0

[
n

k

]

q

|x|k|y|n−k ≤
n∑

k=0

[
n

k

]

q

≤
n∑

k=0

(1 − qn)(1 − qn−1) · · · (1 − qn−k+1)
(q; q)k

qk−n

≤ q−n
n∑

k=0

qk

(q; q)k
≤ q−n

∞∑

k=0

qk

(q; q)k

=
q−n

(q; q)∞
.

By the same arguments, we get for |x| > 1, |y| ≤ 1,

|hn(x, y|q)| ≤
n∑

k=0

[
n

k

]

q

|y|k|x|n−k = |x|n
n∑

k=0

[
n

k

]

q

|y|k|x|−k

≤ |x|n
n∑

k=0

[
n

k

]

q

≤ (|x|/q)n

(q; q)∞
;

for |x| ≤ 1, |y| > 1,

|hn(x, y|q)| ≤ |y|n
n∑

k=0

[
n

k

]

q

|x|k|y|−k

≤ |y|n
n∑

k=0

[
n

k

]

q

≤ (|y|/q)n

(q; q)∞
;

for |x| > 1, |y| > 1,

|hn(x, y|q)| = |xy|n
n∑

k=0

[
n

k

]

q

|x|k−n|y|−k

≤ |xy|n
n∑

k=0

[
n

k

]

q

≤ (|xy|/q)n

(q; q)∞
.

In any cases we obtain

|hn(x, y|q)| ≤ an

(q; q)∞
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where a is positive number which depends on x, y and q. Then
∣∣∣∣
hn(x, y|q)

(q; q)n
qαn2

∣∣∣∣ ≤ anqαn2

(q; q)2∞
,

so that

lim sup
n→∞

∣∣∣∣
hn(x, y|q)

(q; q)n
qαn2

∣∣∣∣

1
n

= 0,

which proves that
∞∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn

is an entire function. Similarly, we can deduce that
∞∑

n=0

gn(x, y|q)
(q; q)n

qαn2
zn

is also an entire function. This ends the proof of Lemma 2.5. �

3. Proof of Theorems 1.1–1.3

Proof of Theorem 1.1. We first prove (i). According to the q-binomial theorem
[3,9], we obtain that for all complex numbers x and q with |x| < 1 and |q| < 1,
there holds

∞∑

k=0

(a; q)k

(q; q)k
xk =

(ax; q)∞
(x; q)∞

. (3.1)

Setting a = ql, x = zq−l in (3.1) gives

∞∑

k=0

(ql; q)k

(q; q)k
q−lkzk =

(z; q)∞
(zq−l; q)∞

=
1

(zq−l; q)l
.

Using Lemma 2.1, we get the sequence
{

(ql; q)k

(q; q)k
q−lk

}n

k=0

is a PF sequence. It follows from (i) of Lemma 2.2 that {ak}n
k=0 is a a PF

sequence if and only if {ck ·ak}n
k=0 is also a PF sequence for any c > 0. Hence,
{

(ql; q)k

(q; q)k

}n

k=0
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is a PF sequence. So from the fact
{

qαk2

k!

}n

k=0

is a PF sequence and (iii) of

Lemma 2.2, we arrive at the sequence
{

(ql; q)kqαk2

(q; q)k

}n

k=0

is also a PF sequence, which, by (i) of Lemma 2.2, implies that the polynomial
n∑

k=0

(ql; q)kqαk2

(q; q)k
zk

has only nonpositive zeros. Here and below, set Ω = C−{x+yi|x ∈ (−∞, 0], y =
0}. Then

n∑

k=0

(ql; q)kqαk2

(q; q)k
zk → Aα

q (ql; z)

point-wise in Ω. It is easily seen that for 0 < q < 1, α ≥ 0 and each n ∈ N, z ∈
C,

∣∣∣∣
n∑

k=0

(ql; q)kqαk2

(q; q)k
zk

∣∣∣∣ ≤
∞∑

k=0

(ql; q)kqαk2

(q; q)k
|z|k < +∞.

We apply Lemma 2.3 to know that
n∑

k=0

(ql; q)kqαk2

(q; q)k
zk → Aα

q (ql; z)

uniformly on every compact subset of Ω and then apply Lemma 2.4 to see
that Aα

q (ql; z) �= 0 in Ω which means that Aα
q (ql; z) has no zeros outside the

set {x + yi|x ∈ (−∞, 0], y = 0}. According to [10, Lemma 14.1.4], we have
Aα

q (ql; z) has infinitely many zeros. Therefore, Aα
q (ql; z) has only infinitely

many real zeros and all of them are negative, which proves (i).
We next show (ii). According to [18], we know that the sequence

{
1

(q, qν+1; q)k

}N

k=0

is a PF sequence for ν > −1, 0 < q < 1, which means that
{

1
(qr, q

νr+1
r ; qr)k

}N

k=0

are all PF sequences for 1 ≤ r ≤ n.
Since
{

(qlj
j ; qj)k

(qj ; qj)k

}N

k=0

(1 ≤ j ≤ m),
{

1
(qr, q

νr+1
r ; qr)k

}N

k=0

(1 ≤ r ≤ n)
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and
{

qαk2

k!

}n

k=0

are all PF sequences, we then apply (ii) and (iii) of Lemma 2.2

to find that
⎧
⎨

⎩

m∏

j=1

(qlj
j ; qj)k

(qj ; qj)k

qαk2

∏n
r=1(qr, q

νr+1
r ; qr)k

⎫
⎬

⎭

N

k=0

is also a PF sequence, which, by (i) of Lemma 2.2, implies that
N∑

k=0

m∏

j=1

(qlj
j ; qj)k

(qj ; qj)k

qαk2
zk

∏n
r=1(qr, q

νr+1
r ; qr)k

has only negative zeros. For each positive integer N and z ∈ C, we have
∣∣∣∣∣∣

N∑

k=0

m∏

j=1

(qlj
j ; qj)k

(qj ; qj)k

qαk2
zk

∏n
r=1(qr, q

νr+1
r ; qr)k

∣∣∣∣∣∣

≤
∞∑

k=0

m∏

j=1

(qlj
j ; qj)k

(qj ; qj)k

qαk2 |z|k
∏n

r=1(qr, q
νr+1
r ; qr)k

< +∞.

Similarly, we apply Lemmas 2.3 and 2.4 to establish that the function
∞∑

k=0

m∏

j=1

(qlj
j ; qj)k

(qj ; qj)k

qαk2
zk

∏n
r=1(qr, q

νr+1
r ; qr)k

has no zeros outside the set {x+yi|x ∈ (−∞, 0], y = 0}. In view of [10, Lemma
14.1.4], this function has infinitely many zeros. Then (ii) is proved.

Finally, we give a proof of (iii). Let qj = qr = q and α = n + m/2. Using
the Hôpital’s rule, we deduce that

lim
q→1

(qlj ; q)k

(q; q)k
=

(lj)k

k!
, lim

q→1

(1 − q)2k

(q, qνr+1; q)k
=

1
k!(νr + 1)k

.

Then

lim
q→1

(1 − q)2kn
∏m

j=1(q
lj ; q)kq(n+m/2)k2 · zk

(q; q)m+n
k

∏n
r=1(qνr+1; q)k

=

∏m
j=1(lj)k · zk

(k!)m+n
∏n

r=1(νr + 1)k
.

It is easy to see from

lql−1 ≤ 1 − ql

1 − q
= 1 + q + q2 + · · · + ql−1 ≤ l

that

l!q(
l
2) ≤ (q; q)l

(1 − q)l
≤ l!.

Then

1
l!

≤ (1 − q)l

(q; q)l
≤ q−(l

2)

l!
≤ q−l2/2

l!
.
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Combining this and the fact that (1−q)l

(qb;q)l
≤ (1−q)l

(q;q)l
for b ≥ 1 gives

∣∣∣∣∣
(1 − q)2kn

∏m
j=1(q

lj ; q)kqαk2 · zk

(q; q)m+n
k

∏n
r=1(qνr+1; q)k

∣∣∣∣∣ ≤ |z|k
k!m+2n

This, by Lemma 2.3, shows that

lim
q→1

∞∑

k=0

(1 − q)2kn
∏m

j=1(q
lj ; q)kq(n+m/2)k2 · zk

(q; q)m+n
k

∏n
r=1(qνr+1; q)k

=
∞∑

k=0

∏m
j=1(lj)k · zk

(k!)m+n
∏n

r=1(νr + 1)k
.

converges uniformly in any compact subset of C. It follows from Lemma 2.4
that the function

∞∑

k=0

∏m
j=1(lj)k · zk

(k!)m+n
∏n

r=1(νr + 1)k

has no zeros outside the set {x + yi|x ∈ (−∞, 0], y = 0}.
Set

ak =

∏m
j=1(lj)k

(k!)m+n
∏n

r=1(νr + 1)k
.

It is easily seen from the Stirling’s formula [4] that

lim
k→∞

− log ak

k log k
= 2n

which, by (1.1), means that

ρ

( ∞∑

k=0

∏m
j=1(lj)k · zk

(k!)m+n
∏n

r=1(νr + 1)k

)
=

1
2n

≤ 1
2
.

Hence, by [10, Theorem 1.2.5], the function
∞∑

k=0

∏m
j=1(lj)k · zk

(k!)m+n
∏n

r=1(νr + 1)k

has infinitely many zeros. Then this function has only infinitely many real
zeros and all of them are negative, which proves (iii). This completes the proof
of Theorem 1.1. �

Proof of Theorem 1.2. We first consider the function
∑∞

n=0
hn(x,y|q)
(q;q)n

qαn2
zn,

where 0 < x, y < 1 and α > 0. From [12, Theorem 3.1, (3.1)], we know that
∞∑

n=0

hn(x, y|q)
(q; q)n

tn =
1

(xt, yt; q)∞

for max{|xt|, |yt|} < 1. Then, by Lemma 2.1, we have the sequence
{

hn(x, y|q)
(q; q)n

}∞

n=0
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is a PF sequence. It follows from the fact that { qk2

k! }∞
k=0 is a PF sequence and

(iii) in Lemma 2.2 that
{

hn(x, y|q)
(q; q)n

qαn2
}N

n=0

is also a PF sequence. So, by (i) of Lemma 2.2, we see that
N∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn

has only nonpositive zeros. We know that
N∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn →

∞∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn

point-wise in Ω. It is easy to see that for 0 < q < 1, α > 0 and each N ∈
N, z ∈ C,

∣∣∣∣∣

∞∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn

∣∣∣∣∣ ≤
∞∑

n=0

hn(x, y|q)
(q; q)n

qαn2 |z|n < +∞.

Applying Lemma 2.3, we find that
N∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn →

∞∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn

uniformly on every compact subset of Ω and then applying Lemma 2.4, we
deduce that the function

∞∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn �= 0

in Ω which means that
∞∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn

has no zeros outside the set {x + yi|x ∈ (−∞, 0], y = 0}.
We use [9, (1.3.15)] to get

0 ≤ hn(x, y|q)
(q; q)n

=
n∑

k=0

xk

(q; q)k

yn−k

(q; q)n−k

≤
∞∑

k=0

xk

(q; q)k

∞∑

k=0

yk

(q; q)k

=
1

(x, y; q)∞
.
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Then, by Lemma 2.5 and [10, Lemma 14.1.4], we attain that the function
∞∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn

has infinitely many zeros. Therefore, the function
∞∑

n=0

hn(x, y|q)
(q; q)n

qαn2
zn

has infinitely many real zeros and all of them are negative.
We now investigate the function

∑∞
n=0

gn(x,y|q)
(q;q)n

qαn2
zn, where −1 < x, y <

0 and α ≥ 1
2 . According to [12, Theorem 3.1, (3.2)], we have

∞∑

n=0

(−1)n gn(x, y|q)q(n
2)

(q; q)n
tn = (x, y; q)∞,

which, by Lemma 2.1, implies that
{

(−1)n gn(x, y|q)q(n
2)

(q; q)n

}∞

n=0

is a PF sequence, namely,
{

(−1)n gn(x, y|q)q n2
2

(q; q)n

}∞

n=0

is a PF sequence. So, by the fact that { qk2

k! }∞
k=0 is a PF sequence and (iii) in

Lemma 2.2,
{

(−1)n gn(x, y|q)qαn2

(q; q)n

}N

n=0

is a PF sequence, which, by (i) of Lemma 2.2, means that

N∑

n=0

(−1)n gn(x, y|q)qαn2

(q; q)n
zn

has only nonpositive zeros. It is obvious that
N∑

n=0

(−1)n gn(x, y|q)qαn2

(q; q)n
zn →

∞∑

n=0

(−1)n gn(x, y|q)qαn2

(q; q)n
zn

point-wise in Ω. For 0 < q < 1, α > 0 and each N ∈ N, z ∈ C,
∣∣∣∣∣

∞∑

n=0

(−1)n gn(x, y|q)qαn2

(q; q)n
zn

∣∣∣∣∣ ≤
∞∑

n=0

(−1)n gn(x, y|q)qαn2

(q; q)n
|z|n < +∞.
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Then, by Lemma 2.3,
N∑

n=0

(−1)n gn(x, y|q)qαn2

(q; q)n
zn →

∞∑

n=0

(−1)n gn(x, y|q)qαn2

(q; q)n
zn

uniformly on every compact subset of Ω. We apply Lemma 2.4 to derive that
the function

∞∑

n=0

(−1)n gn(x, y|q)qαn2

(q; q)n
zn �= 0

in Ω. This shows that
∞∑

n=0

(−1)n gn(x, y|q)qαn2

(q; q)n
zn

has no zeros outside the set {x + yi|x ∈ (−∞, 0], y = 0}.
It is clear that

∣∣∣∣(−1)n gn(x, y|q)
(q; q)n

∣∣∣∣ ≤
n∑

k=0

|x|k
(q; q)k

|y|n−k

(q; q)n−k

≤
∞∑

k=0

|x|k
(q; q)k

∞∑

k=0

|y|k
(q; q)k

=
1

(|x|, |y|; q)∞
.

By Lemma 2.5 and [10, Lemma 14.1.4], the function
∞∑

n=0

(−1)n gn(x, y|q)qαn2

(q; q)n
zn

has infinitely many zeros. Hence,
∞∑

n=0

(−1)n gn(x, y|q)qαn2

(q; q)n
zn

has infinitely many real zeros and all of them are negative, namely,
∞∑

n=0

gn(x, y|q)qαn2

(q; q)n
zn

has infinitely many real zeros and all of them are positive. This finishes the
proof of Theorem 1.2. �

Proof of Theorem 1.3. For 0 < q < 1

2
1
α

. Put

Ak =
(a1)k(a2)k · · · (ar)k

(b1)k(b2)k · · · (bs)k
qαk2

.
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Then
A2

k−1

AkAk−2
=

r∏

i=1

ai + k − 2
ai + k − 1

s∏

j=1

bi + k − 1
bi + k − 2

q−2α

which means that

lim
k→∞

A2
k−1

AkAk−2
= q−2α > 4.

So there exists a positive integer K0 such that

A2
k−1

AkAk−2
> 4

for k ≥ K0. It follows from [7, Theorem B] that
∞∑

k=K

(a1)k(a2)k · · · (ar)k

(b1)k(b2)k · · · (bs)k
qαk2

zk

has only negative zeros for any K ≥ K0.
On the other hand, by the Stirling’s formula and (1.1), we have

ρ

( ∞∑

k=K

(a1)k(a2)k · · · (ar)k

(b1)k(b2)k · · · (bs)k
qαk2

zk

)
= 0,

which, by [10, Theorem 1.2.5], implies that the function
∞∑

k=K

(a1)k(a2)k · · · (ar)k

(b1)k(b2)k · · · (bs)k
qαk2

zk

has infinitely many zeros. Hence, this function has only infinitely many real
zeros and all of them are negative. This concludes the proof of Theorem 1.3. �
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