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Abstract. When does an infinite metric graph allow nonconstant bounded
harmonic functions under the anti-Kirchhoff transition law? We give a
complete answer to this question in the cases where Liouville’s theorem
holds, for trees, for graphs with finitely many essential ramification nodes
and for generalized lattices. It turns out that the occurrence of noncon-
stant bounded harmonic functions under the anti-Kirchhoff law differs
strongly from the one under the classical continuity condition combined
with the Kirchhoff incident flow law.
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We consider the continuous Laplacian operator on the edges of countable, con-
nected, simple and uniformly locally finite metric graphs. Among the classical
and often treated transition conditions at the nodes of the metric graph we
find the continuity condition for the incident edges kj at the ramification nodes
Vr, i.e. at vertices of degree 2 or greater,

∀vi ∈ Vr : kj ∩ ks = {vi} =⇒ uj(vi) = us(vi), (1)

and Kirchhoff’s flow law, by which, at each node vi, all the incident outer
normal derivatives dij∂juj(vi) incorporating the incidence factors dij sum up
to 0: ∑

j

dij∂juj(vi) = 0. (2)
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We shall cite both conditions (1) and (2) together as (CK). They have been
treated by many authors, including generalizations as weighted Kirchhoff con-
ditions and dynamical ones in connection with differential operators on the
edges, and are of interest in many settings and applications.

However, when treating wave dispersion problems on graphs e.g., or as in
many other cases, the (CK)-condition is not suitable and should be replaced
by its orthogonal condition, the so-called anti-Kirchhoff condition (KC), see
[1,2] and the references therein. It is given by the continuity of the outer normal
derivatives at the ramification nodes (4) and by vanishing potential term sums
at all vertices (3). Mathematically it stems from the self-adjoint orthogonal
boundary condition in the sense of the Y -boundary conditions associated to
corresponding Bochner-spaces, see [1].

The present paper deals with the validity of Liouville’s theorem on infi-
nite uniformly locally finite metric graphs under the anti-Kirchhoff law, or
more generally, with the multiplicity of 0 as an eigenvalue of the edge Lapla-
cian under (KC) in L∞(G). It turns out that the (KC)-condition enforces a
behaviour of bounded harmonic functions that differs strongly from the one
under the (CK). Denoting the edges of the graph by kj , at each vertex vi we
impose the following transition condition

∑

vi∈kj

uj(vi) = 0, (3)

kj ∩ ks = {vi} =⇒ dij∂juj(vi) = dis∂sus(vi). (4)

Conceivably, we shall cite both conditions (3) and (4) together as (KC). Note
that (3) reduces to the 0-Dirichlet condition at boundary vertices.

Unless otherwise stated, all graphs considered in this paper are assumed
to be nonempty, countable, connected and uniformly locally finite, see Sect. 1.

The present paper is organized as follows. After some prerequisites, graph
theoretical preliminaries and basic facts about harmonic functions in Sect. 1,
Sect. 2 deals with the finite case. It turns out that a finite metric graph Γ under
(KC) is a Liouville graph if and only if Γ is a tree or a non bipartite unicyclic
graph. Section 3 presents some basic tools for the infinite case, especially the
distinctive impact of circuits on the occurrence of nonconstant bounded har-
monic functions. These results lead among others to the characterization of
infinite Liouville graphs and of trees without two-sided unbounded paths in
Sect. 4. In particular it will be shown that a graph Γ containing a one-sided
unbounded path Γ0 of infinite total length is a Liouville graph under (KC)
if and only if it is a sole Γ0 up to translation with finite trees attached to its
vertices, see Theorem 4.1.

In Sects. 5 and 6 the occurrence of bounded harmonic functions on infinite
graphs with finitely many essential ramification nodes, the so-called medusae,
as well as on infinite trees will be treated. In the first case, optimal upper and
lower bounds for the dimension m(0; Γ;KC) of the vector space of bounded
harmonic functions under (KC) in dependence of the smallest connected finite
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graph containing the essential ramification nodes will be established, see The-
orems 5.1 and 5.2. As for infinite trees it will be shown that a tree T satisfies
m(0; Γ;KC) = ∞ if and only if its reduced tree has infinitely many essential
ramification nodes, see Theorem 6.2. In contrast to the (CK)-condition, see
[3], no geometrical restriction to the edges is necessary here.

In Sect. 7 graphs with exactly one independent bounded harmonic func-
tion and generalized lattices, so-called periodic graphs will be treated. It turns
out that all periodic graphs containing circuits fulfill m(0; Γ;KC) = ∞, even
with inseparable eigenspaces, while periodic trees are precisely those periodic
graphs fulfilling m(0; Γ;KC) = 1. Here, the behaviour under (KC) is in total
contrast to the one under (CK) where every periodic graph is a Liouville
graph, see [3].

The final section contains remarks and supplements about the adjacency
setting and the unsigned incidence matrix in the finite case.

1. Metric Graphs and Harmonic Functions

For any graph Γ = (V,E,∈), the vertex set is denoted by V = V (Γ), the edge
set by E = E(Γ) and the incidence relation by ∈⊂ V × E. Unless otherwise
stated, all graphs considered in this paper are assumed to be nonempty, count-
able, connected and simple. The simplicity property means that Γ contains no
loops, and at most one edge can join two vertices in Γ.

The valency or degree of each vertex v is denoted by

γ(v) = γ(v; Γ) = #{k ∈ E(Γ) | v ∈ k }.

The adjacency of two vertices v, w ∈ V (Γ) will be denoted by v ∼ w. Unless
otherwise stated, all graphs considered in this paper are assumed to be uni-
formly locally finite, i.e.

max
v∈V (Γ)

γ(v) =: γmax < ∞.

Accordingly, the vertices will be denoted by vi with i ∈ I ⊂ N, the respective
valencies by γi = γ(vi), and the edges by kj with j ∈ J ⊂ N. Three classes
of nodes will be distinguished, the boundary vertices Vb = {v ∈ V (Γ) γ(v) =
1}, the ramification nodes Vr = {v ∈ V (Γ) γ(v) ≥ 2}, and the essential
ramification nodes Vess = {v ∈ V (Γ) γ(v) ≥ 3}. By definition, a circuit is a
connected and regular graph of valency 2. This includes the infinite circuit in
the form of the two-sided unbounded path Γ1. A finite path is a connected
graph with two distinct vertices of valency 1 while the other vertices are all of
valency 2.

The sequences or column vectors with constant entries equal to 1 are
denoted by e and en if the dimension n is to be noted. The n-vectors of the
canonical basis are denoted by en

k = (δik)n×1. For a subgraph Θ in Γ, Θ ≤ Γ
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for short, let Θ̄ = (V (Θ), E(Θ̄),∈) denote the subgraph of Γ spanned by the
vertices in Θ with

E(Θ̄) = {e e ∈ E(Γ), e ∩ V (Γ) ⊂ V (Θ)}.

The subgraph Θ is called induced if Θ̄ = Θ, i.e. Θ contains all edges in Γ
that have their vertices in Θ. Two subgraphs are called vertex independent
if they have no vertex in common, and essentially or almost disjoint if they
have only a finite number of vertices in common. For further graph theoretical
terminology we refer to [4–7].

Moreover, we consider each graph as a connected topological graph in R
m,

i.e. V (Γ) ⊂ R
m and the edge set consists in a collection of Jordan curves

E(Γ) = {πj : [0, �j ] → R
m j ∈ J }

with the following properties: each support kj = πj ([0, �j ]) has its endpoints in
the set V (Γ), any two vertices in V (Γ) can be connected by a path with arcs in
E(Γ), and any two edges kj �= kh satisfy kj ∩ kh ⊂ V (Γ) and #(kj ∩ kh) ≤ 1.
The arc length parameter of an edge kj is denoted by xj . Unless otherwise
stated, we identify the graph Γ = (V,E,∈) with its associated metric graph,
network or quantum graph

G =
⋃

j∈J
πj ([0, �j ]) ,

especially each edge πj with its support kj . Throughout it will be assumed
that all πj are at least Lipschitz continuous. Thus, endowed with the induced
topology G is a connected space in R

m. Throughout, we shall denote the total
graph length by

L(G) =
∑

j∈J
�j .

The orientation of the graph Γ is given by the incidence matrix D(Γ) =
(dik)I×J with

dij =

⎧
⎪⎨

⎪⎩

1 if πj(�j) = vi,

−1 if πj(0) = vi,

0 otherwise.

This allows a refinement of the valency notion by defining the outdegree γ−(v)
and indegree γ+(v) of a vertex v by

γ−(v; Γ) = #{kj ∈ E(Γ) | dij = −1},

γ+(v; Γ) = #{kj ∈ E(Γ) | dij = 1}.

The corank of the graph Γ is defined by

corank(Γ) = dim kerD(Γ),

that in the finite case amounts to #E(Γ) − #V (Γ) + 1 and is just the number
of independent cycles. In particular, corank(Γ) reduces to the value 1 if Γ is
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unicyclic, i.e. if Γ has exactly one independent cycle. In general, the circuit

space defined as Π(Γ) =
〈

c ∈ ker D(Γ) # {j ∈ J cj �= 0} < ∞
〉

is only a

subspace of ker D(Γ) and not identical with it. However, dim Π(Γ) < ∞ if and
only if dim kerD(Γ) < ∞, see e.g. [8]. In the context of the anti-Kirchhoff law,
the generalized unsigned circuit space defined by

Π+(Γ) =

⎧
⎨

⎩c ∈ R
E(Γ)

∣∣∣∣∣∣
∀vi ∈ V (Γ) :

∑

j∈J
d2

ijcj = 0

⎫
⎬

⎭

plays a crucial role and is in fact just the kernel of the unsigned incidence
operator given by the matrix D+(Γ) = (|dij |)I×J . In particular in the finite
not necessarily connected case, we note that

dim Π+(Γ) = dim kerD+(Γ) = #E(Γ) − #V (Γ) + c+(Γ),

where c+(Γ) stands for the number of bipartite connected components of Γ,
see [1].

For vectors of functions u := (uj)j∈J defined by their edge components
uj : [0, �j ] → R we use the abbreviations

uj(vi) := uj(π−1
j (vi)), ∂juj(vi) :=

∂

∂xj
uj(xj)

∣∣∣
π−1
j (vi)

etc.

The Banach space of essentially bounded functions on G will be denoted
by L∞(G) =

∏
j∈J L∞[0, �j ] and endowed with the usual norm ‖u‖∞,G =

supj∈J ‖uj‖∞,[0,�j ]. The validity of the anti-Kirchhoff conditions (3) and (4)
in a function space will be indicated by the subscript KC, the one of (CK)
by the subscript CK correspondingly.

Of course, harmonic functions u = (uj)j∈J on a metric graph G are
defined as solutions of Δu = 0 under suitable transition conditions. But,
as these solutions are affine linear on each edge, we can define a harmonic
function intrinsically without higher regularity assumptions on the arc length
parametrizations than the rectifiability condition. Conceivably, a function
u := (uj)j∈J with uj ∈ C[0, �j ] is called harmonic if on each edge kj it is
of the form uj(xj) = uj(0) + αjxj and satisfies the anti-Kirchhoff condition
(KC). The vector space of all harmonic functions on G satisfying (KC) will be
denoted by HKC(G). Correspondingly, we shall write HCK(G) etc. Moreover,
set

H∞
KC(G) = HKC(G) ∩ L∞(G), Π+

∞(Γ) = Π+(Γ) ∩ �∞ (E(Γ)) .

Definition 1.1. m(0; Γ;KC) = dimH∞
KC(G).

If G is a C2-metric graph, then clearly

m(0; Γ;KC) = ma(0;ΔKC ;V2(G) ∩ L∞(G))=dim E0(ΔKC ;V2(G) ∩ L∞(G)),

where we have set V2(G) =
∏

j∈J C2[0, �j ], and where ma stands for the alge-
braic multiplicity of the indicated operator.
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Definition 1.2. A metric graph G is called a Liouville graph under (KC), if
each harmonic bounded function on G fulfilling (3) and (4) is constant, i.e. if

m(0; Γ;KC) = 0.

In order to be consistent with Liouville’s theorem in Riemannian or com-
plex manifolds, the authors prefer the present definition of the Liouville prop-
erty instead of defining it by the multiplicity being equal to 1 as in the (CK)-
case. In the latter one this is conceivable, since all constant functions are
solutions. But, under (KC), the only constant solution is the trivial one and,
thereby, the sole solution characterizing the Liouville property, if it is just the
only bounded harmonic function on the metric graph.

Unless otherwise stated, the harmonic functions to be considered will
be supposed to fulfill (KC). Each element of Π+

∞(Γ) can be considered as a
bounded harmonic function being constant on each edge and with vanishing
edge derivatives, i.e.

Π+
∞(Γ) ≤ H∞

KC(G).
Any u = (uj)j∈J ∈ HKC(G) has edge components of the form uj(xj) =
uj(0) + αjxj with slopes

αj =
uj (�j) − uj(0)

�j
= ∂juj (�j) = −∂juj (0) .

By (4), at each vertex vi all incident normal derivatives dij∂juj(vi) coincide.
Conceivably, we can set

ν(vi) = νi = dij∂juj(vi)

for some incident edge kj with vi. Thus, by connectedness, there is a constant
slope factor ν = ν(u) such that

∀i ∈ I : |νi| = |ν|, (5)

and
vi ∼ vh ⇒ νh = −νi. (6)

Bearing in mind that a graph Γ is bipartite if and only if every cycle in Γ has
even length, (6) yields immediately the

Corollary 1.3. If Γ is not bipartite, then Π+
∞(Γ) = H∞

KC(G).

But in the bipartite case, there can be bounded harmonic functions with
nonvanishing slope factor ν, see Sects. 5 and 6.

Remark 1.4. Unless otherwise stated, all graphs are supposed to be simple.
In fact, this restriction is not essential, and the results presented in this paper
are readily extended to the general case allowing loops and multiple edges
mutatis mutandis. Suppose Γ is a graph with the properties mentioned at the
beginning of this section, but possibly containing loops and multiple edges. On
an edge kj , choose two interior points πj(aj) and πj(bj) such that

0 < aj < bj < �j
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and cut kj at these points into three edges. By applying this surgery to all
loops and to appropriate multiple edges, the resulting graph Γ̃ turns out to
be simple. For u ∈ H∞

KC(G) define ũ ∈ H∞
KC(G̃) by −uj on the middle edge

corresponding to [aj , bj ] for each modified edge kj , while on all remaining edges
of Γ̃, define ũ just by u. Then u �→ ũ defines an isomorphism between H∞

KC(G)
and H∞

KC(G̃), that is an isometry with respect to the L∞-norm. It follows
that Γ is a Liouville graph if and only if Γ̃ bears this property. Thus, loops
are Liouville graphs, while the graphs consisting in two distinct vertices and
at least two edges joining them are not.

2. The Finite Case

Suppose Γ is a finite connected graph with n vertices and N edges. In the case
of equal edge lengths, it has been shown in [1] that 0 is not an eigenvalue of
ΔKC on trees or on non bipartite unicyclic graphs, since its algebraic multi-
plicity amounts to N − n + 1 or to N − n, respectively. The proof given there
is readily extended to arbitrary edge lengths. First, we note that a harmonic
function under (KC) on Γ is constant on each edge, i.e. ν = 0, since, writing
uj(xj) = uj(0) + αjxj and integrating by parts,

N∑

j=1

�jα
2
j =

N∑

j=1

�jα
2
j −

n∑

i=1

νi

∑

vi∈kj

uj(vi) = −
N∑

j=1

∫ �j

0

(
∂2

j uj

)
ujdxj = 0.

Thus,

HKC(G) = H∞
KC(G) = Π+(Γ) = E0(ΔKC ;V2(G)),

where as above, E0(ΔKC ;V2(G)) is the eigenspace belonging to 0 of the Lapla-
cian under (KC). Introduce

M(Γ) =
{
M
∣∣M = (mih)n×n , ∀i, h ∈ {1, . . . , n} : vi �∼ vh ⇒ mih = 0

}

and

M+(Γ) = {M ∈ M(Γ) |M∗ = M, Me = 0} .

The Hadamard multiplication (mih)n×n 	 (�ih)n×n = (mih�ih)n×n with the
length adjacency matrix L(Γ) = (�ih)n×n is an isomorphism of M(Γ), while
the dimension of M+(Γ) has been determined in [9, Section 5]. Thus, we are
lead to the following result.

Lemma 2.1. If Γ is a finite connected graph, then

m(0; Γ;KC) = dim M+(Γ) =

{
N − n + 1 if Γ is bipartite,
N − n if Γ is not bipartite.

In particular, Γ is a Liouville graph under (KC) if and only if Γ is a tree or
a non bipartite unicyclic graph.
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3. Basic Facts

First, we consider the smallest connected infinite graph.

Example 3.1. The one-sided unbounded path Γ0 consists in the vertex set N

with edges defined by the natural incidences

dii = −1 and di+1,i = 1.

Clearly, Π+
∞ (Γ0) = {0}. Suppose u ∈ H∞

KC (Γ0) satisfies u′
0(0) = ν, and

u0(0) = 0. Set yk = uk(0) and get recursively

∀k ∈ N : yk+1 = − (yk + (−1)kν�k

)
= −yk + (−1)k+1ν�k

and

∀k ∈ N
∗ : uk(0) = (−1)kν

k−1∑

i=0

�i.

Thus, u is bounded if and only if either ν = 0, and thereby u = 0, or ν �= 0
and L(Γ0) < ∞. Thus, Γ0 is Liouville w.r. to (KC) if and only if L(Γ0) = ∞.

Next, we show three useful lemmata. If Θ is a subgraph of the graph
Γ then by zero extension, Π+(Θ) and Π+

∞(Θ) are isomorphic to subspaces of
Π+(Γ) and Π+

∞(Γ), respectively. In particular,

Θ ≤ Γ ⇒ dim Π+
∞(Θ) ≤ dim Π+

∞(Γ). (7)

Infinite and even finite circuits ζ fulfill dim Π+
∞(ζ) = 1. The same holds for

a dumbbell δ composed by two odd finite circuits with at most one vertex in
common or with a path joining them. Finally, a graph π composed by an odd
finite circuit ζ and a one-sided unbounded path N ∼= Γ0 with V (ζ) ∩ V (N) =
{v0} and γ(v0;N) = 1, satisfies dim Π+

∞(π) = 1, see Fig. 2. Thus, we have
shown the following

Lemma 3.2. A graph Γ satisfies dim Π+
∞(Γ) ≥ 1 if it contains

(a) either an infinite circuit,
(b) or a finite even circuit,
(c) or two finite odd circuits with at most one vertex in common,
(d) or a graph π composed by an odd finite circuit ζ and a one-sided

unbounded path N ∼= Γ0 with V (ζ) ∩ V (N) = {v0} and γ(v0;N) = 1.
In particular, Γ cannot be a Liouville graph with respect to (KC).

The Lemma applies also in the presence of two finite odd circuits ζ1 and
ζ2 with n1 and n2 vertices respectively and 1 ≤ d < ni edges in common, since
they give rise to an even circuit of length n1 + n2 − 2d in Γ.

Figure 1. The one-sided unbounded path Γ0.
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Figure 2. An infinite non bipartite graph with a nonvanish-
ing element belonging to Π+

∞(Γ).

Lemma 3.3. Consider a vertex v in some graph Γ, at which a finite tree T
is attached such that V (Γ) ∩ V (T ) = {v} and such that γ−(v;T ) = 0 =
γ+(v;T )−1. Suppose that at all other vertices w ∈ V (T ) the outdegree satisfies
γ−(w;T ) = 1. Let Σ denote the composed graph by Γ and T and suppose
u ∈ HKC(Σ). Then on each edge kj of T , u satisfies

ν (πj(�j)) uj(�j) ≥ 0.

Proof. For ν = 0, the assertion is plain. W.l.o.g. we can assume ν = 1. We
always have

uk(xk) = uk(0) − ν (πk(0)) xk = uk(0) + ν (π(�k)) xk,

in particular multiplying byν (πk(�k)),

ν (πk(�k)) uk(�k) = −ν (πk(0)) uk(0) + �k = ν (πk(�k)) uk(0) + �k.

If πj(0) is a boundary vertex, then evidently ν (πj(�j)) uj(�j) = �j > 0. By
recurrence on the distance to the boundary of T , we conclude

ν (πj(�j)) uj(�j) = �j − ν (πj(0)) uj(0)

= �j +
∑

πj(0)=πk(�k)

ν (πk(�k)) uk(�k) > 0.

�

Lemma 3.4. Let Γ be a graph that contains as an induced subgraph a one-sided
unbounded path Γ0 such that at the vertices of the latter one finite induced
trees in Γ are possibly attached. Label the vertices and edges of Γ0 in Γ by N

as above by the natural incidences

dii = −1, di+1,i = 1.
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Figure 3. The two-sided unbounded path Γ1.

Suppose that
∞∑

i=0

�i = ∞. (8)

Then Γ has no bounded harmonic function with nonzero slopes.

Proof. Reasoning by contradiction, we suppose that there exists u ∈ H∞
KC(G)

with ν �= 0. W.l.o.g. suppose ν = 1.
Let Tk denote the eventual finite tree at vk. Let ak denote the sum of the

incoming values of u at vk that do not belong to edges of Γ0. As a harmonic
function has to vanish on edges incident with boundary vertices, as Tk does
not contain circuits, and as by choosing the orientation “from the boundary of
Tk to Γ0”, the outdegree of each vertex in V (Tk) \V (Γ0) amounts to 1, each
ak is uniquely determined. Moreover, by Lemma 3.3,

∀k ∈ N : νkak ≥ 0. (9)

On each edge of Γ0, u has the form

uk(xk) = uk(0) − νkxk =: yk − νkxk.

Then (KC) leads to the recurrence

yk+1 = −yk − ak+1 + νk�k. (10)

Multiply (10) by νk+1 and get with zk = νkyk the recurrence

zk+1 = zk − νk+1ak+1 + νkνk+1�k = zk − νk+1ak+1 − �k,

in other words

zk = z0 −
k∑

i=1

(νiai + �i−1)

Using (8) and (9), this shows that |zk| = |yk| → ∞ as |k| → ∞, in contradiction
to the presumed bounded character of u. Thus, ν = 0. �

Example 3.5. The two-sided unbounded path Γ1 consists in the vertex set
Z with edges defined by the natural incidences dii = −1, di,i−1 = 1.
Clearly, dim Π+

∞ (Γ1) = 1. Γ1 is Liouville w.r. to (CK), but not w.r. to
(KC), i.e. dimH∞

CK(G) = 1, since by Lemma 3.4 or more directly, using that
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u ∈ HKC(Γ1) is completely determined by its restriction to an arbitrary fixed
edge,

m (0; Γ1;KC) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if
∑

k∈Z

�k = ∞,

2 if
∑

k∈Z

�k < ∞.

In the first case, all slope factors must vanish, in the second one, ν �= 0 occurs.

4. Infinite Liouville Graphs and Infinite Trees Without
Two-Sided Unbounded Paths

According to Lemma 2.1, the finite Liouville graphs under(KC) are trees and
unicyclic non bipartite graphs. In the infinite case, we can state the following

Theorem 4.1. Let Γ be a graph that contains a copy of Γ0 whose edges satisfy
∑

e∈E(Γ0)

�(e) = ∞. (11)

Then Γ is a Liouville graph under (KC) if and only if Γ is a tree in the
following list:

1. The one-sided unbounded path Γ0,
2. a sole Γ0 attached at its boundary vertex to a finite tree.
3. a sole Γ0 with infinitely many finite trees attached to its vertices.

This applies in particular to the equal length case, or more generally, to the
case inf{�j j ∈ J } > 0.

Proof. The sufficiency is plain by Lemma 3.4. Next, suppose that Γ is a Liou-
ville graph. By Lemma 3.2, Γ must be a tree and cannot contain copies of Γ1.
By hypothesis and (11), dim Π+

∞(Γ) = 0. Finally, the assertion follows with
Lemma 3.4. �

As already seen in Example 3.1, without Condition (11) the asser-
tion is wrong, since Γ0 admits bounded harmonic functions with ν �= 0 for
L (Γ0) < ∞. Does this also hold if to each vertex of Γ0 finite trees are attached?
Accordingly, suppose that T is a tree containing Γ0, but not Γ1 and fulfilling

L (Γ0) =
∑

e∈E(Γ0)

�(e) < ∞. (12)

Number the vertices of Γ0 by N and choose the natural incidence

dii = −1, di,i−1 = 1.

on Γ0. Clearly, Π+
∞(T ) = {0}. We want to know, whether bounded harmonic

functions with nonvanishing slope factor occur or not. Let Tk denote the finite
wood incident with vk, but having no edges with Γ0 in common. Let u ∈
HKC(T ) allow ν = ν(u) > 0 and, as above, ak denote the sum of the incoming
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values of u at vk on T that do not belong to edges of Γ0. Recall that each ak

is uniquely determined for given ν. W.l.o.g. choose ν = 1 and

νk = −(−1)k,

set yk := uk(0) and get uk(xk) = yk + (−1)kxk. Then (KC) defines the linear
recurrence

y0 = −a0, ∀k ∈ N
∗ : yk+1 = −yk − (−1)k�k − ak+1. (13)

The solution of (13) takes the form

yk = (−1)k

(
k−1∑

i=0

�i − a0 +
k∑

i=1

(−1)i+1ai

)
= (−1)k

(
k∑

i=0

νiai +
k−1∑

i=0

�i

)
,

(14)
Lemma 3.3 shows that all νkak are nonnegative. Thus, under (12)

u ∈ H∞
KC(T ) ⇐⇒

∞∑

k=0

|ak| < ∞. (15)

This yields examples of trees T fulfilling (12) that are not Liouville graphs.
Take ν = 1 and Γ0 with edge lengths just fulfilling (12). Or add to each vertex
vi of Γ0 just one additional edge of length 1

(k+1)2 with its boundary vertex as
initial node. Then

|yk| ≤ π2

6
+

∞∑

i=0

�i < ∞.

Thus, u defines a bounded harmonic function with nonvanishing slope factor.
But (15) yields also examples that even under (12), T can be a Liouville

graph. If each Tk is just an edge of length 1 with ak = 1, see the graph on the
l.h.s in Fig. 4, or if Tk is a path of length k + 1 with edge lengths 1 with

∀k ∈ N : ak = (−1)k(k + 1),

see the graph on the r.h.s in Fig. 4, then Formulae (14) and (15) show that
ν = 1 is excluded for a bounded harmonic function. Thus, in both cases,
m(0;T ;KC) = 0.

Corollary 4.2. Suppose the tree T consists of a copy Γ0 whose edge lengths
satisfy Condition (12) and the vertices vk of which finite woods Tk are attached
that have precisely the vertex vk with Γ0 in common. If

∞∑

i=0

L(Ti) < ∞,

then HKC(T ) contains bounded elements with arbitrary nonvanishing slope
factor ν. In particular, T is not a Liouville graph.
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Figure 4. Two infinite Liouville trees fulfilling (12).

Proof. By recurrence on the number of edges of Tk it follows that

|ak| ≤ |ν| L(Tk).

Now (15) permits to conclude that there exists u ∈ H∞
KC(T ) with ν(u) = 1,

which, in turn, yields the assertion. �

5. Medusae

By definition, an infinite graph Γ is called a medusa if it has only finitely many
essential ramification nodes,

#Vess(Γ) < ∞.

Under (CK), a medusa is a Liouville graph, see [3]. For such a graph
Γ we shall adopt the following notation throughout this section. Let B ≤ Γ
denote the smallest finite connected induced subgraph such that

Vess(Γ) ⊂ V (B).

Moreover, let Γ1
0, . . . ,Γ

N
0 ≤ Γ denote the N vertex disjoint subgraphs isomor-

phic to Γ0. For each Γk
0 let vk

0 denote its boundary vertex and ek
0 its incident

edge in Γk
0 . We can choose these nodes to fulfill for each 1 ≤ k ≤ N

{
vk
0

}
= V (B) ∩ V

(
Γk

0

)
.

Then we can state
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Figure 5. A medusa.

Theorem 5.1. Suppose that Γ is a medusa that either fulfills L(G) = ∞, or that
is non bipartite with L(G) < ∞. Then all slope factors ν of bounded harmonic
functions on G vanish and

dim Π+(B) + N − 1 ≤ m(0; Γ;KC) ≤ dim Π+(B) + N.

Proof. Necessarily ν = 0 by (6). The lower bound follows readily with
Lemma 3.2, first applied to Π+(B) considered as a subspace of Π+

∞(Γ). Sec-
ondly, each pair Γk

0 and Γj
0 forms an infinite circuit Γk,j

1 isomorphic to Γ1.
Among those exactly N − 1, say Γ2,1

1 , . . . ,ΓN,1
1 , are the supports of linearly

independent elements belonging to Π+
∞(Γ). As each ϕ ∈ Π+

∞(Γ) with support
Γk,j

1 can be written as a linear combination of two such elements with supports
Γ1,k

1 and Γ1,j
1 , the lower bound is shown.

As for the upper bound, suppose first that N = 1. If there is ϕ ∈ Π+
∞(Γ)

such that ϕ(v1
0) = 1, then each harmonic function can be written as

u = u − u
(
v1
0

)
ϕ

︸ ︷︷ ︸
∈Π+(B)

+u
(
v1
0

)
ϕ

︸ ︷︷ ︸
∈〈ϕ〉

.

As the restriction of u to Γ1
0 is uniquely determined by u

(
v1
0

)
, u − u

(
v1
0

)
ϕ

belongs to Π+(B). This shows m(0; Γ;KC) ≤ dim Π+(B) + 1.
If there is no ϕ ∈ Π+

∞(Γ) such that ϕ(v1
0) = 1, then all elements of Π+

∞(Γ)
have their supports in B and m(0; Γ;KC) = dim Π+(B). Thus, the assertion
is shown for N = 1.

For N ≥ 2, there exists always ϕ ∈ Π+
∞(Γ) such that ϕ(vN

0 ) = 1. Let Γ̃
denote the graph by removing the edges of ΓN

0 from Γ while keeping vN
0 ∈ V (Γ̃).
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Again, as the restriction to ΓN
0 of each bounded harmonic function u is uniquely

determined by u
(
vN
0

)
, u reads

u = u − u
(
vN
0

)
ϕ

︸ ︷︷ ︸
=:w

+u
(
vN
0

)
ϕ

︸ ︷︷ ︸
∈〈ϕ〉

,

where w vanishes on ΓN
0 and can be considered as an element of H∞

KC(G̃) by
restriction to Γ̃. By recurrence on N , m(0; Γ;KC) ≤ dim Π+(B)+N−1+1. �

Example 5.3 will show that both bounds in Theorem 5.1 are optimal.
However, in the bipartite case the upper bound is always attained when the
total graph length is finite.

Theorem 5.2. Suppose Γ is a bipartite medusa with L(G) < ∞. Then there are
bounded harmonic functions on G with nonvanishing slope factor and

m(0; Γ;KC) = dim Π+(B) + N.

Proof. (a) Let us show first that for each 0 �= ν ∈ R, there exists u ∈ H∞
KC (G)

such that ν(u) = ν. Clearly, w.l.o.g. we can choose ν = 1. As Γ is bipartite,
we can endow it with the sink-source-orientation, i.e. each vertex v of Γ either
fulfills γ(v) = γ−(v) or γ(v) = γ+(v). Thus, a presumed bounded harmonic
function u is on each edge of B the form

uj(xj) = cj + xj

with some cj ∈ R for 1 ≤ j ≤ m := #E(B). The m-column vector c = (cj)m×1

satisfies the following n := #V (B) equations. Let αk
0 denote the presumed

value of u on ek
0 in Γk

0 . At each vertex vi set

si =
∑

vi∈kj

�j . (16)

Then at each source vi ∈ V (B) with νi = −1,

∑

vi=πj(0)

cj =

{
0 if vi �∈ {vk

0 1 ≤ k ≤ N
}

,

−αk
0 if vi = vk

0 ,

and at each sink vi ∈ V (B) with νi = 1,

∑

vi=πj(�j)

cj =

⎧
⎪⎨

⎪⎩

−si if vi �∈ {vk
0 1 ≤ k ≤ N

}
,

−αk
0 − si if vi = vk

0 .

In other words, if D+
B denotes the unsigned n×m-incidence matrix of B, then

D+
Bc = b := −s+ −

∑

vi=vk
0

αk
0e

n
i (17)
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with

s+ =
(
s+

i

)
n×1

, s+
i =

{
si if vi is a sink,
0 otherwise.

,

admitting the N ≤ n parameters αk
0 . But rank D+

B = n − 1. Thus, it remains
to show that the parameters αk

0 can be chosen such that the image of D+
B and

the affine subspace −s+ −⊕vi=vk
0
Ren

i are not parallel.
But, it suffices to show the case N = 1, since eventual additional Γk

0 ,
k ≥ 2, allow αk

0 = 0 and ∂0u
k
0(0) = ±ν together with the shown case N = 1.

However, α1
0 = 0 is excluded, since B alone does not allow bounded harmonic

functions with ν �= 0 by Sect. 2. W.l.o.g. we can assume that v1 = v1
0 and

ν1 = −1. Then the r.h.s. in (17) reduces to b = −α1
0e

n
1 −s+. As rank D+

B = n−1,
we find h ∈ R

n such that

D+
B (Rm) = 〈h〉⊥ and (h, h)2 = 1,

where (·, ·)2 denotes the Euclidean scalar product in R
n. Lemma 8.2 guarantees

that (s+, h)2 �= 0, since s+ cannot belong to the image of D+
B . If (h, en

1 )2 �= 0,
then for

α1
0 = − (s+, h)2

(h, en
1 )2

,

b ∈ D+
B (Rm), and its preimage defines the desired vector c = (cj)m×1.
Finally, if (h, en

1 )2 = 0, then en
1 ∈ D+

B (Rm), which is excluded by (8.2).
Thus, the existence of u ∈ H∞

KC (G) with ν(u) = 1 is well established.
Next we show the formula for m(0; Γ;KC) and suppose first that

N = 1.

(b) There is no u ∈ H∞
KC(Γ) such that ν(u) �= 0 and u

(
v1
0

)
= 0. Otherwise,

by (5), the restriction of u to B would constitute an element of HKC(B) with
nonzero slope, which is impossible in the finite case as above, see Sect. 2.
(c) By (a) there exists u ∈ H∞

KC(Γ) with nonzero slope factor ν(u). Thus,
there is no ϕ ∈ Π+

∞(Γ) such that ϕ(v1
0) = 1. Otherwise, each u as above could

be written in the form

u = u − u
(
v1
0

)
ϕ

︸ ︷︷ ︸
=:w

+u
(
v1
0

)
ϕ

︸ ︷︷ ︸
∈Π+∞(Γ)

with w ∈ H∞
KC(Γ) and ν(w) = ν(u) �= 0 and v

(
w1

0

)
= 0, in contradiction to

(b). Conclusion: All elements of Π+
∞(Γ) have their supports in B and

Π+
∞(Γ) ∼= Π+(B).

(d) Each element u ∈ H∞
KC(Γ) with ν(u) �= 0 is uniquely determined by

u
(
v1
0

)
. Thus, if ũ ∈ H∞

KC(Γ) with ν(ũ) = ν(u) and u
(
v1
0

)
= ũ

(
v1
0

)
, then

u − ũ vanishes on Γ0. If u and ũ were different, then u − ũ would constitute a
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bounded harmonic function on B with slope factor ν(u) �= 0, which is excluded
by Sect. 2. Thus,

dim 〈u ∈ H∞
KC(Γ) |ν(u) �= 0 〉 = 1,

and, thereby with (c), m(0; Γ;KC) = dim Π+(B) + 1.
(e) For

N ≥ 2,

we can always find ϕ ∈ Π+
∞(Γ) such that ϕ(vN

0 ) = 1. Thus, each u ∈ H∞
KC (G)

can be written as

u = u − u
(
vN
0

)
ϕ

︸ ︷︷ ︸
=:w

+u
(
vN
0

)
ϕ

︸ ︷︷ ︸
∈〈ϕ〉

.

As above, let Γ̃ denote the graph by removing the edges of ΓN
0 from Γ

while keeping vN
0 ∈ V (Γ̃). The slope factor of the restriction of w to

Γ̃ determines uniquely the one of u on the whole medusa and, thereby,{
w ∈ H∞

KC (G) | w(vN
0 ) = 0

}
is isomorphic to a subspace of H∞

KC(G̃). By recur-
rence,

m(0; Γ;KC) = dim Π+(B) + N − 1 + 1.

�

The proofs of Theorems 5.1 and 5.2 illustrate very well that the case N =
1 is more delicate than higher numbers N of ”tentacles” in the medusa. This
will be also illustrated with the aid of some examples. The minimal medusa is
just Γ0 with Π+

∞(Γ0) = {0}. If L(Γ0) < ∞, then m(0; Γ0;KC) = 1, and the
only nontrivial bounded harmonic functions are the ones with u0(0) = 0 and
ν(u) �= 0.

Example 5.3. If B is tree and L(G) = ∞, then dim Π+(B) = 0 and Γ is a
Liouville graph for N = 1 by Theorem 4.1. For N ≥ 1, m(0; Γ;KC) = N − 1.
See e.g. the infinite star graph in Fig. 9. This shows that, in general, the upper
bound dim Π+(B)+N in Theorem 5.1 is not attained. But for L(G) < ∞, the
upper bound is well attained since m(0; Γ;KC) = N by Theorem 5.2. Here
we find exactly one additional independent bounded harmonic function with
ν �= 0, since corank(Γ) = 0.

Example 5.4. Compose a medusa Γ by joining an odd circuit C and one copy
of Γ0, see Fig. 2. Clearly ν = 0, and independently of L(Γ0), Π+(C) ∼= {0} ∼=
Π+

∞(Γ0), but m(0; Γ;KC) = 1, since dim Π+
∞(Γ) = 1. This example also dis-

plays that, in general, the vector space Π+
∞ cannot be generated by the ones

of a covering family of proper induced subgraphs of Γ. Mutatis mutandis, for
any non bipartite unicyclic graph B, we have Π+(B) ∼= {0} ∼= Π+

∞(Γ0), but

m(0; Γ;KC) = N.
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Figure 6. A bipartite medusa allowing the slope factor 1.

A basis of H∞
KC (G) is readily obtained by choosing for each Γk

0 an element as
in Fig. 2 and by extending it trivially to the remaining edges of Γ.

Example 5.5. Compose a medusa Γ by joining an even circuit C and one copy of
Γ0. For L(Γ0) = ∞, m(0; Γ;KC) = 1, while for L(Γ0) < ∞, m(0; Γ;KC) = 2,
since on the one side dim Π+

∞(C) = 1 and each ϕ ∈ Π+
∞(Γ) has its support in

C, while on the other there is one independent u ∈ H∞
KC (G) with ν(u) = 1,

that is well displayed in Fig. 6. Note that • stands for a vertex with νi > 0,
while ◦ stands for νi < 0.

Example 5.6. Compose a medusa Γ by attaching two copies of Γ0 with L(Γ0) <
∞ to a circuit C with 4 vertices as depicted above. Then m(0; Γ;KC) = 4, since
on the one side dim Π+

∞(Γ) = 2, while on the other there are two independent
u ∈ H∞

KC (G) with ν(u) = 1, that are displayed in the Fig. 7, where again
• stands for a vertex with νi > 0, while ◦ stands for νi < 0. Note that two
incident values at one of the nodes of degree 3 determine u completely.

6. Trees

Under (CK), the condition

inf{�j j ∈ J } > 0 (18)

plays a key role for the multiplicity of independent bounded harmonic func-
tions. Moreover, the equivalences given below in Theorem 6.2 require a sup-
plementary condition on the edge length ratios. Under (KC), no restriction is
needed, only the notion of the reduced graph. Let us recall its construction. By
definition, a viaduct in a graph Γ is a path π of length at least 2 in Γ joining
two distinct vertices u and v such that all other vertices in V (π)\{u, v} have
the valency 2 in Γ too.

Definition 6.1. The reduced graph Γred of a given graph Γ is constructed as
follows. Introduce the operations
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Figure 7. Two independent bounded harmonic functions
with slope factor 1.

(I) Remove all edges in Γ incident to boundary vertices.
(II) Remove each one-sided unbounded path π in Γ whose ramification nodes

Vr(π) are all nodes of valency 2 in Γ.
(III) Replace any viaduct π in Γ by a single edge of length �, where � is the

sum of the lengths of all edges of π.

Repeat (I) and (II) until there are no more vertices of valency 1 and no more
one-sided unbounded paths as in (II) in the remaining graph. Then apply (III)
such that there are no more vertices of valency 2. The resulting graph is called
the reduced graph Γred of Γ.

Note that Γred can reduce to a single vertex without edges, e.g. for finite
trees, for Γ = Γ1, or for any tree containing at most one copy of Γ1 up to
translation. Furthermore, note that substituting viaducts might lead to a sign
change of harmonic functions under (KC) at one of the terminal nodes, but
on a tree this does not alter the absolute value of such a function. As for the
(CK)-condition, denote the minimal valency of a graph Γ by γmin (Γ) and
introduce the infimal incident length ratio of the metric graph G by

Λ(G) = inf
{

arc length of e

arc length of f
e, f ∈ E(G), e ∩ f �= ∅

}
.

Then we can cite the following
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Theorem 6.2 [3, Theorem 5.5]. Suppose that T is a tree satisfying (18) such
that

Λ(Tred) >
1

γmin (Tred) − 1
. (19)

Then
m(0;T ;CK) = ∞ ⇐⇒ #V (Tred) = ∞. (20)

In particular, the T is a Liouville tree under (CK) tree if and only if
#V (Tred) < ∞.

Condition (19) is optimal. Already for 3-regular trees with Λ(T ) = 1
2

the assertion can be wrong, see [3, Example 5.9]. Note that for γmin ≥ 3,
Condition (19) reduces to Λ(T ) > (γmin(T ) − 1)−1. As for the anti-Kirchhoff
law, the situation is quite different. Recall the following fact.

Lemma 6.3. A tree T satisfies #Vess(Tred) = ∞ if and only if its reduced tree
contains a copy of the 3-regular tree T3.

Furthermore, recall that an eigenvalue of an operator is called a black hole
eigenvalue if its eigenspace contains a subspace isomorphic to the inseparable
Banach space �∞(N).

Theorem 6.4. Let T be a tree. Then m(0;T ;KC) = ∞ if and only if

#Vess(Tred) = ∞.

In this case 0 is a black hole eigenvalue of the Laplacian ΔKC .

Proof. If #Vess(Tred) = ∞, then T contains infinitely many almost disjoint
copies of Γ1. Each of them gives rise to a nonvanishing element of Π+

∞(T ).
Conversely, #Vess(Tred) < ∞ implies that T contains only finitely many almost
disjoint copies of Γ1. As the supports of nonvanishing harmonic functions on
a tree contain at least Γ1, m(0;T ;KC) < ∞.

The last assertion follows readily with Lemmata 3.2 and 6.3 and the
existence of infinitely countably many almost disjoint subgraphs isomorphic
to Γ1. �

Bounded harmonics with nonzero slope ν can occur in trees containing
the 3-regular tree T3.

Example 6.5. Choose ν = 1. Consider the 3-regular tree T3 with equal edge
lengths 1. Endow T3 with the orientation γ+

i (v) = 1 and γ−
i (v) = 2 at all nodes

v, except at a fixed arbitrarily chosen vertex v0 = π0(0) of outdegree 3 incident
with the edge k0 in T3. First, consider the vertex π0(0) as a root of the tree T0

containing k0 and all edges of T3 being connected to π0(1) without passing by
π0(0). Now number the edges of T0 in the log2(·) backwards genealogical way.
Define a harmonic function u ∈ HKC(T ) as follows. Set

u0(0) = 0, u0(1) = 1, u1(0) = −1
2

= u2(0).
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Recursively in the Kth generation with K ≥ 1, with an edge kj with slope 1,

2K−1 + 1 ≤ j + 2 ≤ 2K ,

and

uj(0) =
22K − 1

22K
,

set on the edges kj+1 and kj+2 with

πj(1) = πj+1(0) = πj+2(0),

(a) uj(1) =
22K+1 − 1

22K
,

(b) uj+1(0) = uj+2(0) = −22K+1 − 1
22K+1

,

(c) uj+1(1) = uj+2(1) = −22(K+1) − 1
22K+1

,

(d) uj+3(0) = . . . = uj+6(0) =
22(K+1) − 1

22(K+1)
.

The letters a, b, c, d stand for the corresponding values on the edges as indicated
in Fig. 8. On the other two copies of T0 at π0(0) repeat the same construction.
Then νi = ±1 at all the nodes, and

u ∈ H∞
KC(T ).

Under (CK), without (18), any finite multiplicity m(0;T ;CK) occurs.
But, under the constraint (18), there is only the following alternative.

Theorem 6.6 [10, Theorem 4.1]. A tree T satisfying (18) either is a Liouville
graph under (CK) or satisfies m(0;T ;CK) = ∞.

Under (KC) and (18) this is no longer true. Take the infinite star Σ
with equal edge lengths, Vess(Σ) ⊂ {v0} and N ≥ 1 copies of Γ0 intersecting
precisely in v0. Then

dim Π+
∞(Σ) = N − 1 = m(0; Σ;KC).

7. Graphs Fulfilling m(0; Γ; KC) = 1 and Periodic Graphs

First, we characterize graphs with one independent bounded harmonic function
satisfying (KC).

Theorem 7.1. Let Γ be a graph that contains a copy of Γ0 with L(Γ0) = ∞.
Then m(0; Γ;KC) = 1 if and only if Γ is a graph of the following list:

1. a sole induced one-sided unbounded path Γ0 attached at its boundary
vertex to a finite unicyclic graph,

2. a graph of Type 1 with finite trees attached to the vertices of Γ0,
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Figure 8. The 3-regular tree displaying a harmonic bounded
function with ν = 1.

Figure 9. An infinite star with equal edge lengths, N = 6.
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3. the two-sided unbounded path Γ1 or Γ1 with finite trees attached to its
vertices.

In all these cases, there is no bounded harmonic function with nonzero slope
factor.

Proof. Suppose m(0; Γ;KC) = 1. By hypothesis, Γ can neither contain two
almost disjoint copies of Γ1, nor Γ1 and a finite circuit, nor two finite circuits.
Thus, if Γ contains Γ1, then it is a tree and contains exactly one copy of Γ1

up to translation, at the vertices vk of which there might be finite trees Tk,
which leads to the third case.

If Γ contains an odd circuit η, then there cannot be a bounded har-
monic function with nonzero slope by (6), and there is exactly one indepen-
dent bounded harmonic function belonging to Π+

∞(Γ) as defined in Fig. 2 and
extended by 0 outside the circuit η and outside Γ0.

If Γ contains an even circuit ζ, then Π+
∞(Γ) ∼= Π+

∞(ζ), and there cannot
be a bounded harmonic function with nonzero slope. All bounded harmonic
functions belonging to Π+

∞(Γ) have their supports in ζ.
In both of the latter two cases, Γ0 must be induced and can allow finite

trees at its vertices. This leads to the first and the second case, since Lemma 3.4
excludes nonzero slopes of bounded harmonic functions and since each such a
function cannot vanish on the sole circuit.

Conversely, if Γ is of Type 1 or 2, then Lemma 3.4 permits to conclude
that Π+

∞(Γ) ∼= H∞
KC(G). Using the same constructions as above it then follows

that m(0; Γ;KC) = 1.
If Γ is of Type 3, then Lemma 3.4 again permits to conclude that Π+

∞(Γ) ∼=
H∞

KC(G). As a harmonic function has to vanish on the eventual finite trees
attached to the vertices of Γ1, it follows that m(0; Γ;KC) = 1. �

Theorem 7.1 applies in particular to periodic trees. Let us recall the
following definition.

Definition 7.2. A graph Γ is called a generalized lattice or periodic of rank
m ≥ 1 with translation group

G =
m⊕

i=1

Zbi ≤ Aut(Γ),

with kernel N and with cell F , if the following conditions hold:

(a) Γ is connected.
(b) N and F are finite connected subgraphs of Γ.
(c) V (N)G = V (Γ).
(d) {bi 1 ≤ i ≤ m} is a basis of the free Abelian group G.
(e) F = N ∪ ⋃m

i=1 N bi and E(F )G = E(Γ).
(f) ∀g, h ∈ G : g �= h =⇒ V (Ng) ∩ V (Nh) = ∅.
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Figure 10. The infinite comb.

For more details see [3,8,11–13] for the spectral aspects with respect
to ΔCK . Clearly, periodic graphs cannot be Liouville graphs under (KC) by
Lemma 3.2, since they contain copies of Γ1. Note that it is conceivable to
assume m ≥ 1 here, since m = 0 corresponds to the case of a finite graph.

Theorem 7.3. Let Γ be a periodic graph.
1. If rank Γ ≥ 2, then m(0; Γ;KC) = ∞ and 0 is a black hole eigenvalue.

1. The same holds in the case rank Γ = 1, if Γ contains finite circuits.
2. Finally, m(0; Γ;KC) < ∞ if and only if Γ is a periodic tree, i.e. a band

without circuits. In that case, m(0; Γ;KC) = 1, and no nonzero slope
factor is possible.

Proof. If a periodic graph contains an even circuit, then 0 is a black hole
eigenvalue since it possesses eigenfunctions of compact support. If the periodic
graph contains odd circuits, then either the dumbbell construction, or a kernel
enlargement leading to even circuits [11] lead to the same conclusion. If a
periodic graph does not contain circuits, then it contains exactly one copy
of Γ1 up to translation. And at each vertex of Γ1 an eventual finite tree is
attached in a certain periodic way. Moreover, by periodicity, Condition (11) is
fulfilled, and Theorem 7.1 permits to conclude. �

Example 7.4. Let T be the infinite comb with all �j = 1. Thus, T consists in
the path Γ1 to each vertex of which a sole additional edge is attached. Denote
the vertices and edges of the path Γ1 by Z and by the incidence dii = −1 and
di,i−1 = 1. Let us illustrate that there is no bounded harmonic function u on
T with ν = 1 and that m(0;T ;KC) = 1. Choose

νi = −(−1)i.

Then

∀i ∈ Z : u2(i+1)(0) = u2i(0) + 4 & u2i+1(0) = u2i−1(0) − 4,

which clearly shows that u has to be unbounded.

Example 7.5. Add to the foregoing example just one edge in a suitable kernel
and get the periodic band B generated by squares or just by one vertical edge.
Again, we suppose that all �j = 1. Then m(0;B;KC) = ∞ and 0 is in fact a
black hole eigenvalue of ΔKC with

H∞
KC(B) ∼= Π+

∞(B) ∼= �∞(Z).

This readily follows by associating to each sequence (xk)k∈Z
∈ �∞(Z) a unique

element in Π+
∞(B) as indicated in Fig. 11.
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Figure 11. The periodic band B with H∞
KC(B) ∼= �∞(Z).

8. Remarks and Supplements

8.1. Length Adjacency and Anti-Kirchhoff Law

In the (CK) case, harmonic functions are closely related to a normalized adja-
cency operator. To be more specific, introduce

L(Γ) = (�ih)i,h∈I : RV (Γ) −→ R
V (Γ), P(Γ) =

(
�−1
ih

)
i,h∈I : RV (Γ) −→ R

V (Γ),

�ih =

{
�s(i,h) if vi ∼ vh,

0 otherwise,
s(i, h) =

{
s if es ∩ V = {vi, vh},

1 otherwise.

Then a continuous function u on G with x = (xi)i∈I , xi = u(vi) belongs to
HCK(G) if and only if

Diagi (P(Γ)e)−1 P(Γ)x = x. (21)

In particular for equal edge lengths, (21) reduces to the classical mean value
property

∀i ∈ I : xi =
1
γi

∑

vh∼vi

xh.

If u ∈ HKC(G), then

0 =
∑

vi∈kj

uj (vi) =
∑

vi=πj(0)

uj (0) +
∑

vi=πj(�j)

uj (�j)

=
∑

vi=πj(0)

(uj (�j) − �jαj) +
∑

vi=πj(�j)

(uj (0) + �jαj)

=
∑

vi∈kj
vh �=vi

uj (vh) + νi

∑

vi∈kj

�j =
∑

vi∼vh

uih (vh) + νi

∑

vi∈kj

�j ,

where we have used the matrix

U(x) =
(

eihus(i,h)

(
�ih

(
1 + dis(i,h)

2
−xdis(i,h)

)))

i,h∈I
with x ∈ [0, 1] and (eih)i,h∈I the adjacency matrix of Γ. Then Corollary 1.3
and (6) yield the

Lemma 8.1. A harmonic function under (KC) satisfies

U(1)e = U(0)∗e = −Diagi (n) L(Γ)e = L(Γ)n,
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where n = (νi)I is just the column vector of the νi. For ν = 0, in particular for
non bipartite graphs, Lemma 8.1 is just equivalent with the defining relation
for Π+(Γ). But in the bipartite case, it imposes restrictions. If all edge lengths
amount to 1 e.g., then we have a very specific mean value property of the form

∀i ∈ I : νi = − 1
γi

∑

vi∼vh

uih (vh) .

8.2. The Unsigned Incidence Matrix in the Finite Case

In view of applications in Sect. 5, we present some details for the unsigned
incidence matrix D+ = D+

B = (|dij |)n×m of a finite connected simple graph B
with n vertices and m edges. Recall that in this case

dim Π+(B) = dim ker D+
B =

{
m − n + 1 if B is bipartite,
m − n if B is not bipartite.

(22)

As each edge is incident with exactly two vertices by simplicity, any ϕ =
(ϕj)m×1 fulfills

m∑

j=1

ϕj =
n∑

i=1

∑

dij=−1

ϕj =
n∑

i=1

∑

dij=1

ϕj . (23)

In particular, if B is bipartite and thereby endowable with the sink-source-
orientation, (23) takes the form

∑

vi sink

(D+
Bϕ
)
i
=

∑

vi sink

∑

vi∈kj

ϕj =
∑

vi source

∑

vi∈kj

ϕj =
∑

vi source

(D+
Bϕ
)
i
. (24)

Thus, in the bipartite case, a vector of the canonical basis en
i of Rn can never

belong to the image of D+
B . This follows also from the fact that

∀j ∈ {1, . . . ,m} : D+
Bem

j = en
i + en

k with vi, vk ∈ kj .

Finally, for application in Sect. 5, we can state the following

Lemma 8.2. Let B be a finite bipartite graph, endowed with the sink-source-
orientation. Set

s = (si)n×1 , s+ =
(
s+

i

)
n×1

, s− =
(
s−

i

)
n×1

, si =
∑

vi∈kj

�j ,

s+
i =

{
si if vi is a sink,
0 otherwise,

s−
i =

{
si if vi is a source,
0 otherwise.

(25)

Then

s ∈ Im D+
B , but s+, s− �∈ Im D+

B .
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Proof. Clearly D+
B applied to the vector � = (�j)m×1 yields the vector s =

s− + s+. Thus, it remains to show that s+ �∈ ImD+
B . But, if there were ϕ with

D+
Bϕ = s+, (24) would lead to the contradiction

L(B) =
∑

vi sink

(D+
Bϕ
)
i
=

∑

vi source

(D+
Bϕ
)
i
= 0.

�
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