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Abstract. The topic of this paper are non-self-adjoint second-order differ-
ential operators with a constant delay, which is less than half of the length
of the interval. We consider the case when a delay is from 7 € [%’T, %),
and the potential is a real-valued function which satisfy ¢ € L?[0, 7]. The
inverse spectral problem of recovering the potential from the spectra of
two boundary value problems with Robin boundary conditions has been
studied. We have proved that the delay and the potential are uniquely
determined by two spectra of boundary spectral problem, one with bound-
ary conditions y'(0) — hy(0) = 0, y'(7) + Hiy(w) = 0 and the other with
boundary conditions y'(0) — hy(0) = 0, y'(7) + Hay(w) = 0.
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1. Introduction

The inverse problems in the spectral theory of operators, especially differential
operators, have been studied since the 1930s [1]. More details on this topic can
be found in the monograph [2] and its references. A separate chapter of this
study deals with the inverse tasks for the boundary problems of the generated
equations with a delay. The main results in the inverse spectral problems for
classical Sturm-Liouville operators can be found in the monograph [2]. Inverse
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spectral problems for classical Sturm—Liouville operators with boundary con-
ditions depending on the spectral parameter study in [3]. Some of the main
methods in the inverse problem theory for classical Sturm—Liouville operators,
such as transformation operator method and method of spectral mappings,
turned out to be unsuitable for operators with delays. Therefore other effec-
tive methods have been created, like contour integral method and method of
characteristic function. The delay can take different forms, for example in [5]
and [6] authors study inverse spectral problem for differential operator with
an integral delay. In this paper we study the problem with constant delay. The
papers [4,7-10] present the latest results in this field. For example, in [8] we
have generalisation of the result from [1] for the equation with constant delay.
In [9], for 7 = 7§ from two subspectrum authors find necessary and sufficient
conditions for the solvability of the inverse problem in terms of asymptotic.
In [10] it was proven that potential is uniquely determined by two spectrum
when 7 € [§,7) with Cauchy boundary condition.

In this paper we study two boundary spectral problems generated by
differential equations with constant delay and Robin boundary conditions
Dk, k= ].7 2:

—y'(@) + q(x)y(z — 1) = Ay(z),z € (0,7) (1)
y'(0) — hy(0) =0 (2)
yl(ﬂ’)"’_Hky(ﬂ') =0,k=1,2 (3)

where X is the spectral parameter, potential g(z) is a real-valued function,
which satisfy conditions ¢ € L?(0,7),q(x) = 0,2 € [0,7) and h, Hy, Hy €
R\{0}. )

We assume that 2° < 7 < 7 and integral I = [, q(t) [~ q(s)dsdt is
known.

It is known that the spectrum of Dy, D5 is countable. We will prove that
the delay 7 and the potential ¢ are uniquely determined from the spectrum
of Dy and D,. More precisely, let (A, 1)52; be the eigenvalues of Dy and
(An.2)2% be the eigenvalues of Dy. The inverse problem is to determine g(z),7
and parameters h, Hi, Hy from (A,1)5%; and (A, 2)02.

The inverse problem: Given (A, )22,k = 1,2 determine potential g,
delay 7, and parameters h, Hy, Hy if 2 < 7 < T and integral I = [; q(t) thfT
q(s)dsdt is known.

In Sect. 2, we study the spectral properties of the boundary value prob-
lems Dy, k = 1,2 and we introduce transformation of characteristic functions
which is needed for constructing the integral equation with the potential. In
Sect. 3, we prove that a delay and parameters h, Hy, Ho are uniquely deter-
mined from the spectra. Then we prove that a potential is uniquely determined
from Volterra linear integral equation whose kernel is equal to one.
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2. Spectral Properties and Basics Transformation

One can easily show that if y is the solution of differential equation (1) under
the initial conditions (2) and ¢(x) = 0,2 € [0,7), then the following integral
equation holds:

h 1/
y(z,2) = cosxz + S sinxz + 2 / q)y(t — 71, 2)sinz(z — t)dt (4)

T

where \ = 22. We will solve Eq. (4) by the method of steps.

For x € [27, 7] the solution is:

h . 1 h
y(x, z) = cos zx + S sinzz + ;bsc(x,z) + ;bsz (z,2) + Z—Qbszc(w, 2)
h
+;b53 (z,2) (5)

where we use notation:

x

bse(x,2) = /q(t) sin z(x — t) cos z(t — 7)dt, bs. (7, 2) = bse(2),

T
x

bez(z,2) = /q(t) sin z(x — t) sin z(t — 7)dt, bgz2 (7, 2) = bg2(2),
" (6)
beze(z,2) = /q(t) sin z(x — €)bse(t — T, 2)dt, b2 (7, 2) = by2.(2),

2T
T

bes(z,2) = /q(t) sin z(x — t)bg2 (t — 7,y)dt, bes (m, 2) = bgs(2).

27

Let Ap(\) = Fr(z) = ¢/ (7m) + Hpy(mw), k = 1,2. Using (5) for k € {1,2} we
have:

hH h
Ar(N) = Fr(z) = (—z + zk> sinmz + (h+ Hy) cosmz + b2 (2) + ;bcs(z)

Hy, hHy 1 h Hy, 7
=+ 7()56(2) + 7[)52 (Z) + ;bcsc(z) + ;bcsz (Z) + ZTbSQC(Z) ( )

hHj,
+ 7[)53 (Z)
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where we use notation:
be2(x,2) = /q(t) cos z(x —t) cos z(t — 7)dt, b2 (m, z) = be2(2),

T

bes(x, 2) = /q(t) cosz(x —t)sinz(t — 7)dt, bes(m, 2) = bes(2),
" (8)
bese(x, z) = /q(t) cos z(x — )bsc(t — 7, 2)dt, bese (T, 2) = bese(2),

€T

bes? (l’, Z) = /Q(t) cos Z(SC - t)bSQ (t -7 y)dta bes? (7T7 Z) = bes2 (Z)
27
Obviously, by using (3) the set of zeros of functions Ay () is equivalent to
the spectrum of boundary spectral problems Dy, respectively ([8]). Therefore,
the functions Ag(\),k = 1,2 are the characteristic functions for Dy, k = 1,2,
respectively. Now we define new function,

-1 o

It is clear this function orders the potential, also we define functions:

x—d 1t [a)ds—a) [ a@as— [ as—nats)ds: t€ lrm—r
T t+7 t+7
0; ie [O,T)U(7r7r— T, 7]
v — 1+ [aois—ao) [ae)ds+ [ as—nats)ds telrm—1]
T t4+1 t+1
0; t€[0,7)U (7 — 7,7

t

(10)

Throughout the paper we use the notation:

I = [ q(t)dt, Io = [ q(t) | q(s)dsdt,

o fuo |
ac(z) = / q(t)cosz(m — 2t)dt, a5(z) = q(t) sin z(m — 2t)dt,
ko(z) = / K (1) cos 2(m — 20)dt, ka(2) = | K(£)sin2(x — 20)dt,



Vol. 74 (2019) Inverse Spectral Problems

Page 5 of 13 45

ue(z) = / U(t) cos z(m — 2t)dt, us(z) = / U(t)sinz(m — 2t)dt. (11)

T

Now we transform the products of trigonometric functions from (6) and (8)
into sums/differences. It is easy to show that the characteristic functions have
the form:

Ap(N) = Fi(2)

H

<—z + zk) sinwz + (h + Hy) cosmz
1

5( o(2) + Iy cosz(m — 7))

h .
—|—Z(—as(z) + Lisinz(m—7)

H hH
+27k( s(2)+ I1sinz(r — 7)) + 5 2k(ac( )— Iy cosz(m — 7))

1 h
+4—(Ig sin z(m — 27) — us(2)) — 2 (Izcos z(m —27) + k.(2))

hHj,
2 (Ig cos z(m — 27) — u.(2)) — s (Ig sinz(m — 27) + ks(2)).  (12)
The further consideration of the inverse problem requires the transformation
of the characteristic functions (12). Then, integration by parts in integrals (11)
gives:

Ar(N) = Fi(z) = ( z+ hH")sinﬂ'z—l—(h—i—Hk)COSﬂ'z—l— 1 (N(z)—&—
—h (@D () + L@ D (=) = 4 (wi(e) + Deur(2)) + b (K (2) + s

+121 Cosz(ﬂ77)+%hsinz(7r77)+i (1,

hH),

5o 2 sin z(m — 2T)>
+ (2—}12 sin z(m — 27) — 2&,

M1y cos 2(m — 2r) / K (1),

(13)
where:
TE it
GM(z) = / / (s)ds cos z(m — 2t)dt; gz P (2) = / q(s)dssin z(m — 2t)dt,
772—7‘ 215 72‘ t ’
uk(z) = / / (s)dscos z(m — 2t)dt; u’(z) =

\
T

U(s)dssin z(m — 2t)dt,

T—T t

T—T t
ki*(z) = / /K*(s)dscosz(w—2t)dt;k;‘*(z)

- / /K*(s)dssinz(w—%)dt,

K*(t) = {fK(u)dute[Tﬂ'—T}}

0;t € [0,7)U (7 — 7,7

(14)
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Let us calculate the integral f K*(t)dt. Firstly, we calculate the integral

T

7TK(t)dt ﬂ/_T t+T jq )dsdt
-{7@ﬂfq@wﬁ—/ﬂ/ﬂ&%M®%ﬁ
e ttr T ottT

Changing of variables or/and interchanging the order of integration, we obtain

m™T—T

Ktydt =1, — Iy — I = —I. (15)

Using:

m™T—T T™T—T u

/uK(u)du: /uq(u+7)/q(s)dsdu—

T u+T T

/ uq(s —w)q(s)dsdu = —711y
u+T
we have

/ K*(t)dt = —(m — 27) 1. (16)

Putting (16) into (13) we obtain:
Arp(N) = Fi(2) = ( z+ th) sinmz + (h+ Hy)cosmz + 3 (d}(z) + %&(z))
~h (@D (=) + 2@ D (=) - 4 (wi(e) + D)) + b (K () + ki (2))
+8 cosz(m—7) + %Il sin z(m — 7)+

# <1 = h(r —271) - hgk) sin z(m — 27) 4+ ME21D o5 5 (7 — 27),

(a7)
Characteristic functions Fj(z) given with (17) are entire functions. Functions
Fy(z) obviously has only one singular point z = 0. It is easy to see that
lim,_,o Fi(z) exists so z = 0 is an apparent singularity of the characteristic
functions Fj(z). We know that the spectrum of boundary spectral problems
Dy, is countable [2]. Now, if (A, x)0lg,k = 1,2 is the spectrum of boundary
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spectral problems Dy, using (17) by the well-known method ([2],Ch.1), we
obtain

A =02+ = (h+Hk)+I—cosnT+o()(n—>oo) (18)

Since the Ay, k = 1,2 are entire in ) in order 2 5, by Hadamard’s factorization
theorem ([8], Lemma 1), the characteristic functions are uniquely determined
up to a multiplicative constant by its zeros. The following lemma holds.

Lemma 1. The specification of spectrum (A, i)olg,k = 1,2 uniquely deter-
mines the characteristic functions A,k = 1,2 by the formula

Ak — A
2

oo

AN =70k =N []

n=1

ik=1,2 19
! (19)

3. Main Results

Lemma 2. If (A, )02,k = 1,2 are the spectra of boundary spectral problems
Dy, k = 1,2 respectively, then the delay T, integral Iy and sum h+ Hyp, k =1,2
are uniquely determined.

Proof. From (18) we have

—(n 2) — Ang2k + (n +2)?
n—co Ap_1 k= (n—=1)2 = App1p + (n+1)2

)

)

sinnT sin 27
= lim ——— =2cosT.
n—oo SINMTSIinT

. cosT(n—2)—cosT(n+2
im
n—oo cosT(n —1) —cost(n+1

Finally

T = arccos (1 lim Aok — (=2 = Ao+ (n+ 2)2>
2n=00 Apore = (R = 1) = Apjrge + (n+1)2 )

Because %’T < 7 < g, there are infinitely many m € N satisfying sin M #+
0, now we have:

I

Agik — (m+1)% = N\pi + m? == (cos(m+1)7 — cosm7)~+o(1), (m — )
7r

finally

77(/\m+1,k —(m+ 1)2 — Ak + mz)
(2m+1)T
2

Il = lim
m—oo —2sin 3 sin

and, for k =1,2

I
h+ Hp = lim T ()\n,k —n?— 1cosnT>
2 T

n—oo
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Lemma 3. If (A, )22,k = 1,2 are the spectra of boundary spectral problems
Dy, k = 1,2 respectively, then parameters h, Hp,k = 1,2 are uniquely deter-
mined by (Ank)olg, k =1,2.

Proof. Using (12) we have:

h(Hy — H
Fy(z2) — Fi(2) = % sinwz + (Hy — Hy) cosmz
Hy — Hy , h(Hs — Hy) ,
+%(a3(2) + L sinz(m— 7)) + %(ac(z) — I cosz(m — 7))
z z
Hy — Hy
—7(12 cos z(m — 27) — u.(2))
h(Hy — H .
_%(Ig sinz(m — 27) + ks(2)).
According to Lemma 1 this function is determined. Now we put z = 47”2“ ,m €
N in this function and we have
4 1 4 1
lim P (R (L) Ry
m—oo 2 2
dm+1 H> — Hy (dm+ 1)
— I =h(Hy, — H
( 2 ) Am 1 1T (He = H)

Using Lemma 2 parameters 7, Hy, — Hq, I; are determined, so we have

4m + 1 4dm + 1 dm +1
h=lm ——— (B (=) - F
nﬂnooz(Hng)<2( 2 ) 1( 2 )

HQ—H1 (4m+1)7>

. I
dmt+1 1T

Using Lemma 2 parameters H,, Hy are ordered. O

In order to recover the potential from the spectra, at the beginning we
introduce the functions

Alz) = ﬁ (HoFi(2)— Hy Fo(2))+22 sin 72— 2h cos m2— 1 cos 2(m—7),
(20)
B(z) = %(Fg(z) — Fy(2)) — 2hsinmz — 2z cosmz — I sin z(m — 7).
(21)
According to (17) we obtain
A(2) = Go(2) — 2hGe ') (2) — wi(2) + 20k} (2) + a(2), (22)
B(2) = @y(2) — 20, (2) — ui(2) + 2hk:" () + B(2), (23)
where
a(z) = 2 G o — )+ (= h(r— 20 sins(r — 20), (24)

z z
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By = 12

Obviously, functions «(z), 3(z) are known if I is known. If we put z = m,m €
N into (22) and (23) and denote

2

(m—27)cosz(m — 27) — % sin z(m — 27). (25)

2
Ao = —(=1)™(A(m) = a(m)); Bay = —(=1)""}(B(m) — B(m).  (26)
we have:
2 4 1 * 4 *%
Aoy = ;a’Qm - ;hzém,c = —Ugp e ﬂ_thm ¢’ (27)
2~ 4 2 4
Bom = —bam — 7h(j§71w s u;m s T hk;;kn s9 (28)
™ ’ ’ ™
where:
Ao = q(t) cos 2midt; by, = / q(t) sin 2mtdt
3 7
T—% t T—% t
?1{22’0 = / /’q“(s)ds cos2mtdt;(}é2’s = / /Zj(s)ds sin 2mitdt
bl 7 bl 7
T—T t T—T t
Udyy o = / /U(s)ds cos 2mtdt; u,, = / /U(s)ds sin 2mtdt

T—T t
Ko.c= / /K* cos 2mtdt; k3, (= / /K* (s)ds | sin 2midt.

Further, it can be easily verified that the following relations hold
ap = 111% a(z) =2k (m — 1) + Iy(1 — h(m — 27)) (7 — 27)
lim A(z) = do — 2hgoe ) — uf 4+ 2hk3E + ao
Bo = lim B(z) = 0; By = lim B(z) = 0.
z—0 z—0
Denote

Ay = % (hm Az )fao), (29)

z—0
then Ag = Zap hqO e — Uy .+ hkg. + ap. One can easily prove that
sequences As,, and B, belong to the space 12, hence by virtue of Riesz-
Fischers theorem, there exists a function f from L?[0, 7] such that

Ay X
f(t) = 20 + Z Asg,y, cos2mt + B, sin 2mt.

n=1
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Now multiplying (29) with 1/2, (27) with cos2mt and (28) with sin 2m¢t, and
then summing, we get the integral equation:
t t

q(t) — 2h / d(s)ds — / U(s)ds + 2h / K*(s)ds = f(t). (30)

z T

2
Substituting ¢ from (9) into (30), and then putting t+ 7 = x and s+ 7 = u,we
obtain

—Qh/ du—/ (u—f)du+2h/K*u—%)du:f(x). (31)

l\)‘w

Finally, we come to our main result.

Theorem 1. Let (A, k)50, k = 1,2 be the spectra of boundary spectral prob-
lems Di,k = 1,2 respectively, then potential q are uniquely determined by
Ang)pzo, kb = 1,2 if 2 < 7 < % and integral I, = [, q(t) f:_T q(s)dsdt is
known.

Proof. The potential ¢(x) satisfies integral equation (31), we will show unique-
ness of solution of this equation.

— For z € [T, 377] it is obvious that (31) is the Volterra linear integral

equation:
ala) = (@) + 20 [ a(wdu

This integral equation has a unique solution on [, 3] ([14]).

— For z € (m — %, 7], according to (10) and (14)
U(u—3)=K*(u—3)=0,ue (r— %, 7+ 3] and therefore (31) leads
to the integral equation

<>—2h/ /

T

T
2

T
2

W/ u—f du = f(z). (32)

Further, from (16) we have
JTTKE(t)dt =[5 * K* (u—3)du = —(7 — 27)I5. Also, in the same
2
way as in (15), we calculate [* " U(t)dt = Iy and [ " U(t)dt = [s. 2 U
2

(u— %)du:lg.
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Since [* q(u)du = I, — [ q(u)du integral equation (32) is Volterra linear
integral equation

o) = (@)~ 20 [ " g(u)du,

where f1(x) = f(x) +2hI; + Is + 2h(m — 27)I5 is a known function. This
integral equation has a unique solution on (7r -3, 7r] (see [14])

— For xz € (377, m— %] we get the integral equation

x

q(x) —2h jq(u)du - Zh/mq(u)du - /U(u - g)du

T 3T

o

el el
xT
+2h / K*(u— 2)du = f(x). (33)
3T
2
Let us consider the integral
x T u—7%
/U(u— 5) du:/q(u+§> / q(p)dpdu
3T 37 T
2 2
T
—/q (u - 5) q(p)dpdu
3T u_;'_%

One can easily show that arguments of the potential ¢ appearing in

this function, belong to the intervals [27,7] C [ — Z] and [r,7 — 7] C

[7', 377] Therefore, f 5 U (uf g) du is a known function. Further, ac-
2

cording to (5), (6) and (14), arguments of the potential ¢ in the func-
tion ffi K* (u - g) du are the same as arguments of the function f;
2 2
U (u — %) du. Consequently, ffi K (u — %) du is a known function, too.
2
Then (33) leads to the Volterra linear integral equation:
q(z) = fo(z) + Zh/q(u)du,

37
2

where: fo(z) = f(z) + 2hf7377 q(u)du + f;; Uu—7%)du — 2hf% K*

(u - %) du is a known function.
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3T

This integral equation has a unique solution on (7,7r — %] (see

[14]). The theorem is proved. O
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