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A Left Linear Weighted Composition
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Abstract. A left linear weighted composition operator Wf,ϕ is defined
on slice regular quaternionic Fock space F2(H). We carry out a com-
prehensive analysis on its classical properties. Firstly, the boundedness
and compactness of weighted composition operator on F2(H) are investi-
gated systematically, which can be seen new and brief characterizations.
And then all normal bounded weighted composition operators are found,
particularly, equivalent conditions for self-adjoint weighted operators on
F2(H) are developed. Finally, we describe all types of isometric weighted
composition operators on F2(H).
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1. Introduction

Recently, the theory of slice regular functions has been developed rapidly and
found wide range of applications, for example in Schur analysis and to define
some functional calculi. It’s well-known that there are several different type
definitions of regularity for functions in quaternions. Fueter, who expanded on
the work of Moisil, defined regular functions those which satisfy a first order
system of linear differential equations generalizing one of Cauchy–Riemann,
see e.g. [4,8] etc. Indeed, a new functional calculus for slice functions was es-
tablished which could be considered as the mathematically framework of the
quaternionic quantum mechanics. All the time mathematicians have been in-
terested in creating a theory of quaternionic valued functions of a quaternionic
variable, which would somehow resemble the classical theory of holomorphic
functions of one complex variable. For details on slice holomorphic functions
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one can refer to the excellent books [5,6]. Here we only recall some prelimi-
naries about slice regular functions used later.

1.1. Quaternion

The symbol H denotes the noncommutative, associative, real algebra of quater-
nions with standard basis {1, i, j, k}, subject to the multiplication rules

i2 = j2 = k2 = ijk = −1.

That is to say H is the set of the quaternions

q = x0 + x1i + x2j + x3k = Re(q) + Im(q),

with Re(q) = x0 and Im(q) = x1i + x2j + x3k, where xj ∈ R for j = 0, 1, 2, 3.
And then q = x0 − (x1i+x2j +x3k) = Re(q)−Im(q) represents the conjugate
of q. The Euclidean norm of a quaternion q is given by

|q| =
√

qq =
√

x2
0 + x2

1 + x2
2 + x2

3.

By the symbol S we denote the two-dimensional unit sphere of purely
imaginary quaternions, i.e.

S = {q = x1i + x2j + x3k : x2
1 + x2

2 + x2
3 = 1}.

That is, I2 = −1 for I ∈ S. For any fixed I ∈ S we define

CI := {x + Iy : x, y ∈ R},

which can be identified with a complex plane. In the sequel, an element in the
complex plane CI = R + IR is denoted by x + Iy. Moreover, it holds that

H =
⋃

I∈S

CI .

Interestingly, the real axis belongs to CI for every I ∈ S and thus a real
number can be associated with any imaginary unit I. However any non real
quaternion q is uniquely associated to the element Iq ∈ S given by

Iq := (ix1 + jx2 + kx3)/|ix1 + jx2 + kx3|,
and then q belongs to the complex pane CIq

. It’s easy to check

pq = q p (1.1)

for p, q ∈ H. Now, we are ready to give the key concept of this paper.

Definition 1.1. [6, Definition 2.1.1] Let U be an open set in H and a function
f : U → H be real differentiable. The function f is called slice regular or slice
hyperholomorphic if, for every I ∈ S, its restriction fI(x + Iy) = f(x + Iy) is
holomorphic, i.e. it has continuous partial derivatives and satisfies

∂If(x + yI) :=
1
2

(
∂

∂x
+ I

∂

∂y

)
fI(x + yI) = 0
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for all x + yI ∈ U ∩CI . The class of all slice regular functions on U is denoted
by R(U). Particularly, R(H) is the collection of all entire regular functions on
H. And then R(U) is a right linear space on H.

Let I, J ∈ S be such that I and J are orthogonal, so that I, J, IJ is an
orthogonal basis of H and write the restriction fI as the function

f = f0 + If1 + Jf2 + IJf3

on the complex plane CI . It can also be written as fI = F + GJ where
f0 + If1 = F , and f2 + If3 = G. Hence we have the following splitting lemma,
which relates slice regularity with classical holomorphy.

Lemma 1.2. [6, Lemma 2.1.4] (Splitting Lemma) If f is a slice regular func-
tion on the domain U , then for every I, J ∈ S, with I ⊥ J , there are two
holomorphic functions F, G : UI = U ∩ CI → CI such that

fI(z) = F (z) + G(z)J for any z = x + yI ∈ UI .

Slice regular functions possess good properties on specific open sets that
are called axially symmetric slice domains.

Definition 1.3. [6, Definition 2.2.1] Let U ⊂ H be a domain.
(1) U is called a slice domain (or s-domain for short) if it intersects the real
axis and if, for any I ∈ S, UI := CI ∩ U is a domain in CI .
(2) U is axially symmetric if for every x + yI ∈ U with x, y ∈ R and I ∈ S,
all the elements x + yS = {x + yJ : J ∈ S} is contained in U.

The following representation formula of a slice regular function on an
axially symmetric domain allows to recover all its values from its values on a
single slice CI .

Proposition 1.4. [6, Theorem 2.2.4](Representation Formula) Let f be a slice
regular function on an axially symmetric s-domain U ⊂ H. Let J ∈ S and let
x ± yJ ∈ U ∩ CJ , then the following equality holds for all q = x + yI ∈ U,

f(x + yI) =
1
2

[(1 + IJ)f(x − yJ) + (1 − IJ)f(x + yJ)] .

For more on the entire slice regular functions, we refer to the excellent
books [5,6] and the references therein.

It’s easy to verify the pointwise product of functions does not preserve
slice regularity, a new multiplication operation, the �-product, was introduced.
In the special case of power series, the regular product (or �-product) is given
below.

Let U be a ball with center at a real point, f(q) =
∑∞

n=0 qnan, an ∈ H

and g(q) =
∑∞

n=0 qnbn with bn ∈ H, the regular product of f and g is defined
as

(f � g)(q) :=
∞∑

n=0

qn

(
n∑

r=0

arbn−r

)

. (1.2)
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In this case, the notion �-product coincides with the classical notion of
product of series with coefficients in a ring. It’s easy to see the function f � g
is slice hyperholomorphic. The regular product was further generalized to the
case of regular functions defined on axially symmetric s-domains.

Let U ⊂ H be an axially symmetric s-domain and let f, g : U → H

be slice regular functions. For any I, J ∈ S with I ⊥ J, the Splitting Lemma
guarantees the existence of four holomorphic functions F,G,H,K : U ∩CI →
CI such that for all z = x + yI ∈ U ∩ CI ,

fI(z) = F (z) + G(z)J, gI(z) = H(z) + K(z)J.

Then fI � gI : U ∩ CI → CI is defined as

fI � gI(z)

= [F (z)H(z) − G(z)K(z)] + [F (z)K(z) + G(z)H(z)]J. (1.3)

The new function fI � gI is a holomorphic map and it admits an unique slice
regular extension to U defined by ext(fI � gI)(q).

Definition 1.5. Let U ⊂ H be an axially symmetric s-domain and let f, g :
U → H be slice regular. The function

(f � g)(q) = ext(fI � gI)(q)

defined as the extension of (1.3) (using Proposition 1.4) is called the slice
regular product of f and g.

1.2. Quaternionic Fock Space

Due to the theory of regular functions is by now very well developed, especially,
it can be extremely successful in replicating many important properties of
holomorphic functions. Parallel to holomorphic function spaces, there appear
many slice regular spaces of hyperholomorphic functions, such as, Dirichlet
and Besov spaces [16], Hardy and Bergman spaces [3,14], Bloch space [11] and
so on. Since Fock space plays an important role in quantum mechanics, and
also in its quaternionic formulation, see the book of Adler [1] and the paper
[9]. In the sequel, we collect some information for slice regular quaternionic
Fock space from [2], which is a generalization of the excellent book [18].

Definition 1.6. [2, Definition 3.6] Let I be any elements in S and p|CI
= z,

consider the set

F2(H) = {f ∈ R(H) : ‖f‖2 :=
∫

CI

|fI(z)|2e−|z|2dσ(x, y) < ∞}, (1.4)

where dσ(x, y) := 1
π dxdy. We call F2(H) (slice hyperholomorphic or slice

regular) quaternionic Fock space.

Moreover, F2(H) is a Hilbert space under the inner product

〈f, g〉 =
∫

CI

gI(z)fI(z)e−|z|2dσ(x, y), (1.5)
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which can induce a norm ‖ ·‖ given in (1.4). [2, Proposition 3.8] has shown the
definition of Fock space does not depend on the imaginary unit I ∈ S. Also
the monomials pn (n ∈ N) form an orthogonal basis and satisfy 〈pn, pn〉 = n!.

The reproducing kernel of F2(H) is given by

epq
∗ =

+∞∑

n=0

(pq)�n

n!
=

+∞∑

n=0

pnqn

n!
.

Without loss of generality, we also denote Kq(p) := epq
∗ , and [2, Theorem

3.10] implies 〈f,Kq〉 = f(q) for any f ∈ F2(H). Particularly, Kw(z) = ezw for
z, w ∈ CI . Besides, it is true that

‖Kq‖2 = 〈Kq,Kq〉 = Kq(q) = e|q|2 . (1.6)

Furthermore the function kq(p) = Kq(p)/‖Kq‖ is a unit-vector in F2(H).
Based on (1.2), we conclude

Kz(q) � Kw(q) = eqz
∗ � eqw

∗ = e
q(z+w)
∗ = Kz+w(q), (1.7)

for z, w ∈ CI and q ∈ H. Indeed, it is due to

eqz
∗ � eqw

∗ =

[ ∞∑

n=0

qnzn

n!

]

�

[ ∞∑

n=0

qnwn

n!

]

=
∞∑

n=0

qn

(
n∑

r=0

zr

r!
wn−r

(n − r)!

)

=
∞∑

n=0

qn

n!

(
n∑

r=0

n!
r!(n − r)!

zrwn−r

)

=
∞∑

n=0

qn(z + w)n

n!

= e
q(z+w)
∗ = Kz+w(q).

1.3. Weighted Composition Operator

Recently huge interest has arisen to characterize composition operators on var-
ious holomorphic function spaces of different domains in C or Cn. For more
details on composition operators and their applications one can refer to the
two books [7] by Cowen and MacCluer, and [15] by Shapiro. Motivated by
rich achievements in complex analytic function theory, many mathematicians
have contributed to the characterizations of composition operator on several
slice regular spaces of hyperholomorphic functions, we refer to [10,16] and
their references therein. To the best of our knowledge, there has been no such
descriptions for weighted composition operator on slice regular spaces of hyper-
holomorphic functions. Considering the significant applications of Fock space,
these basic characterizations are in desired need of response.
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In this paper, we will first define a left-linear weighted composition op-
erator on F2(H) in details. Let ϕ : H → H be a slice hyperholomorphic map
such that ϕ(CI) ⊂ CI for some I ∈ S. The composition operator Cϕ on F2(H)
induced by ϕ is defined by

(Cϕf)I(z) = (fI ◦ ϕI)(z) = F ◦ ϕI(z) + G ◦ ϕI(z)J

for all f ∈ F2(H) with fI(z) = F (z) + G(z)J . By the representation formula
(Proposition 1.4), we can obtain the extension Cϕh to the whole H.

And then, the weighted composition operator Wf,ϕ : F2(H) → F2(H)
with f ∈ R(H) and ϕ : CI → CI for some I ∈ S, is defined as

(Wf,ϕh)I(z) = (hI ◦ ϕI)(z) � fI(z)

for all h ∈ F2(H). The extension Wf,ϕh on H is also deduced by the represen-
tation formula. Here we also note that

[Wf,ϕ(ag + bh)]I(z) = a(Wf,ϕg)I(z) + b(Wf,ϕh)I(z)

for any g, h ∈ F2(H) and a, b ∈ H, which means Wf,ϕ is left linear on F2(H).
Indeed, we have also defined a right linear weighted composition operator in
[12] through �-product by fI(z) on the left, that is

(W̃f,ϕh)I(z) = fI(z) � (hI ◦ ϕI)(z).

Especially, we have systematically investigated some interesting prop-
erties of W̃f,ϕ on F2(H). Parallelling to these important results in [12], we
include analogous characterizations about Wf,ϕ on F2(H) for completeness.
Comparing these corresponding results, we may find many differences, which
can reveal the influence of weight function’s location on weighted composition
operator.

In what follows, we will find the slice regular product can make the the-
ory of weighted composition operator more complicated than that behaves on
functions of one complex variable. Specifically, the paper consists of 3 sections
and its outline is as follows. In Sect. 2 we concentrate on the descriptions
for boundedness and compactness of weighted composition operator acting on
the slice regular quaternionic Fock space. Section 3 is devoted to determine
all normal weighted composition operators on F2(H) and then the equivalent
conditions for self-adjoint weighted composition operators are presented. Fi-
nally, the isometric weighted composition operators on F2(H) are investigated
in Sect. 4. These results can be seen the extensions of the corresponding parts
in [13] concerning weighted composition operators on Fock space F2(C).

2. Boundedness and Compactness

In this section we will systematically investigate the boundedness and compact-
ness of weighted composition operators acting on F2(H). Firstly, we exhibit
an interesting lemma for our further use.
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Lemma 2.1. For every q = x0 + x1i + x2j + x3k ∈ H, it holds that

x0 =
q + q

2
and x1 =

iq − qi

2
. (2.1)

Hence

x0 + x1i =
q + q

2
+ i

iq − qi

2
=

q − iqi

2
. (2.2)

Proof. It is true that q = x0 − (x1i + x2j + x3k) and then it’s obvious that
x0 = (q + q)/2. By the properties i2 = j2 = k2 = −1, ij = −ji = k, jk =
−kj = i and ki = −ik = j, it follows that

iq = x0i + x1 − x2ij − x3ik = x0i + x1 − x2k − x3j

and

qi = x0i − x1 + x2ji + x3ki = x0i − x1 − x2k − x3j.

Hence x1 = (iq − qi)/2. This completes the proof. �

Paralleling to [13, Proposition 2.1], we provide a vital result for the
characterizations of bounded and compact weighted composition operators on
F2(H).

Proposition 2.2. Let f and ϕ be two slice regular functions on H, such that
f is not identically zero and ϕ(CI) ⊂ CI for some I ∈ S. Suppose there is a
positive constant M such that

M(f, ϕ) := sup
p∈H

e|ϕ(p)|2−|p|2 |f(p)|2 ≤ M. (2.3)

Then ϕ(p) = ϕ(0) + pλ for some |λ| ≤ 1, λ ∈ CI . If |λ| = 1, then

f(p) = e−pβf(0), (2.4)

where β = 1
2 (ϕ(0)λ − Iϕ(0)λI) = ϕ(0)λ. Furthermore, if

lim
|p|→∞

e|ϕ(p)|2−|p|2 |f(p)|2 = 0, (2.5)

then ϕ(p) = ϕ(0) + pλ with |λ| < 1, λ ∈ CI .

Proof. For f ∈ R(H) not identically zero, there is a nonegative integer k and
a slice regular function g with g(0) = 0 such that f(p) = pkg(p) for p ∈ H.
Hence (2.3) becomes into

e|ϕ(p)|2−|p|2 |pkg(p)|2 ≤ M.

That is to say

e|ϕ(p)|2−|p|2 |p|2k|g(p)|2 ≤ M.

Taking logarithms on both sides of the above display, it follows that

2 log |p|k + 2 log |g(p)| + |ϕ(p)|2 − |p|2 ≤ log M.
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Hence

|ϕ(p)|2 − |p|2 + 2k log |p| + 2 log |g(p)| ≤ log M.

On CI , using polar coordinates we write p = ρeIθ for ρ = |p| > 0, and we have
that

|ϕ(ρeIθ)|2 − |ρeIθ|2 + 2k log |ρeIθ| + 2 log |g(ρeIθ)| ≤ log M.

We integrate the above inequality with respect to θ on [−π, π], and obtain
∫ π

−π

|ϕ(ρeIθ)|2 dθ

2π
− ρ2 + 2k log ρ + 2

∫ π

−π

log |g(ρeIθ)| dθ

2π
≤ log M.

Employing
∫ π

−π

log |g(ρeIθ)| dθ

2π
≥ log |g(0)|,

it yields that
∫ π

−π

|ϕ(ρeIθ)|2 dθ

2π
− ρ2 + 2k log ρ + 2 log |g(0)| ≤ log M. (2.6)

We consider the power expansion

ϕ(p) = ϕ(0) + pb1 + p2b2 + · · · ,

for p ∈ H, hence

ϕ(ρeIθ) = ϕ(0) + ρeIθb1 + ρ2e2Iθb2 + · · · .

Furthermore, it follows that
∫ π

−π

|ϕ(ρeIθ)|2 dθ

2π
= |ϕ(0)|2 + ρ2|b1|2 + ρ4|b2|2 + · · · ,

and then we deduce that

|ϕ(0)|2 + ρ2(|b1|2 − 1) +
∞∑

j=2

ρ2j |bj |2 + 2k log ρ + 2 log |g(0)| ≤ log M.

Due to the above inequality holds for all ρ > 0, letting ρ → ∞, we can
conclude that |b1| ≤ 1, bj = 0 for all j ≥ 2 and k = 0. This entails that
ϕ(p) = ϕ(0) + pb1 with |b1| ≤ 1. Under this case, we denote ϕ(p) = ϕ(0) + pλ
for |λ| ≤ 1, λ ∈ CI due to ϕ(CI) ⊂ CI .

Besides, if |λ| = 1, we have that ϕ(p) = ϕ(0) + pλ. Let I, J ∈ S be
such that I and J are orthogonal. Here we denote p|I = z = x0 + x1I and
ϕ(0) = α0 + α1J and λ = β0 + β1J with |β0|2 + |β1|2 = 1, for αl, βl ∈ CI for
l = 0, 1. Assume fI(z) = u(z) + v(z)J and we get

ϕI(z) = ϕ(0) + (x0 + x1I)λ
= α0 + α1J + (x0 + x1I)(β0 + β1J)
= α0 + β0(x0 + x1I) + (α1 + β1(x0 + x1I))J
= F (x0, x1) + G(x0, x1)J, (2.7)
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where

F (x0, x1) : = α0 + β0(x0 + x1I) = α0 + β0z,

G(x0, x1) : = α1 + β1(x0 + x1I) = α1 + β1z.

Hence

|ϕI(z)|2 = |F (x0, x1)|2 + |G(x0, x1)|2
= |α0|2 + |β0|2|z|2 + 2Re(α0β0z) + |α1|2 + |β1|2|z|2 + 2Re(α1β1z)

= |α0|2 + |z|2 + |α1|2 + 2Re(α0β0z + α1β1z). (2.8)

Furthermore, (2.8) entails that

|ϕI(z)|2 − |z|2 = |α0|2 + |α1|2 + 2Re(α0β0z + α1β1z)
= |ϕI(0)|2 + 2Re(α0β0z + α1β1z),

which together with (2.3) imply that

e|ϕI(z)|2−|z|2 |fI(z)|2
= e|α0|2+|α1|2+2Re(α0β0z+α1β1z)|fI(z)|2
≤ M for all z ∈ CI .

The above formulas entail that

[|u(z)|2 + |v(z)|2] ∣∣eα0β0z+α1β1z
∣∣2 ≤ Me−(|α0|2+|α1|2) = Me−|ϕI(0)|2 , (2.9)

for all z ∈ CI . Denote δ := α0β0 + α1β1. The display (2.9) can be interpreted
into

∣∣∣u(z)eδz
∣∣∣
2

≤ Me−|ϕI(0)|2 ,
∣∣∣v(z)eδz

∣∣∣
2

≤ Me−|ϕI(0)|2 , (2.10)

for all z ∈ CI . Liouville’s theorem implies that both u(z)eδz and v(z)eδz are
constant functions. It’s easy to check that

u(z) = u(0)e−δz and v(z) = v(0)e−pδz.

Therefore, we obtain that fI(z) = u(z) + v(z)J = u(0)e−zδ + v(0)e−zδJ , that
is to say

fI(z) = e−zδ(u(0) + v(0)J) = e−zδfI(0).

In this case, the left side of (2.3) is the constant

e|ϕI(z)|2−|z|2 |fI(z)|2 = e|ϕI(0)|2+2Re(δz)|e−zδfI(0)|2

= e|ϕI(0)|2+2Re(δz)e−2Re(zδ)|fI(0)|2

= e|ϕI(0)|2 |fI(0)|2.
Therefore, if (2.5) is true, then |λ| < 1.
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In the sequel, we prefer to use ϕ(0) and λ to express δ. In general case,
we suppose that ϕ(0) = α0 + α1J and λ = β0 + β1J , and then

ϕ(0)λ = (α0 + α1J)(β0 + β1J)

= (α0 + α1J)(β0 + J β1)

= α0β0 + α1β1 + (α1β0 − α0β1)J. (2.11)

Therefore using Lemma 2.1, we can deduce that

δ := α0β0 + α1β1 =
1
2
(ϕ(0)λ − Iϕ(0)λI).

Indeed, we note ϕ(CI) ⊂ CI , then it yields ϕI(0) = ϕ(0) ∈ CI . Due to λ ∈ CI ,
it turns out

δ =
1
2
(ϕ(0)λ − I2ϕ(0)λ) = ϕ(0)λ,

which completes the proof. �

Let f and ϕ be two slice regular functions on H, such that f is not
identically zero and ϕ(CI) ⊂ CI for some I ∈ S. Then we can obtain the
adjoint of weighted composition operator denoted by W ∗

f,ϕ. For the kernel
Kp ∈ F2(H), it yields that

〈W ∗
f,ϕKp,Kq〉 = 〈Kp,Wf,ϕKq〉 = 〈Wf,ϕKq,Kp〉.

Furthermore, it turns out
W ∗

f,ϕKp(q) = Wf,ϕKq(p), (2.12)

for p, q ∈ H. In the sequel, we always choose J ∈ S with I ⊥ J and denote
fI(z) = F (z) + G(z)J (2.13)

with two holomorphic functions F,G : CI → CI .
Based on Proposition 2.2 and the display (2.12), we present a character-

ization for bounded weighted composition operator on F2(H).

Theorem 2.3. Let f and ϕ be two slice regular functions on H, such that f is
not identically zero and ϕ(CI) ⊂ CI for some I ∈ S. If the operator Wf,ϕ :
F2(H) → F2(H) is bounded, then f ∈ F2(H), ϕ(p) = ϕ(0) + pλ with |λ| ≤ 1,
λ ∈ CI and

M(f, ϕ) := sup
p∈H

e|ϕ(p)|2−|p|2 |f(p)|2 < +∞. (2.14)

Conversely, under the additional assumption λ−1ϕ(0) ∈ R for λ = 0, the above
necessary conditions can ensure the boundedness of Wf,ϕ on F2(H).

Proof. Firstly, suppose Wf,ϕ is bounded on F2(H), then we can deduce that
f = 1 � f = Wf,ϕ1 ∈ F2(H). On the other hand, it follows that

‖Wf,ϕ‖2 = ‖W ∗
f,ϕ‖2 ≥ ‖W ∗

f,ϕKp‖2
‖Kp‖2 . (2.15)
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We use the Eq. (2.12) to compute the term ‖W ∗
f,ϕKp‖2 as below,

‖W ∗
f,ϕKp‖2

= ‖W ∗
f,ϕKp(q)‖2 = ‖Wf,ϕKq(p)‖2

= ‖Wf,ϕKq(p)‖2 = ‖[Kq ◦ ϕ(p)] � f(p)‖2

=
∫

CI

∣∣∣∣∣

[ ∞∑

n=0

(ϕ(p))�nzn

n!

]

� f(p)

∣∣∣∣∣

2

e−|z|2dσ(x, y)

≥
∫

CI

∣∣∣∣∣

[ ∞∑

n=0

(ϕI(w))�nzn

n!

]

� fI(w)

∣∣∣∣∣

2

e−|z|2dσ(x, y), (2.16)

where q|CI
= z = x+yI ∈ CI and p|CI

= w = u+vI ∈ CI . Since ϕ : CI → CI ,
it follows that

ϕ(p)�n = ext(ϕI(w)�n) = ext(ϕI(w)n).

Hence, on CI , by the operation rule (1.3) it turns out

[ ∞∑

n=0

(ϕI(w))�nzn

n!

]

� fI(w)

=

[ ∞∑

n=0

(ϕI(w))nzn

n!

]

� (F (w) + G(w)J)

=

[ ∞∑

n=0

(ϕI(w))nzn

n!

]

· F (w) +

[ ∞∑

n=0

(ϕI(w))nzn

n!

]

· G(w)J,

which ensure

∣
∣∣∣∣

[ ∞∑

n=0

(ϕI(w))�nzn

n!

]

� fI(w)

∣
∣∣∣∣

2

=

∣
∣∣∣∣

∞∑

n=0

(ϕI(w))nzn

n!

∣
∣∣∣∣

2

· |F (w)|2 +

∣
∣∣∣∣

∞∑

n=0

(ϕI(w))nzn

n!

∣
∣∣∣∣

2

· |G(w)|2

=

∣∣∣∣∣

∞∑

n=0

(ϕI(w))nzn

n!

∣∣∣∣∣

2 (
|F (w)|2 + |G(w)|2

)

=

∣∣∣∣∣

∞∑

n=0

(ϕI(w))nzn

n!

∣∣∣∣∣

2

|fI(w)|2.
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Therefore, the display (2.16) becomes into

‖W ∗
f,ϕKp‖2 ≥

∫

CI

∣∣∣∣
∣

∞∑

n=0

(ϕI(w))nzn

n!

∣∣∣∣
∣

2

|fI(w)|2 e−|z|2dσ(x, y)

=
∞∑

n=0

|ϕI(w)|2nn!
(n!)2

|fI(w)|2

= e|ϕI(w)|2 |fI(w)|2. (2.17)

Employing the norm in (1.6), it yields that

∞ >
‖W ∗

f,ϕKp‖2
‖Kp‖2 =

e|ϕI(w)|2 |fI(w)|2
e|w|2

= e|ϕI(w)|2−|w|2 |fI(w)|2.
Therefore we can obtain

sup
w∈CI

e|ϕI(w)|2−|w|2 |fI(w)|2 < ∞. (2.18)

Due to the definition of Fock space does not depend on the imaginary unit
I ∈ S, then the inequality (2.18) entails

sup
p∈H

e|ϕ(p)|2−|p|2 |f(p)|2 < +∞. (2.19)

(2.19) together with Proposition 2.2 can imply that ϕ(p) = ϕ(0)+ pλ for
|λ| ≤ 1 with λ, ϕ(0) ∈ CI .

Conversely, we will show Wf,ϕ : F2(H) → F2(H) is bounded under the
assumption λ−1ϕ(0) ∈ R with λ = 0. For any h ∈ H, it follows that

‖Wf,ϕh‖2 =
∫

CI

|[(h ◦ ϕ) � f ]I(p)|2e−|p|2dσ(x, y)

=
∫

CI

|(h ◦ ϕ)I(z) � fI(z)|2e−|z|2dσ(x, y). (2.20)

Here we denote (h ◦ ϕ)I(z) = F (z) + G(z)J and fI(z) = H(z) + K(z)J, and
then the display (1.3) implies that

(h ◦ ϕ)I(z) � fI(z)

= (F (z)H(z) − G(z)K(z)) + (F (z)K(z) + G(z)H(z))J.

Thus

|(h ◦ ϕ)I(z) � fI(z)|2
= |F (z)H(z) − G(z)K(z)|2 + |F (z)K(z) + G(z)H(z)|2
≤ 2(|F (z)H(z)|2 + |G(z)K(z)|2 + |F (z)K(z)|2 + |G(z)H(z)|2)
= 2(|F (z)H(z)|2 + |G(z)K(z)|2 + |F (z)K(z)|2 + |G(z)H(z)|2). (2.21)
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Putting (2.21) into (2.20), we obtain

‖Wf,ϕh‖2 ≤ 2
∫

CI

(|F (z)H(z)|2 + |F (z)K(z)|2)e−|z|2dσ(x, y)

+ 2
∫

CI

(|G(z)K(z)|2 + |G(z)H(z)|2)e−|z|2dσ(x, y)

= 2
∫

CI

|F (z)|2(|H(z)|2 + |K(z)|2)e−|z|2dσ(x, y)

+ 2
∫

CI

(|G(z)K(z)|2 + |G(z)H(z)|2)e−|z|2dσ(x, y)

= 2
∫

CI

|F (z)|2|fI(z)|2e−|z|2dσ(x, y)

+ 2
∫

CI

|G(z)|2|fI(z)|2e−|z|2dσ(x, y) (2.22)

≤ 2
[

sup
z∈CI

e|ϕI(z)|2−|z|2 |fI(z)|2
] ∫

CI

|(h ◦ ϕ)I(z)|2e−|ϕI(z)|2dσ(x, y)

+ 2
[

sup
z∈CI

e|ϕI(z)|2−|z|2 |fI(z)|2
] ∫

CI

|(h ◦ ϕ)I(z)|2e−|ϕI(z)|2dσ(x, y)

≤ 2M(f, ϕ)
∫

CI

|(h ◦ ϕ)I(z)|2e−|ϕI(z)|2dσ(x, y)

+ 2M(f, ϕ)
∫

CI

|(h ◦ ϕ)I(z)|2e−|ϕI(z)|2dσ(x, y)

= 4M(f, ϕ)
∫

CI

|hI ◦ ϕI(z)|2e−|ϕI(z)|2dσ(x, y), (2.23)

= 4M(f, ϕ)|λ|−2‖h‖2 < +∞.

In the above chain of inequalities, the changes of variables z → z and
w = ϕI(z) = ϕ(0)+λz were used in (2.22) and the last line, respectively. Here
the display (2.23) is due to

|ϕI(z)| = |λz + ϕ(0)| = |λ||z + λ−1ϕ(0)| = |λ||z + λ−1ϕ(0)| = |ϕI(z)| (2.24)

for λ−1ϕ(0) ∈ R. Therefore, the operator Wf,ϕ is bounded on F2(H) for λ = 0.
For the case λ = 0, it holds that ϕ(z) = ϕ(0). And then

Wf,ϕh = (h ◦ ϕ(0)) � f ∈ F2(H)

due to f ∈ F2(H). All in all, the operator Wf,ϕ : F2(H) → F2(H) is bounded
under the additional assumption λ−1ϕ(0) ∈ R with λ = 0. This ends the
proof. �

In the sequel, we describe the conditions for compactness of weighted
composition operator Wf,ϕ on F2(H).
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Theorem 2.4. Let f and ϕ be two slice regular functions on H, such that f is
not identically zero and ϕ(CI) ⊂ CI for some I ∈ S. If the operator Wf,ϕ is
compact on F2(H), then ϕ(p) = ϕ(0) + pλ with |λ| < 1, λ ∈ CI and

lim
|p|→∞

e|ϕ(p)|2−|p|2 |f(p)|2 = 0. (2.25)

Conversely, under the additional assumption λ−1ϕ(0) ∈ R for λ = 0, the
necessary conditions can ensure the compactness of Wf,ϕ on F2(H).

Proof. Firstly, suppose the operator Wf,ϕ is compact on F2(H), it must be
bounded and then Theorem 2.3 implies that the display (2.14) holds and

ϕ(p) = ϕ(0) + pλ

with |λ| ≤ 1, λ ∈ CI . For the case |λ| = 1, Proposition 2.2 ensures

fI(w) = e−wλϕ(0)fI(0).

Furthermore, we deduce

e|ϕI(w)|2−|w|2 |fI(w)|2
= e|ϕ(0)+wλ|2−|w|2 |e−wλϕ(0)|2|fI(0)|2
= |fI(0)|2e|ϕ(0)|2 ,

which contradicts with (2.25).
Thus |λ| < 1 holds, and then we go on to show the display (2.25). If

Wf,ϕ is compact on F2(H), then the adjoint operator W ∗
f,ϕ is also compact on

F2(H). Since

kp = ‖Kp‖−1Kp → 0

as |p| → ∞, we have

‖Kp‖−2‖W ∗
f,ϕKp‖2 = e−|p|2‖W ∗

f,ϕKp‖2 → 0

as |p| → ∞. Employing the computations in (2.16) and (2.17), it yields that

|fI(w)|2e|ϕI(w)|2−|w|2 → 0,

as |w| → ∞. Further, employing the definition of Fock space not depending
on the imaginary unit I ∈ S, (2.25) is true.

Conversely. Assume that ϕ(p) = ϕ(0) + pλ with |λ| < 1, λ ∈ CI and
(2.25) holds. For the case λ = 0, this implication is obvious. In fact,

Wf,ϕh = h(ϕ(0)) � f,

which implies Wf,ϕ has finite rank, thus it is compact.
Now suppose that λ = 0, and λ−1ϕ(0) ∈ R, we proceed to prove the

weighted composition operator is compact on F2(H). Let {hm}∞
m=1 be a

bounded sequence in F2(H) with C := supm∈N
‖hm‖ < +∞ and converge
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weakly to 0 as m → ∞. Then we know the sequence {hm} converges to zero
uniformly on compact subsets of H. In the sequel, we show that

‖Wf,ϕhm‖2 → 0

as m → ∞. We denote (hm ◦ ϕ)I(z) = Fm(z) + Gm(z)J and fI(z) = H(z) +
K(z)J. By the similar calculations in (2.22), we have

‖Wf,ϕhm‖2

=
∫

CI

|(hm ◦ ϕ)I(z) � fI(z)|2e−|z|2dσ(x, y)

≤ 2
∫

CI

|Fm(z)|2|fI(z)|2e−|z|2dσ(x, y)

+ 2
∫

CI

|Gm(z)|2|fI(z)|2e−|z|2dσ(x, y). (2.26)

Since (2.25) holds, for any ε > 0, there exists R > 0 such that

sup
|p|>R

e|ϕ(p)|2−|p|2 |f(p)|2 ≤ ε. (2.27)

The first part of (2.26) tends to zero as below,
∫

CI

|Fm(z)|2|fI(z)|2e−|z|2dσ(x, y)

=

∫

|z|>R

|Fm(z)|2|fI(z)|2e−|z|2dσ(x, y) +

∫

|z|≤R

|Fm(z)|2|fI(z)|2e−|z|2dσ(x, y)

≤ sup
|z|>R

|fI(z)|2e|ϕI(z)|2−|z|2
∫

|z|>R

|Fm(z)|2e−|ϕI(z)|2dσ(x, y)

+ M(f, ϕ)

∫

|z|≤R

|Fm(z)|2e−|ϕI(z)|2dσ(x, y)

≤ ε

∫

|z|>R

|(hm)I ◦ ϕI(z)|2e−|ϕI(z)|2dσ(x, y)

+ M(f, ϕ)

∫

|z|≤R

|(hm)I ◦ ϕI(z)|2e−|ϕI(z)|2dσ(x, y)

≤ C2ε, as m → ∞,

where we use (2.27) in the fifth line and employing hm → 0 on compact subsets
of H in the last line. Furthermore, ε is arbitrary, then the first part tends to
zero as m → ∞.

Similar to the calculations for the first part in (2.26), the second part
turns into∫

CI

|Gm(z)|2|fI(z)|2e−|z|2dσ(x, y)

=
∫

|z|>R

|Gm(z)|2|fI(z)|2e−|z|2dσ(x, y)
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+
∫

|z|≤R

|Gm(z)|2|fI(z)|2e−|z|2dσ(x, y)

≤ sup
|z|>R

|fI(z)|2e|ϕI(z)|2−|z|2
∫

|z|>R

|Gm(z)|2e−|ϕI(z)|2dσ(x, y)

+M(f, ϕ)
∫

|z|≤R

|Gm(z)|2e−|ϕI(z)|2dσ(x, y)

= sup
|z|>R

|fI(z)|2e|ϕI(z)|2−|z|2
∫

|z|>R

|Gm(z)|2e−|ϕI(z)|2dσ(x, y)

+M(f, ϕ)
∫

|z|≤R

|Gm(z)|2e−|ϕI(z)|2dσ(x, y)

≤ ε

∫

|z|>R

|(hm)I ◦ ϕI(z)|2e−|ϕI(z)|2dσ(x, y)

+M(f, ϕ)
∫

|z|≤R

|(hm)I ◦ ϕI(z)|2e−|ϕI(z)|2dσ(x, y)

≤ C2ε, as m → ∞.

where we use the display (2.24) in seventh line. Putting the above two results
into (2.26), we conclude that ‖Wf,ϕhm‖ → 0 as m → ∞. That is to say Wf,ϕ

is compact on F2(H), which completes the proof. �
Question How can we delete the assumption λ−1ϕ(0) ∈ R for λ = 0 in

the proof for bounded or compact weighted composition operator on F2(H)?

3. Normal Weighted Composition Operators

Recall an operator T : F2(H) → F2(H) is normal if and only if T ∗T = TT ∗,
where T ∗ : F2(H) → F2(H) is the adjoint operator of T . In this section, all
normal weighted composition operators on F2(H) will be described. First of
all, we introduce a special weighted composition operator Wkλb,ϕ, which plays
a vital role in following characterizations. Considering a special weight kλb with
λ, b ∈ CI and an entire regular composition symbol ϕ satisfying ϕ(CI) ⊂ CI ,
the weighted composition operator Wkλb,ϕ on CI is defined as

(Wkλb,ϕh)I(z) = hI(ϕI(z)) � kλb(z).

Similarly the extension Wkλb,ϕ can also be deduced from the representation
formula. By an easy modification for [12, Proposition 4.3], we obtain the left
linear weighted composition operator Wkλb,ϕ is unitary in F2(H) under some
special symbols.

Proposition 3.1. Let ϕ(p) = pλ − b with |λ| = 1 and λ, b ∈ CI such that
ϕ(CI) ⊂ CI for some I ∈ S. Then Wkλb,ϕ is a unitary operator in F2(H) and
it satisfies

W−1
kλb,ϕ = W ∗

kλb,ϕ = Wk−b,ϕ−1 .
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Remark 3.2. Putting λ = 1 in Proposition 3.1, it follows ϕ1(p) = p − b with
b ∈ CI , and denote

Wb = Wkb,ϕ1 . (3.1)

The commutation relation is true for u, v ∈ CI ,

WuWv = eiIm(uv)Wu+v,

which further implies W−1
u = W−u.

We are now in a position to describe all normal weighted composition
operators on slice regular quaternionic Fock space F2(H).

Theorem 3.3. Let f and ϕ be two slice regular functions on H, such that fI(z) =
F (z) + G(z)J is not identically zero and ϕ(CI) ⊂ CI for some I ∈ S. Then
Wf,ϕ is a normal bounded operator on F2(H) if and only if one of the following
two cases occurs: (i) ϕ(p) = pλ + b with |λ| = 1 and f(p) = K−λb(p)f(0). In

this case Wf,ϕ is the unitary operator Wk−λb,ϕ multiply a constant e|b|2/2f(0)
on the right.

(ii) ϕ(p) = pλ + b with |λ| < 1 and f(p) = Ka(1−λ)(p)f(0) with a =
b(1−λ)−1 ∈ CI . In this case, Wf,ϕ is unitarily equivalent to a special weighted
composition operator WF (a),pλ.

Proof. Necessity. Suppose Wf,ϕ is a normal bounded operator on F2(H). The-
orem 2.3 ensures ϕ(p) = pλ + b with λ, b ∈ CI , for |λ| ≤ 1, and

e|ϕI(z)|2−|z|2 |fI(z)|2 < +∞
for all z ∈ CI . We divide the following discussion into two cases:

Case 1. For the case |λ| = 1. The display (2.4) of Proposition 2.2 asserts
that

f(p) = e−pλbf(0) = K−λb(p)f(0) = k−λb(p)e|b|2/2f(0) = k−λb(p)c,

where c = e|b|2/2f(0) ∈ H. That is to say

(Wf,ϕhI)(z) = hI(ϕI(z)) � fI(z) = hI(ϕI(z)) � k−λb(z)c = (Wk−λb,ϕhI)(z)c.

By the representation formula, it turns out Wf,ϕ = Wk−λb,ϕ · c, which
together with Proposition 3.1 imply Wf,ϕ is the unitary operator Wk−λb,ϕ

multiply a constant on the right.
Case 2. For the case |λ| < 1. The map ϕ(p) = pλ + b has a unique fixed

point a = b(1 − λ)−1 ∈ CI . By the formula (2.12), we can deduce

(W ∗
f,ϕKa)I(z) = WfI ,ϕI

Kz(a)

= Kz(ϕI(a)) � fI(a)

= Kz(a)(F (a) + G(a)J)
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= Kz(a)F (a) + J G(a) Kz(a)

= (F (a) − G(a)J)Ka(z). (3.2)

The normality entails Wf,ϕW ∗
f,ϕ = W ∗

f,ϕWf,ϕ. Let the operator Wf,ϕ act on
both sides of (3.2), then it turns out that

(W ∗
f,ϕWf,ϕKa)I(z) = (Wf,ϕW ∗

f,ϕKa)I(z)

= [Wf,ϕ(F (a) − G(a)J)Ka]I(z)

= (F (a) − G(a)J)Ka(ϕ(z)) � fI(z)

= (F (a) − G(a)J)(Wf,ϕKa)I(z).

Comparing with (3.2), we conclude that (Wf,ϕKa)I(z) = βKa(z) with
β ∈ H. Taking z = a in the above formula, we obtain that

Ka(ϕ(a)) � fI(a) = Ka(a)fI(a) = βKa(a),

which implies β = fI(a) = F (a) + G(a)J. Hence

(Wf,ϕKa)I(z) = fI(a)Ka(z) = (F (a) + G(a)J)Ka(z).

On the other hand,

(Wf,ϕKa)I(z) = Ka(ϕ(z))F (z) + Ka(ϕ(z))G(z)J.

Combining the above two formulas, it yields that
{

Ka(ϕ(z))F (z) = F (a)Ka(z),

Ka(ϕ(z))G(z) = G(a)Ka(z).

Since the analytic functions Ka(ϕ(z)) and Ka(z) are both not zero, the
second equation implies G(a) = 0 and then G(z) = 0. Furthermore, the first
equation ensures

F (z) = F (a)Ka(z − ϕ(z)) = F (a)Ka(z(1 − λ) − b).

That is to say

fI(z) = F (z) = F (a) exp(−ab)Ka(1−λ)(z),

which is a holomorphic map on CI . And then

f(p) = exp(−ab)Ka(1−λ)(p)F (a).

Particularly, letting z = 0 in the above equation, it yields that f(0) = exp
(−ab)F (a) ∈ CI . That entails f(p) = Ka(1−λ)(p)f(0).

In view of Proposition 3.1 and Remark 3.2, we obtain

W ∗
a Wf,ϕWa = W−aWf,ϕWa,

which is denoted by Wg,ψ with

gI(z) = ka(ϕ(z + a)) � [F (a)Ka((z + a) − ϕ(z + a))] � k−a(z)
= ka(ϕ(z + a))[F (a)Ka((z + a) − ϕ(z + a))]k−a(z)
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= e((z+a)λ+b)a−|a|2/2 · [F (a)e(z+a−(z+a)λ−b)a] · e−za−|a|2/2

= F (a),

and

ψI(z) = ϕI(z + a) − a = (z + a)λ − a = λz.

The above formulas ensure

(W ∗
a Wf,ϕWah)I(z) = (Wg,ψh)I(z) = hI(λz) � F (a) = hI(λz)F (a)

for any h ∈ F2(H). That means W ∗
a Wf,ϕWa = WF (a),pλ. In other words, Wf,ϕ

is unitarily equivalent to the special weighted composition operator WF (a),pλ

on CI .

Sufficiency. If the Case 1 holds, Wf,ϕ = Wk−λb,ϕ · c. Proposition 3.1
entails

W ∗
f,ϕWf,ϕ = cW ∗

k−λb,ϕWk−λb,ϕ · c = |c|2 = Wf,ϕW ∗
f,ϕ,

which clearly means Wf,ϕ is normal.
If the Case 2 holds, then Wf,ϕ is unitarily equivalent to WF (a),pλ, which is

diagonalizable with respect to the standard orthonormal basis {pm/
√

m!}∞
m=0

in F2(H). Hence Wf,ϕ is a normal operator. This ends the proof. �

Subsequently, we will present the equivalent characterizations for a self-
adjoint operator Wf,ϕ on F2(H), which is a special case of Theorem 3.3. Given
a bounded linear operator T acting from a Hilbert space H to itself, we say
that T is self-adjoint on H if T ∗ = T . Equivalently, a bounded operator T
on F2(H) is self-adjoint if 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ F2(H). It’s evident
that if Wf,ϕ is self-adjoint on F2(H), then it is normal on F2(H). We generally
investigate the necessary conditions for the adjoint of weighted composition
operator is another weighted composition operator in Theorem 3.4. And then
we can deduce a corollary for a self-adjoint weighted composition operator on
F2(H), which is an extension of [17, Corollary 2.9].

Theorem 3.4. Let f, g and ϕ,ψ be four slice regular functions on H. Denote
fI(z) = F (z) + G(z)J and gI(z) = H(z) + K(z)J nonzero functions and
suppose ϕ(CI) ⊂ CI , ψ(CI) ⊂ CI for some I ∈ S. If a bounded weighted com-
position operator Wf,ϕ on F2(H) satisfies W ∗

f,ϕ = Wg,ψ, then one of the fol-
lowing two cases occurs: (i) f(p) = KψI(0)(p)F (0) and g(p) = KϕI(0)(p)F (0),

ϕ(p) = ϕ(0) + pλ and ψ(p) = ψ(0) + pλ, with λ ∈ CI and |λ| ≤ 1.

(ii) f(p) = f(0), g(p) = g(0) with fI(0) = F (0) + G(0)J and gI(0) =
F (0) − G(0)J ; ϕ(p) = ψ(p) = 0.

Proof. Since W ∗
f,ϕ = Wg,ψ, it follows that

(W ∗
f,ϕKw)I(z) = (Wg,ψKw)I(z)
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for all z, w ∈ CI . On the one hand,

(W ∗
f,ϕKw)I(z) = W ∗

fI ,ϕI
Kz(w)

= Kz(ϕI(w)) � fI(w) = Kz(ϕI(w)) � (F (w) + G(w)J)

= Kz(ϕI(w))F (w) + Kz(ϕI(w))G(w)J

= KϕI(w)(z)F (w) − G(w)Kz(ϕI(w))J.

On the other hand,

(Wg,ψKw)I(z) = Kw(ψI(z))H(z) + Kw(ψI(z))K(z)J.

Combining the above formulas, we obtain that
{

KϕI(w)(z)F (w) = Kw(ψI(z))H(z),

−G(w)Kz(ϕI(w)) = Kw(ψI(z))K(z).
(3.3)

Firstly, let z = w = 0 in (3.3), it yields that

H(0) = F (0) and K(0) = −G(0). (3.4)

Secondly, let z = 0 in (3.3), we deduce
{

KϕI(w)(0)F (w) = Kw(ψI(0))H(0),

−G(w)K0(ϕI(w)) = Kw(ψI(0))K(0),

which together with (3.4) entail that
{

F (w) = H(0)KψI(0)(w) = F (0)KψI(0)(w),

G(w) = −K(0)Kw(ψI(0)) = G(0)Kw(ψI(0)).
(3.5)

Similarly, also letting w = 0 in (3.3), it follows that
{

H(z) = F (0)KϕI(0)(z) = H(0)KϕI(0)(z),

K(z) = −G(0)Kz(ϕI(0)) = K(0)Kz(ϕI(0)).
(3.6)

Observing the second formula in (3.5), it holds if and only if the following two
cases occur, G(0) = 0 or G(0) = 0 and ψI(0) = 0. Specifically, we divide into
Case 1 and Case 2.

Case 1. G(0) = 0. Since f is nonzero, F (0) = 0 and then (3.4) ensures
K(0) = 0 and H(0) = 0. Combining the equations (3.5) and (3.6), we obtain
that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F (w) = KψI(0)(w)F (0),
G(w) = 0,

H(z) = KϕI(0)(z)H(0),
K(z) = 0.

(3.7)

That is to say

fI(w) = KψI(0)(w)F (0) and gI(z) = KϕI(0)(z)F (0).
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Furthermore, representation formula gives the expressions of f and g on the
whole H by

f(p) = KψI(0)(p)F (0) and g(p) = KϕI(0)(p)F (0). (3.8)

Subsequently, we put the expressions in (3.7) into (3.3), it entails
{

KϕI(w)(z)KψI(0)(w)F (0) = Kw(ψI(z))KϕI(0)(z)F (0),

0 · Kz(ϕI(w)) = Kw(ψI(z)) · 0.

We can further infer that

KϕI(w)(z)Kw(ψI(0)) = Kw(ψI(z))KϕI(0)(z),

holds for all z, w ∈ CI , due to F (0) = 0. Considering Kw(z) = ezw for z, w ∈
CI , it entails that

zϕI(w) + ψI(0)w = ψI(z)w + zϕI(0) + n(z, w)2πi, (3.9)

where n(z, w) is a continuous integer-valued function. Employing z = w =
0 in the above display, it turns out n(0, 0) = 0. And then the continuous
integer-valued function n(z, w) = 0 for all z, w ∈ CI . The formula (3.9) can be
rewritten into

ϕI(w) − ϕI(0)
w

=
ψI(z) − ψI(0)

z
. (3.10)

We note the left part is a function of w ∈ CI and the right part is a holomorphic
function of z ∈ CI . Hence there exists λ ∈ CI , such that

ϕI(z) = zλ + ϕI(0) and ψI(z) = zλ + ψI(0). (3.11)

Suppose the weighted composition operator Wf,ϕ is bounded on F2(H), then
the parameter |λ| ≤ 1. Furthermore, employing the representation formula
(Proposition 1.4), we extend ϕI and ψI into the whole H by

ϕ(p) = pλ + ϕ(0), and ψ(p) = pλ + ψ(0).

with λ ∈ CI and |λ| ≤ 1. Here we only proceed with ϕ(p) as below. Indeed,
for p = x + yI and q = x + yJ, we have

ϕ(p) =
1
2
(1 − IJ)ϕ(q) +

1
2
(1 + IJ)ϕ(q)

=
1
2
(1 − IJ)(ϕ(0) + qλ) +

1
2
(1 + IJ)(ϕ(0) + qλ)

= ϕ(0) +
1
2
[(q + q) + IJ(q − q)λ]

= ϕ(0) +
1
2
[2x + IJ(−2Jy)λ]

= ϕ(0) + (x + Iy)λ

= ϕ(0) + pλ.

Summarizing the above calculations, the statement (i) holds.
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Case 2. G(0) = 0. The second equation in (3.5) implies ψI(0) = 0. Since
K(0) = −G(0) = 0, which together with the second formula in (3.6) imply
ϕI(0) = 0. Observing the first equations in (3.5) and (3.6), it turns out

F (w) = F (0), G(w) = G(0), H(z) = H(0), K(z) = K(0)

for z, w ∈ CI . That means

fI(z) = f(0) = F (0) + G(0)J and gI(z) = g(0) = G(0) + H(0)J. (3.12)

Putting the above formulas into (3.3), it turns out
{

KϕI(w)(z)F (0) = Kw(ψI(z))H(0),

−G(0)Kz(ϕI(w)) = Kw(ψI(z))K(0).

The second one implies ϕI(w)z = ψI(z)w + n(z, w)2πi. Similarly, it
follows the integer function n(z, w) = 0 due to n(0, 0) = 0. That entails
ϕI(w)z = ψI(z)w, which implies ϕI(z) = ψI(z) = 0 for all z ∈ CI . Again
employing representation formula, it implies ϕ(p) = ψ(p) = 0. Summarizing
the above calculations, the statement (ii) holds. This completes the proof. �

Corollary 3.5. Let f and ϕ be two slice regular functions on H. Denote fI(z) =
F (z)+G(z)J nonzero functions on H and suppose ϕ(CI) ⊂ CI for some I ∈ S.
Then weighted composition operator Wf,ϕ is a bounded self-adjoint operator on
F2(H) if and only if f(p) = KϕI(0)(p)F (0), ϕ(p) = ϕ(0)+pλ, with F (0), λ ∈ R

and |λ| ≤ 1. That means Wf,ϕ is the unitary operator WkϕI (0),ϕ multiply a

constant e|ϕI(0)|2/2F (0), with F (0) ∈ R.

Proof. Necessity. Let f(p) = g(p) and ϕ(p) = ψ(p) in Theorem 3.4, then the
case (i) is stated as f(p) = KϕI(0)(p)F (0), ϕ(p) = ϕ(0)+pλ, with F (0), λ ∈ R

and |λ| ≤ 1. Besides, the case (ii) becomes into f(p) = F (0) with F (0) ∈ R

and ϕ(p) = 0, which can be contained in case (i) with ϕ(p) = 0.

Sufficiency. Our aim is to show W ∗
f,ϕh(q) = Wf,ϕh(q) for any h ∈ F2(H).

Considering the facts

W ∗
f,ϕh(q) = 〈W ∗

f,ϕh,Kq〉 = 〈h,Wf,ϕKq〉,
and

Wf,ϕh(q) = 〈Wf,ϕh,Kq〉 = 〈h,W ∗
f,ϕKq〉,

for any h ∈ F2(H). Hence we only need to show

(Wf,ϕKq)I(z) = (W ∗
f,ϕKq)I(z). (3.13)

On the one hand,

(Wf,ϕKq)I(z) = Kq(ϕI(z)) � fI(z)
= Kq(ϕI(0) + zλ) � (KϕI(0)(z)F (0))
= Kq(ϕI(0) + zλ)KϕI(0)(z)F (0).
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On the other hand,

(W ∗
f,ϕKq)I(z) = Wf,ϕKz(q)

= Kz(ϕ(0) + qλ) � f(q)

= Kz(ϕ(0) + qλ) � KϕI(0)(q)F (0)

= Kz(ϕ(0))Kz(qλ) � KϕI(0)(q)F (0)

= Kz(ϕ(0))eqλz̄
∗ � e

qϕI(0)∗ F (0)

= Kz(ϕ(0))eq(λz̄+ϕI(0))∗ F (0)

= Kz(ϕ(0))K(λz+ϕI(0))(q)F (0)
= F (0)Kq(λz + ϕI(0))Kϕ(0)(z),

where the display (1.7) is used in the third line from the bottom and (1.1) is
used in the last line. Combining the above two formulas with ϕI(0) = ϕ(0)
and F (0) ∈ R, the formula (3.13) is true. This ends the proof. �

Remark 3.6. Observing Theorem 3.3 and Corollary 3.5, it’s obvious Corollary
3.5 is a special case of Theorem 3.3, which coheres with the fact a self-adjoint
operator is normal.

4. Isometric Weighted Composition Operators

Recall that an operator T on F2(H) is called isometric if ||Th|| = ||h|| for all
h ∈ F2(H), or equivalently, 〈Th, Tg〉 = 〈h, g〉 for all h, g ∈ F2(H). In this sec-
tion, we describe all isometric weighted composition operators on slice regular
quaternionic Fock space F2(H). First of all, we deduce an equivalent charac-
terization for a special isometric weighted composition operator on F2(H).

Proposition 4.1. Let η(p) = pλ with |λ| ≤ 1 and λ ∈ CI for some I ∈ S.
Denote ξ ∈ F2(H) with restriction ξI(z) = F (z) + G(z)J on CI , then Wξ,η is
an isometry on F2(H) if and only if |λ| = 1, both F (z) and G(z) are constants
and satisfy |F (z)|2 + |G(z)|2 = 1.

Proof. Sufficiency. If |λ| = 1 and ξI(z) = F + GJ with F and G are constants
satisfying |F |2 + |G|2 = 1. We consider a slice regular function h(p) ∈ F2(H)
with the power series expansion on CI ,

hI(z) =
∞∑

k=0

zk(ak + bkJ),

where ak, bk ∈ CI . Subsequently,

‖h‖2 =
∞∑

k=0

|ak|2k! +
∞∑

k=0

|bk|2k!.
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Applying the above assumptions, we validate

‖Wξ,ηh‖2

=

∫

CI

|[(h ◦ η)]I(z) � ξI(z)|2e−|z|2dσ(x, y)

=

∫

CI

∣∣
∣∣
∣

( ∞∑

k=0

zkλkak +
∞∑

k=0

zkλkbkJ

)

� (F + GJ)

∣∣
∣∣
∣

2

e−|z|2dσ(x, y)

=

∫

CI

∣∣
∣∣∣

( ∞∑

k=0

zkλkak

)

F −
( ∞∑

k=0

zkλkbk

)

G

∣∣
∣∣∣

2

e−|z|2dσ(x, y)

+

∫

CI

∣∣∣
∣∣

( ∞∑

k=0

zkλkak

)

G +

( ∞∑

k=0

zkλkbk

)

F

∣∣∣
∣∣

2

e−|z|2dσ(x, y)

=

∫

CI

[∣
∣∣
∣∣

∞∑

k=0

zkλkak

∣
∣∣
∣∣

2

(|F |2 + |G|2) +

∣
∣∣
∣∣

∞∑

k=0

zkλkbk

∣
∣∣
∣∣

2

(|G|2 + |F |2)
]

e−|z|2dσ(x, y)

−
( ∞∑

k=0

k!akbk

)

FG −
( ∞∑

k=0

k!akbk

)

FG

+

( ∞∑

k=0

k!akbk

)

FG +

( ∞∑

k=0

k!akbk

)

FG

=

( ∞∑

k=0

|ak|2k! +
∞∑

k=0

|bk|2k!

)

(|F |2 + |G|2)

= ‖h‖2(|F |2 + |G|2) = ‖h‖2,
where we use the inner product (1.5) in F2(H) on the second and third lines
from the bottom. Hence Wξ,η is an isometry on F2(H).

Necessity. Suppose the operator Wξ,η is an isometry on F2(H), then λ =
0. Indeed, if λ = 0, Wξ,ηpN = 0 for all monomials pN with N ≥ 1, which is a
contradiction.

Taking h ∈ F2(H) satisfying h(CI) ⊂ CI , we deduce that

‖Wξ,ηh‖2 =
∫

CI

|h(ηI(z)) � ξI(z)|2e−|z|2dσ(x, y)

=
∫

CI

|h(zλ)|2(|F (z)|2 + |G(z)|2)e−|z|2dσ(x, y)

= ‖h‖2.
The above computations imply (Wξ,η)I acting on F2(CI) is same as a

weighted composition operator defined by a compositional symbol ϕI(z) =
λz and a weight with norm

√|F (z)|2 + |G(z)|2. Employing the result [13,
Propsition 4.2] in complex variables, it follows that |λ| = 1 and |F (z)|2 +
|G(z)|2 = 1. Considering F (z) and G(z) are entire functions, Liouville Theorem
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can further imply that both F (z) and G(z) are constants. This completes the
proof. �

Immediately, we present the equivalent characterizations for isometric
weighted composition operators on F2(H).

Theorem 4.2. Let f and ϕ be two slice regular functions on H, such that
ϕ(CI) ⊂ CI for some I ∈ S and fI(z) = F (z) + G(z)J not identically zero.
Then Wf,ϕ is isometric on F2(H) if and only if

Wf,ϕ = Wk2
−λb

·γ,ϕ,

with γ ∈ H and |γ| = 1, for any h ∈ F2(H).

Proof. Necessity. Assume the operator Wf,ϕ is an isometry on F2(H), then
it’s obviously bounded. Theorem 2.3 implies ϕ(p) = b + pλ for some |λ| ≤ 1
with λ, b ∈ CI .

Taking Wb defined in (3.1) with b ∈ CI and ϕ1(p) = p − b, we define
Wf̂ ,ϕ̂ = Wf,ϕWb. For any h ∈ F2(H), it yields that

(Wf̂ ,ϕ̂h)I(z)

= (Wf,ϕWbh)I(z)
= hI(zλ) � [kb(b + zλ)F (z) + kb(b + zλ)G(z)J ].

That is to say ϕ̂(p) = pλ and

f̂I(z) = kb(b + zλ)F (z) + kb(b + zλ)G(z)J.

Since the operator Wb is unitary, and then the operator Wf̂ ,ϕ̂ is isometric,
Proposition 4.1 entails that |λ| = 1, kb(b+zλ)F (z) = α and kb(b+zλ)G(z) = β,
where α, β ∈ CI constants with |α|2 + |β|2 = 1. In other words,

F (z) = αk−λb(z) and G(z) = βk−λb(z).

This means

f̂I(z) = k−λb(z)(α + βJ),

with |α|2 + |β|2 = 1. Hence, by Proposition 3.1 and Remark 3.2, we obtain
Wf,ϕ = Wf̂ ,ϕ̂W−b, which can be also rewritten as

(Wf,ϕh)I(z)
= (Wf̂ ,ϕ̂W−bh)I(z)

= [hI(zλ + b) � k−b(λz)] � f̂I(z)
= hI(zλ + b) � k−λb(z) � (k−λb(z)(α + βJ))

= hI(zλ + b) � [k2
−λb

(z)(α + βJ)]

= (Wk2
−λb

·γ,ϕh)I(z)

with γ = α + βJ and |γ| = 1.
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Sufficiency. Suppose Wf,ϕ = Wk2
−λb

·γ,ϕ with γ ∈ CI and |γ| = 1. It holds
that

Wf,ϕ = Wf̂ ,ϕ̂W−b.

For any element h ∈ F2(H), there exists g ∈ F2(H) such that g = W−bh.
Based on the fact W−b is an unitary operator on F2(H), it turns out that
‖h‖ = ‖g‖. Since Wf̂ ,ϕ̂ is isometric on F2(H), it yields that

‖Wf,ϕh‖ = ‖Wf̂ ,ϕ̂W−bh‖ = ‖Wf̂ ,ϕ̂g‖ = ‖g‖ = ‖h‖,

which ensures Wf,ϕ is isometric on F2(H). This ends the proof. �
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