
Results Math (2019) 74:21
c© 2019 Springer Nature Switzerland AG
1422-6383/19/010001-24
published online January 3, 2019
https://doi.org/10.1007/s00025-018-0946-y Results in Mathematics

On m-Kropina Finsler Metrics of Scalar Flag
Curvature

Guojun Yang

Abstract. In this paper, we consider a special class of singular Finsler
metrics: m-Kropina metrics which are defined by a Riemannian metric
and a 1-form. We show that an m-Kropina metric (m �= −1) of scalar flag
curvature must be locally Minkowskian in dimension n ≥ 3. We charac-
terize by some PDEs a Kropina metric (m = −1) which is respectively
of scalar flag curvature and locally projectively flat in dimension n ≥ 3,
and obtain some principles and approaches of constructing non-trivial
examples of Kropina metrics of scalar flag curvature.
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1. Introduction

The flag curvature in Finsler geometry is a natural extension of the sectional
curvature in Riemannian geometry, and every two-dimensional Finsler metric
is of scalar flag curvature. It is the Hilbert’s fourth problem to study and clas-
sify projectively flat metrics. The Beltrami Theorem states that a Riemannian
metric is locally projectively flat if and only if it is of constant sectional curva-
ture. It is known that every locally projectively flat Finsler metric is of scalar
flag curvature. However, the converse is not true. There are regular or singular
Finsler metrics of constant flag curvature which are not locally projectively
flat [1,17]. Therefore, it is an interesting point to study and classify Finsler
metrics of scalar flag curvature. This problem is far from being solved for gen-
eral Finsler metrics. Thus we shall investigate some special classes of Finsler
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metrics. Recent studies on this problem are concentrated on Randers metrics,
square metrics and some other special (α, β)-metrics.

A Randers metric is defined by F = α+β, where α is a Riemannian metric
and β is a 1-form with b = ‖β‖α < 1. After many mathematicians’ efforts,
Bao–Robles–Shen finally classify Randers metrics of constant flag curvature by
using the navigation method [1]. Further, Shen–Yildirim characterize Randers
metrics of scalar flag curvature and classify Randers metrics of weakly isotropic
flag curvature [10]. There are Randers metrics of scalar flag curvature which
are neither of weakly isotropic flag curvature nor locally projectively flat [2].
So far, the problem of classifying Randers metrics of scalar flag curvature still
remains open.

A square metric is written as F = (α + β)2/α, where α is a Riemannian
metric and β is a 1-form with b = ‖β‖α < 1. In [9], Shen–Yildirim determine
the local structure of locally projectively flat square metrics of constant flag
curvature. Zhou shows that a square metric of constant flag curvature is locally
projectively flat [18]. Later on, we prove that a square metric in dimension
n ≥ 3 is of scalar flag curvature iff. it is locally projectively flat [7].

In [13], we consider an (α, β)-metric F = αφ(β/α) with φ(s) satisfying
{
1 + (k1 + k3)s2 + k2s

4
}
φ′′(s) = (k1 + k2s

2)
{
φ(s) − sφ′(s)

}
,

where k1, k2, k3 are constant with k2 �= k1k3. We prove that if β is closed and
the dimension n ≥ 3, then F is of scalar flag curvature if and only if F is
locally projectively flat, and for a special case given by φ(s) = 1 + a1s + εs2

with a1 and ε �= 0 being constant, we show that F is of scalar flag curvature
if and only if F is locally projectively flat.

The Finsler metrics mentioned above are regular. It seems hard to char-
acterize a general regular (α, β)-metric of scalar flag curvature in dimension
n ≥ 3. On the other hand, singular Finsler metrics, such as Kropina metrics
and m-Kropina metrics, have a lot of applications in the real world. In this pa-
per, we will study m-Kropina metrics of scalar flag curvature. An m-Kropina
metric has the following form

F = α1−mβm, m �= 0, 1.

When m = −1, F is called a Kropina metric [4]. There have been a few research
papers on Kropina metrics [6,8,12,14–17]. m-Kropina metrics naturally appear
in characterizing a class of singular (α, β)-metrics which are locally projectively
flat [14,15] and locally projectively flat with constant flag curvature [16]. Note
that due to the deformation (6) below for an m-Kropina metric, we can always
assume b = ||β||α = 1 without loss of generality.

Theorem 1.1. Let F = α1−mβm be an n(≥ 3)-dimensional m-Kropina metric
(m �= −1) with ||β||α = 1. Then F is of scalar flag curvature iff. F is locally
Minkowskian, or more precisely, F is flat-parallel (α is locally flat and β is
parallel with respect to α).
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In [8], we show that an n(≥ 2)-dimensional m-Kropina metric (m �= −1)
of constant flag curvature is locally Minkowskian. In [15], we prove that an n(≥
3)-dimensional locally projectively flat m-Kropina metric (m �= −1) is locally
Minkowskian. Therefore, Theorem 1.1 generalizes the corresponding results in
[8,15]. Besides, we indicate that a two-dimensional Douglas m-Kropina metric
(m �= −1) is locally Minkowskian [14].

The case m = −1 will be much more complicated. In Sect. 4 below, we
give respective characterizations by some PDEs for a Kropina metric to be
of scalar flag curvature and locally projectively flat in dimension n ≥ 3 (see
Theorem 4.1 and Theorem 4.2 below). In Sect. 4.4, we use Theorem 4.1 to prove
the known local classification for a Kropina metric of constant flag curvature
(see Corollary 4.8). However, it is difficult to determine the local structure of
a Kropina metric of scalar flag curvature, even if it is locally projectively flat
(cf. [14,15]). Here we will show some methods (including using Corollary 4.3
below) of constructing non-trivial Kropina metrics of scalar flag curvature.

Kropina metrics are related to Randers metrics to some extent. Every
Kropina metric is the limit of a family of Randers metrics F = α + β as the
norm b = ||β||α → 1− (see Remark 6.2 below). Further, we have the following
result.

Theorem 1.2. Let F = α + β be a Randers metric (depending on a constant
parametric vector) and (h, ρ) be the navigation data of F . Suppose
α̃ := limb→1− h is a Riemann metric and β̃ := limb→1− ρ is a non-zero 1-
form. Define a Kropina metric F̃ by F̃ = α̃2/β̃. Then

(i) F̃ = limb→1− 2F , and ||β̃||α̃ = 1.
(ii) If F is of scalar flag curvature (resp. locally projectively flat, or Douglas-

sian), then F̃ is also of scalar flag curvature (resp. locally projectively
flat, or Douglassian). If F is of weakly isotropic flag curvature, then F̃
is of constant flag curvature.

In Theorem 1.2, let F = Fυ depend on the constant parametric vec-
tor υ. The limit b → 1− means that the function b = b(x) close to the
constant function 1, which gives some conditions on υ (refer to the exam-
ple in Remark 6.1 below). The conditions on υ are used to check whether or
not α̃2 = limb→1− h2 = limb→1−(1 − b2)(α2 − β2) is a Riemann metric and
β̃ = limb→1− ρ = − limb→1−(1 − b2)β is a non-zero 1-form. By Theorem 1.2,
to construct non-trivial Kropina metrics of scalar flag curvature in dimension
n ≥ 3, we can have a try on the known examples of Randers metrics of scalar
flag curvature (cf. [2]).

Next we give another principle of constructing Kropina metrics of scalar
flag curvature.

Theorem 1.3. Let F = α2/β be a Kropina metric with ||β||α = 1 and define
F̃ = F + η, where η is a closed 1-form with ||η||α sufficiently small.
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(i) If F is of scalar flag curvature, then F̃ is also a Kropina metric of scalar
flag curvature.

(ii) Let F be of constant flag curvature. Then F̃ is locally projectively flat if
and only if F is flat-parallel, or equivalently, F̃ can be locally written in
the form

F̃ =
|y|
y1

+ η. (1)

Theorem 1.3 (ii) easily follows from a result in [16], since therein we prove
that a locally projectively flat Kropina metric with constant flag curvature is
flat-parallel. By Theorem 1.3 (ii), we can easily obtain a family of Kropina
metrics which are of scalar flag curvature but are neither locally projectively
flat nor of constant flag curvature in general. Take η = 〈x, y〉 with x close to
origin, and then F̃ in (1) is a projectively flat Kropina metric with the flag
curvature given by

K =
3
4

|y|4(y1)4

(ηy1 + |y|2)4 .

Additionally, using Corollary 4.3 below and a warped product method,
we obtain a family of Kropina metrics which are locally projectively flat (see
Proposition 5.2 below).

2. Preliminaries

For a Finsler metric F , the Riemann curvature Ry = Ri
k(y) ∂

∂xi ⊗dxk is defined
by

Ri
k := 2

∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj

∂Gj

∂yk
, (2)

where the spray coefficients Gi are given by

Gi :=
1
4
gil

{
[F 2]xkylyk − [F 2]xl

}
. (3)

The Ricci curvature Ric is the trace of the Riemann curvature, that is, Ric :=
Rm

m. A Finsler metric is said to be of scalar flag curvature if there is a function
K = K(x, y) such that

Ri
k = KF 2(δi

k − F−2yiyk), yk := (F 2/2)yiykyi. (4)

If K is a constant, F is said to be of constant flag curvature. A Finsler metric
F is said to be projectively flat in U , if there is a local coordinate system
(U, xi) such that Gi = Pyi, where P = P (x, y) is called the projective factor
satisfying P (x, λy) = λP (x, y) for λ > 0.
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The Weyl curvature W i
k and the Douglas curvature D i

h jk are two im-
portant projectively invariant tensors and they are defined respectively by

W i
k : = Ri

k − Rm
m

n − 1
δi
k − 1

n + 1
∂

∂ym

(
Rm

k − Rh
h

n − 1
δm
k

)
yi, (5)

D i
h jk : =

∂3

∂yh∂yj∂yk

(
Gi − 1

n + 1
∂Gm

∂ym
yi

)
.

In two-dimensional case, there is a projectively invariant tensor W o called
Berwald–Weyl tensor. A Finsler metric is called a Douglas metric if D i

h jk = 0.
A Finsler metric is of scalar flag curvature if and only if W i

k = 0. An n-
dimensional Finsler metric is locally projectively flat if and only if: W i

k = 0
and D i

h jk = 0 for n ≥ 3, and W o = 0 and D i
h jk = 0 for n = 2 [5].

An (α, β)-metric F is a Finsler metric defined by a Riemannian metric
α =

√
aij(x)yiyj and a 1-form β = bi(x)yi on a manifold M , which is expressed

in the following form:

F = αφ(s), s = β/α,

where φ(s) is a suitable function. If we take φ(s) = 1+s, then we get the well-
known Randers metric F = α + β. In applications, there are a lot of singular
Finsler metrics. In this paper, we will discuss a class of singular (α, β) Finsler
metrics—m-Kropina metrics.

An m-Kropina metric is of the form F = α1−mβm, where m �= 0, 1 is real.
In particular, it is called a Kropina metric when m = −1. For an m-Kropina
metric F = α1−mβm, we introduce a special deformation on α and β. Define
a new pair (α̃, β̃) by

α̃ := bmα, β̃ := bm−1β, (6)

which appears first in [8]. It is interesting that under the deformation (6), the
m-Kropina metric F = α1−mβm keeps formally unchanged, that is,

F = α̃1−mβ̃m, (||β̃||α̃ = 1). (7)

It has been shown that the deformation (6) plays an important role on the
study of m-Kropina metrics [8,14–16]. Due to (7), we can always assume
||β||α = 1 for an m-Kropina metric F = α1−mβm without loss of general-
ity.

For a Riemann metric α =
√

aijyiyj and a 1-form β = biy
i, define

rij :=
1
2
(bi|j + bj|i), sij :=

1
2
(bi|j − bj|i), ri

j := aikrkj , si
j := aikskj ,

pij := rikrk
j , qij := riksk

j , tij := siksk
j , rj := birij , sj := bisij ,

pj := bipij , qj := biqij , rj := birij , tj := birij , r := biri,

where bi is defined by bi := aijbj , (aij) is the inverse of (aij), and ∇β
= bi|jyidxj denotes the covariant derivative of β with respect to α. We use aij
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to raise or lower the indices of a tensor. For a tensor Tij as an example, define
Ti0 := Tijy

j and T00 := Tijy
iyj , etc.

Lemma 2.1. Here we list some identities as follows:

qik + qki = ri|k+rk|i−2pik − bm(rmi|k+rmk|i), qik = tik+sk|i − bmsmk|i,
(8)

sij|k = rik|j − rjk|i − blR̄
l

k ij , bmbv(rmv|k − rmk|v) = tk − qk + bmsk|m,

(9)

bmqkm = −rkmsm = bmsm|k + tk, qk
k = 0, (10)

where R̄ denotes the Riemann curvature tensor of α. If ||β||α = constant, we
have

rk + sk = 0, bmqm = smsm, blbksk|l = 2slsl, bibjbkrij|k = −4sls
l, (11)

bmsi|m = 2smrim − bkblrki|l = −2bmqim − bkblrki|l. (12)

For an m-Kropina metric F = α1−mβm, by (3) we get

Gi = Gi
α− m

(m − 1)s
αsi

0+
m

2(m − 1)
(m − 1)sr00 + 2mαs0

s
[
mb2 − (m + 1)s2

] (bi−2α−1syi). (13)

Then by (5) and (13), we can get the expressions of the Weyl curvature tensor
W i

k for an m-Kropina metric F = α1−mβm. We have given a Maple program
in [7] to compute the Weyl curvature for any (α, β)-metric. In this paper, we
will write out the whole expression of the Weyl curvature for a Kropina metric
(m = −1); while for m �= −1, we will not write out the expression since it is
very long, but some key terms will be given, similarly like what we have done
in studying square metrics in [7].

For readers to verify the expression of W i
k for an m-Kropina metric

F = α1−mβm, we give the expression of a leading term. We see that W i
k ×

(n2 − 1)(m − 1)2β3
[
mb2α2 − (m + 1)β2

]5 = 0 can be written as

(n + 1)m7b8A14α
14 + A12α

12 + A10α
10 + · · · + A2α

2 + A0 = 0, (14)

where A0, A2, . . . , A14 are polynomials in (yi), and A14 is given by

A14 = − (n − 1)
[
(b2ti0 + s0s

i)bk − (t0bk + βtk)bi + β(b2tik + sisk)
]

+ (2sjs
j + b2tjj)(βδi

k + yibk).

When m = −1, eliminating the factor −b6α10 from (14) we obtain

(n + 1)b2B4α
4 + 2(n + 1)βB2α

2 + 4β2B0 = 0, (15)



Vol. 74 (2019) On m-Kropina Finsler Metrics of Scalar Flag Curvature Page 7 of 24 21

where B4 = A14, and B2, B0 are given by (denote by W̄ i
k the Weyl curvature

of α)

B2 = (b4sj
0|j + b2q0 − b2bjs0|j − b2rjjs0 − b2bjq0j + rs0)(2βδik + yibk)

− yi
[
b2(2sjs

j + b2tjj)yk + β(r − b2rjj)sk + b2β(qk + b2sj
k|j − bjqkj − bjsk|j)

]

+(n − 1)
[
b2(b2ti0+sis0−t0bi)yk + (b2s0|0 − b2q00 − r0s0 − s20)b

ibk + β(r0 − s0)b
isk

+βbi(b2q0k − 2b2qk0 + 2b2s0|k − b2sk|0 − 2s0rk) − (b2si0|0 + r00si − ri0s0)bk

− b2βri0sk − b2β(rk0si − 2riks0 + 2b2si0|k − b2sik|0)
]
,

B0 = (n + 1)β(b2r0|0 − b2rjjr00 + b2s0|0 − 2b2q00 − b2bjr00|j − r20 − s20 + rr00 − 2r0s0)δ
i
k

− (n + 1)(b4sj
0|j + b2q0 − b2bjs0|j − b2rjjs0 − b2bjq0j + rs0)y

iyk

+βyi
[
(n + 1)(r0 + s0)(rk+sk)−(n + 1)(r − b2rjj)rk0+(n − 2)b2rk|0−(2n − 1)b2r0|k

+(n + 1)b2(qk0 + q0k) + (n − 2)b2sk|0 − (2n − 1)b2s0|k + (n + 1)b2bjrk0|j
]

+(n2 − 1)
{
yk[(r0s0 + s20 + b2q00 − b2s0|0)bi + b2r00si + b2(b2si0|0 − s0ri0)]

+βbi[(r0+s0)rk0−(rk + sk)r00−b2(rk0|0−r00|k)]+b2β(b2W̄ i
k + r00rik − ri0rk0)

}
.

Lemma 2.2. Let F = α2/β be an n-dimensional Kropina metric. Then W i
k = 0

is equivalent to (15), and the Ricci curvature Ric of F is given by

Ric = R̄ic − 1

4b4α2s2

{
b2(b2tl l + 2sls

l)α4 + 4s
[
b4sl0|l − (n − 1)b2t0+(r − b2rll)s0

+ b2(q0 − bls0|l − blq0l)
]
α3 + 4s2

[
(r − b2rll)r00 + (n − 2)s20 + 2(2n − 3)r0s0

− (n − 2)b2s0|0 + b2r0|0 − r20 − 2nb2q00 − blr00|l
]
α2

+4(n − 1)s3
[
2r00(2r0 − s0) − b2r00|0

]
α − 12(n − 1)s4r200

}
, (16)

where R̄ic denotes the Ricci curvature of α.

3. Proof of Theorem 1.1

Lemma 3.1. β is closed ⇐⇒ tij = 0 ⇐⇒ tkk = 0.

Lemma 3.2. Let F = α1−mβm be an m-Kropina metric (m �= −1) of scalar
flag curvature on an n(≥ 3)-dimensional manifold M . Then r00 satisfies

r00 = 2τ
[
mb2α2 − (m + 1)β2

] − 2(m + 1)
(m − 1)b2

βs0, (17)

where τ = τ(x) is a scalar function.

Proof. Since F = α1−mβm is of scalar flag curvature, we have W i
k = 0. Then

we have (14). Now α2 × (14) can be written as

Ci
k

[
mb2α2 − (m + 1)β2

] − 24(n − 2)(m + 1)3β8yi(α2bk − βyk)
[
(m − 1)βr00

+ 2mα2s0
]2 = 0, (18)
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where Ci
k are polynomials in (yi). It is easy to see that mb2α2−(m+1)β2 is an

irreducible polynomial in (yi) since m �= 0 and n > 2. Further, if α2bk − βyk

is divisible by mb2α2 − (m + 1)β2 for all k, then there are scalar functions
τk = τk(x) such that

α2bk − βyk = τk

[
mb2α2 − (m + 1)β2

]
.

Contracting the above with yk we have τ0 = 0 and hence α2bk −βyk = 0. This
is a contradiction. Now since n > 2 and m �= −1, it follows from (18) that
(m − 1)βr00 + 2mα2s0 is divisible by mb2α2 − (m + 1)β2, which implies

(m − 1)βr00 + 2mα2s0 = θ
[
mb2α2 − (m + 1)β2

]
, (19)

where θ is a 1-form. Eq. (19) is equivalent to

m(2s0 − b2θ)α2 + β
[
(m − 1)r00 + (m + 1)θβ

]
= 0. (20)

By (20), there is a scalar function τ = τ(x) such that

2s0 − b2θ = −2(m − 1)b2τβ. (21)

Now plugging (21) into (20) immediately yields (17). �
Lemma 3.3. Let F = α1−mβm be an m-Kropina metric (m �= −1) of scalar
flag curvature. Then we have

tkk = −2sksk

b2
. (22)

Proof. Since F = α1−mβm is of scalar flag curvature, we have (14), and further
we can rewrite (14) as

Di
kβ + m6(n + 1)b8α12bkT i = 0, (23)

where Di
k are polynomials in (yi) and T i are defined by

T i := m
[
(n − 1)(bit0 − sis0 − b2ti0) + yi(b2tjj + 2sjs

j)
]
α2

+ 2(m + 1)(b2t00 + s20)y
i.

Now it follows from (23) that there are polynomials f i in (yi) of degree two
such that

Ti − fiβ = 0. (24)
Contracting (24) with yi we get

m(2sksk + b2tkk)α4 +
[
(2 + 3m − nm)(b2t00 + s20) + m(n − 1)βt0

]
α2 − f0β = 0.

(25)
Then by (25), we have f0 = θα2 for some 1-form θ = θi(x)yi. Plugging it into
(25) gives

0 = 2m(2sksk + b2tkk)aij + 2(2 + 3m − nm)(b2tij + sisj)
+m(n − 1)(bitj + bjti) − (biθj + bjθi). (26)

Contracting (26) with aij yields

(2 + 3m)b2tkk + 2(1 + 2m)sksk − bkθk = 0. (27)
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Further contracting (26) with bibj gives

mb2tkk − 2sksk − bkθk = 0. (28)

Now it is easy to follow from (27) and (28) that (22) holds. �

Proof of Theorem 1.1. Let F = α1−mβm be an n(≥ 3)-dimensional m-Kropina
metric (m �= −1) of scalar flag curvature. Then under the deformation (6),
F = α̃1−mβ̃m is also an m-Kropina metric of scalar flag curvature. So we
obtain Lemma 3.2 and Lemma 3.3 under α̃ and β̃. Note that b̃2 = 1, and then
by (17) we have

r̃ij = 2τ̃
[
mãij − (m + 1)̃bib̃j

] − m + 1
m − 1

(̃bis̃j + b̃j s̃i), (29)

We will prove r̃ij = 0 by (29). This fact is essentially proved in [8,15]. For
convenience, we give the proof here. Contracting (29) with b̃i and using ||β̃||α̃
= constant = 1 we have

r̃j + s̃j = −2τ̃ b̃j − 2
m − 1

s̃j = 0. (30)

Contracting (30) with b̃j we get τ̃ = 0 and then by (30) again we have s̃j = 0.
Thus by (29) again we have

r̃ij = 0.

Next by (22) we have
t̃kk = −2s̃ks̃k. (31)

Since we have proved s̃k = 0, we have t̃kk = 0 by (31). Thus Lemma 3.1 implies
that β̃ is closed. Thus by this fact and r̃ij = 0, we obtain that β̃ is parallel
with respect to α̃. Now by (13) we see that F is projectively related to α̃ since
Gi = G̃i

α̃. So α̃ is of constant sectional curvature. Then α̃ is flat since β̃ �= 0 is
parallel. �

4. Kropina Metrics of Scalar Flag Curvature

4.1. Characterization Theorems

Theorem 4.1. Let F = α2/β be an n(≥ 2)-dimensional Kropina metric with
||β||α = 1. Denote by R̄i

k the Riemann curvature tensor of α. Then F is of
scalar flag curvature if and only if the following hold

sij|k =
{

tj − tl l − (n − 3)slsl

n − 1
bj

}
aik + riksj + q∗

kibj + sj|kbi − (i/j), (32)

R̄i
k =

(n − 3)slsl − tl l

n − 1
(
α2δi

k − yiyk

) − B00δ
i
k − Bi

kα2 + B0kyi + Bi
0yk

+ ri
0rk0 − r00r

i
k, (33)
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where the symbol (i/j) above denotes the terms obtained from the proceeding
terms by interchanging the indices i and j, and q∗

ik, σi and Bi
k are defined by

q∗
ik : =

1
2
bpbl

[
(rlp|i − rli|p)bk − (i/k)

] − 1
2
bl(rlk|i + rli|k) − pik − si|k, (34)

σi : = 2
[
(n − 3)slsl − tl l − (n − 1)λ

]
bi + 2(n − 1)bpbl(rlp|i − rli|p), (35)

Bik : =
1
2
(pik + blrlk|i) +

bkσi

4(n − 1)
+ si|k + (i/k), (36)

and λ = λ(x) is a scalar function. In this case, the flag curvature K of F is
given by

K = λs2 +
s2

α2

{3s2

α2
r200 +

s

α
(r00|0 + 6r00s0) + 3q00 + 3s20 − bl(rl0|0 − r00|l)

}

+
1

4(n − 1)
[
(4s2 − 1)tl l − 2(1 + 2ns2 − 6s2)slsl

]
. (37)

In [14,15], we give a way to characterize locally projectively flat Kropina
metrics in dimension n ≥ 2 by (38) and an equation on the spray Gi

α of α.
Now using Theorem 4.1, we can obtain a different way to characterize locally
projectively flat Kropina metrics by adding a Douglasian condition (38) in
n ≥ 3.

Theorem 4.2. Let F = α2/β be an n(≥ 3)-dimensional Kropina metric with
||β||α = 1. Then F is locally projectively flat if and only if (33) and the fol-
lowing hold

sij = bisj − bjsi. (38)

In this case, the flag curvature K of F is given by (37), and σi in (33) are
given by

σi = 2(n − 1)
[
blsi|l − (λ + sls

l)bi

]
. (39)

In a special case, we have the following simple corollary. We will construct
some examples in Sect. 5 below by Corollary 4.3.

Corollary 4.3. Let F = α2/β be an n(≥ 3)-dimensional Kropina metric with
||β||α = 1. Suppose

bi|j = ε(aij − bibj), εi = ubi, (40)

where u = u(x), ε = ε(x) are scalar functions and εi := εxi . Then F is locally
projectively flat if and only if

R̄i
k = − ε2(α2δi

k − yiyk) − u(α2bibk + β2δi
k − βyibk − βykbi). (41)

In this case, the flag curvature K is given by

K = s6
[
ε2(3s2 − 4) − u

]
. (42)
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Remark 4.4. It is known in [10] that a Randers metric F = α+β in dimension
n ≥ 2 is of scalar flag curvature if and only if for some scalar λ = λ(x),

sij|k =
1

n − 1
(aiksm

j|m − ajksm
i|m), (43)

R̄i
k = λ(α2δi

k − yiyk) + α2tik + t00δ
i
k − tk0y

i − ti0yk − 3si
0sk0. (44)

In Theorem 4.1, for a Kropina metric of scalar flag curvature, we obtain the
equations (32) and (33) similar to (43) and (44). However, the characterization
and proof for a Kropina metric are much more complicated than that for a
Randers metric.

4.2. Proof of Theorem 4.1

Proposition 4.5. Let F = α2/β be an n(≥ 2)-dimensional Kropina metric
with ||β||α = 1. Then F is of scalar flag curvature if and only if (33) and the
following hold

tij = bitj + bjti − sisj +
1

n − 1

{
(tl l + 2slsl)aij − [

tl l − (n − 3)slsl

]
bibj

}
,

(45)

sij|k =
{

tj − tl l − (n − 3)slsl

n − 1
bj

}
aik + riksj + qkibj + sj|kbi − (i/j), (46)

qik =
1
2
bmbl

[
(rlm|i − rli|m)bk − (i/k)

] − 1
2
bl(rlk|i + rli|k) − pik − si|k. (47)

Proof. Assume F = α2/β is of scalar flag curvature in dimension n ≥ 2. By
W i

k = 0, we get (15). Here we put b = ||β||α = 1 and hence rk + sk = 0 = r
in (15). First, (15) can be written as

(· · · )β − (n + 1)α4bk

[
(n − 1)(ti0 − t0bi + s0si) − (tl l + 2slsl)yi

]
= 0, (48)

where the omitted term is a homogeneous polynomial in (yi). Then by (48)
we have

tij = tjbi − sisj − ρibj − (tl l + 2slsl)aij

n − 1
, (49)

where ρi = ρi(x) are some scalar functions. By (49), using tij = tji we get

ρi = σbi − (n − 1)ti, (50)

where σ = σ(x) is a scalar function. Plugging (50) into (49) and then contract-
ing (49) with aij , we get

σ = tl l − (n − 3)slsl. (51)

Now plugging (50) and (51) into (49) we obtain (45).
By tik and ti0 given by (45), we can write (48)/β as

(· · · )β + 2(+1)α2bkCi = 0, (52)
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where Ci is a homogeneous polynomial of degree two in y (the expression is
omitted here). It is easy to see from (52) that Ci is divisible by β. Hence we
have Ci = ci0β for a 1-form ci0 = cijy

j , which is equivalent to

si0|0 =
q0+sl

0|l−blq0l − bls0|l−rl
ls0

n − 1
yi +

{ tl l − (n − 3)slsl

n − 1
α2 − q00 + s0|0

}
bi

−α2ti + s0ri0 − r00si − ci0β

n − 1
. (53)

Plug (53) into (52) and then (52)/(2β) can be written as

(· · · )β + (n + 1)α2Dik = 0, (54)

where Dik is a 1-form (the expression is omitted here). It is easy to see from
(54) that Dik is divisible by β. Hence we have Dik = fikβ for a scalar function
fik, which is equivalent to

(n − 1)sik|j − 2(n − 1)sij|k + · · · = fikbj . (55)

Interchanging j, k in (55) we have

(n − 1)sij|k − 2(n − 1)sik|j + · · · = fijbk, (56)

Then 2 × (55) + (56) gives

sij|k =
qj + sl

j|l − blqjl − blsj|l − rl
lsj

n − 1
aik +

{ tl l − (n − 3)slsl

n − 1
bi − ti

}
ajk

+
2bkcij + bjcik − bkfij − 2bjfik

3(n − 1)
− biqkj + bisj|k + sjrik − sirjk. (57)

By (53) and (57) we get
fij = 2cij . (58)

By (58) and sij|k + sji|k = 0, it follows from (57) that

0 =
{qj + sl

j|l − blqjl − blsj|l − rl
lsj

n − 1
+

tl l − (n − 3)slsl

n − 1
bj − tj

}
aik

− biqkj + bisj|k − bicjk

n − 1
+ (i/j). (59)

Contracting (59) with bibj we can first get the expression of blclk, and then
using blclk and contracting (59) with bj we can get the expression of cik. Now
plugging cik into (59) yields

0 =

{[
bm(blsm|l − sl

m|l)

n − 1
− s

l
sl

]

bj +
qj + sl

j|l − blqjl − blsj|l − rl
lsj

n − 1
− tj

}

(aik − bibk)

+ (i/j). (60)

Contracting (60) with aik we obtain

sl
j|l = bl(qjl +sj|l)+(n−1)tj +rl

lsj −qj +
[
(n−1)slsl − bm(blsm|l −sl

m|l)
]
bj .

(61)
Finally, plugging (58), cij and (61) into (57) we obtain (46).
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By (46), we can determine the expressions of the following quantities

sik|0, sl
0|l, sl

k|l, si0|k, si0|0, bmsl
m|l.

Plug these quantities into (52) and then (52) is equivalent to (W̄ik := ailW̄
l
k)

W̄ik =
1

n − 1
{
sl

|l(α
2aik − yiyk) + (2q00 + blr00|l + rl

lr00)aik

− (rl
lrk0 + blrk0|l + qk0 + q0k)yi

}
+ (si|0 − q0i)yk + (rk0|0 − r00|k)bi

+ (qki − si|k)α2 + rk0ri0 − r00rik. (62)

Lemma 4.6 (62). is equivalent to the following equation

R̄i
k = λ(α2δi

k − yiyk) +
[
bl(r00|l − rl0|0) + q00 − s0|0

]
δi
k + ri

0rk0 − r00r
i
k

+ (q i
k − si

|k)α2 +
1
2
[
bl(rl0|k + rlk|0 − 2rk0|l) − qk0 − q0k + sk|0 + s0|k

]
yi

+ (si
|0 − q i

0 )yk + (rk0|0 − r00|k)bi, (63)

where λ = λ(x) is a scalar function, and R̄i
k denotes the Riemann curvature

of α.

Proof. =⇒ : By the definition of the Weyl curvature W̄ik of α we have

W̄ik = R̄ik − 1
n − 1

R̄ic00aik +
1

n − 1
R̄ick0yi, (64)

where R̄ik := aimR̄m
k and R̄icik denote the Ricci tensor of α. By R̄ik = R̄ki

and (64) we get

W̄ik − W̄ki =
1

n − 1
(
R̄ick0yi − R̄ici0yk

)
. (65)

Plugging (62) into (65) yields

Tkyi−Tiyk+(n−1)
[
(sk|i−si|k+qki−qik)α2+(rk0|0−r00|k)bi−(ri0|0−r00|i)bk

]
= 0,
(66)

where we define

Tk := (n − 2)q0k − qk0 − (n − 1)sk|0 − blrk0|l − rk0r
l
l − R̄ick0.

Contracting (66) with ykbi we get

(· · · )α2 + β[T0 + (n − 1)bl(r00|l − rl0|0)] = 0. (67)

By (67) we obtain

T0 + (n − 1)bl(r00|l − rl0|0) = (n + 1)ηα2, (68)

where η = η(x) is a scalar function. Then it follows from the definition of Ti

and (68) that

R̄ic00 = (n−3)q00−(n−1)s0|0−(n+1)ηα2+(n−2)blr00|l−(n−1)blrl0|0−rl
lr00.
(69)
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By (69) we can get R̄ick0. Plugging (69) and R̄ick0 into (64) we get W̄ik, and
then by (64) and (62) we obtain (63), where λ is defined by

λ := −
(n + 1)η − sl

|l
n − 1

. (70)

⇐= : Suppose that (63) holds. Using the first formula in (8) and b =
constant we have

q00 = −s0|0 − p00 − blrl0|0. (71)
Contracting (63) over i, k we get R̄ic00, and then using (71) we obtain (69)
with η defined by (70). Now plugging (69) and (63) into (64), we immediately
obtain (62). �

Since R̄ik = R̄ki, the right hand side of (63) must be symmetric in the
indices i, k. Then it follows from (63) that the symmetric condition is equivalent
to

0 =
[
bl(rl0|k + rlk|0 − 2rk0|l) − qk0 + q0k − sk|0 + s0|k

]
yi + 2(rk0|0 − r00|k)bi

+ 2(qki + sk|i)α2 − (i/k). (72)

Lemma 4.7. (46) and (63) ⇐⇒ (46), (47) and (33).

Proof. =⇒ : To simplify (72), we first give two formulas as follows by (46),
(71) and (63):

bl(rl0|0 − r00|l) =
[
λ − (n − 3)slsl − tl l

n − 1

]
(α2 − β2) + (t0 − q0 + bls0|l)β,(73)

q0i − qi0 = 2
[
λ − (n − 3)slsl − tl l

n − 1

]
(yi − βbi)

+ 2(t0 − q0 + bls0|l)bi + si|0 − s0|i
− bl(rli|0 + rl0|i − 2ri0|l). (74)

To show (73) and (74), by the first formula in (9) we have

bl(rl0|0 − r00|l) = bl(sl0|0 + bkR̄kl), ri0|0 − r00|i = si0|0 + bkR̄ki. (75)

Contracting (63) with bib
k, and then using (71), the second formula of (9), the

first formula of (10) and the third formula of (11), we have

bmblR̄ml = (λ−sls
l)α2−λβ2+ (bls0|l−t0−q0)β−2s0|0+s20−blrl0|0−p00. (76)

Similarly, by (46), (71) and the first formula of (10), we have

blsl0|0 =
2sls

l + tl l
n − 1

α2 +
(n − 3)sls

l − tl l
n − 1

β2 + 2βt0 − s20 + 2s0|0 + blrl0|0 + p00.

(77)
Then by the first formula in (75), we obtain (73) from (76) and (77). Now by
a contraction of (63) we get bkR̄ki, and then using the obtained bkR̄ki, (46),
(73) and the first formula of (10), we obtain (74) from the second formula in
(75).
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Now contracting (72) with yk and using (73), we can write (72) as

Aiα
2 + βBi = 0, (78)

where Ai, Bi are polynomials in y. By (78) we have Bi = σiα
2, which is

expressed as follows

r00|i−ri0|0 =
[
λ− (n − 3)slsl − tl l

n − 1

]
βyi−(t0−q0+bls0|l)yi+

α2

2(n − 1)
σi. (79)

Plugging (79) into (78) yields

bl(rli|0 + rl0|i − 2ri0|l) =
[
λ − (n − 3)slsl − tl l

n − 1

]
(2yi − βbi)

+ (t0 − q0 + bls0|l)bi +
β

2(n − 1)
σi. (80)

Now by (74), (79) and (80), we see that (72) is equivalent to

qik − qki = sk|i − si|k +
bkσi − biσk

2(n − 1)
. (81)

By a contraction on (80), we easily obtain (35) for the expression of σi by
the second formula of (9) and the third formula of (11). Now using (35), we can
easily obtain (47) by (71) and (81) since we can write (71) as qik + qki = · · · .

Finally, by (35), (79) and (80) are respectively reduced to

r00|i − ri0|0 =
α2σi − σ0yi

2(n − 1)
, (82)

bl(rli|0 + rl0|i − 2ri0|l) = 2
[
λ − (n − 3)slsl − tl l

n − 1

]
yi +

biσ0 + βσi

2(n − 1)
. (83)

Now under the formulas (47), (82) and (83), we can easily show that (63) is
equivalent to (33) with Bik defined by (36), where we have used (by (35))

blσl = −2tl l − 2(n − 1)λ + 2(n − 3)sls
l. (84)

⇐= : To verify (63), by the last argument above, we only need to verify
(82) and (83), and then we get (63) following from (33).

Contracting (33) with bib
k and using (35), (71), (84), and the second

formula of (9), the first formula of (10) and the third and fourth formulas of
(11), we obtain

bmblR̄ml =
[
2λ − 2(n − 2)sls

l − tl l
n − 1

]
(α2 − β2) − sls

lβ2 + 2(bms0|m − q0)β

− 2s0|0 + s20 − p00 − bl(2rl0|0 − r00|l). (85)

Similarly, by (46), (71) and the first formula of (10), we have (77). Then by
the first formula in (75), we also obtain (73) by (85) and (77). Next we prove
(82). First , by (47) and (35) we have

q0k =
σ0bk − βσk

4(n − 1)
− 1

2
bl(rl0|k + rlk|0) − pk0 − s0|k. (86)
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Now by (46) and (33), we can get sk0|0 and blR̄lk respectively. Then we can
obtain (82) from the second formula in (75), by using (35), (73), (84), (86), the
second formula of (9), the first formula of (10) and (12). For (83), it follows
from (82) by (84). �

Conversely, let (46), (33), (45) and (47) be satisfied. Then F is of scalar
flag curvature, since it is easy to see from the above proof that the Weyl
curvature of F vanishes if (46), (33), (45) and (47) are satisfied. This completes
the proof of Proposition 4.5. �

Proof of Theorem 4.1. =⇒ : Let F be of scalar flag curvature. Then we have
(33), and (45)–(47) by Proposition 4.5. It is obvious that (32) follows from
(46) and (47).

⇐= : By Proposition 4.5, we only need to show that (45) and (47) au-
tomatically hold, provided that (32) and (33) hold. In fact, we can show that
(32) directly implies (45) and (47). By (8) in Lemma 2.1 and ri = −si, we
have

tik = −si|k − sk|i − pik +
1
2
bm(smi|k + smk|i − rmi|k − rmk|i), (87)

qik = −si|k − pik +
1
2
bm(smi|k − smk|i − rmi|k − rmk|i). (88)

A direct computation from (32) gives

bmsmi|k =
tl

l + 2slsl

n − 1
aik + bi

{ (n − 3)slsl − tl
l

n − 1
bk − 1

2
bmbv(rmk|v + rmv|k) + smrmk

− bm(sk|m + sm|k)
}
+ bk

[
ti +

1

2
bmbv(rmv,i − rmi,v)

]
+

1

2
bm(rmi|k+rmk|i)

+ pik + si|k + sk|i − sisk. (89)

Now plugging (89) into (87) and (88) respectively and using the first formula
of (10) and (12), we obtain (45) and (47) respectively.

For the proof of (37), we first get R̄ic00 by (33) and sl
0|l by (32), and

then plugging them into K = Ric/((n − 1)F 2) yields (37), where Ric is given
by (16) with b = 1. �

4.3. Proofs of Theorem 4.2 and Corollary 4.3

Proof of Theorem 4.2. It is shown in [15] that a Kropina metric F = α2/β
with ||β||α = 1 is a Douglas metric if and only if (38) holds. Therefore, by
Theorem 4.1, we only need to use (38) to show that (32) holds. By (38) and
definitions, we easily get

tij = −slslbibj − sisj , ti = −slslbi, tl l = −2slsl,

qik = −sisk − smrmibk, qi = sls
lbi. (90)
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Now for the left hand side of (32), we have

sij|k
(38)
= (rik + sik)sj + bisj|k − (rjk + sjk)si − bjsi|k

(38)
= sj(rik + bisk)

+ bisj|k − (i/j),

and for the right hand side of (32), we also obtain the same result as above
by using ti, t

l
l and q∗

ik = qik in (90). Thus we have verified (32). For (39), it
directly follows from using the second formula in (9) and then plugging tl l, qi, ti
of (90) into (35). �

Proof of Corollary 4.3. Since β is closed by (40), we see that (38) automati-
cally holds. Plug (40) into (39) and (36) we get

σi = −2(n − 1)λbi, Bik = −λbibk. (91)

Now plugging (40) and (91) into (33) we obtain

R̄i
k = −ε2(α2δi

k − yiyk) + (λ + ε2)(α2bibk + β2δi
k − βyibk − βykbi). (92)

By (40) and (91), it follows from (82) that

λ + u + ε2 = 0. (93)

Then (92) and (93) imply (41), and we get (42) from (37), (40) and (93). �

4.4. Kropina Metrics of Constant Flag Curvature

It has been solved for the local structure of Kropina metrics of constant flag
curvature (cf. [8,17]). In this section, we will use Theorem 4.1 to investigate
it.

Corollary 4.8. Let F = α2/β be an n-dimensional Kropina metric with ||β||α
= 1. Then F is of constant flag curvature if and only if α is of constant
sectional curvature μ and β satisfies r00 = 0. In this case, we have μ ≥ 0, and
F is flat-parallel (α is flat and β is parallel), or up to a scaling on F , α and
β can be locally written as

α =

√
(1 + |x|2)|y|2 − 〈x, y〉2

1 + |x|2 , β =
〈Ux + e, y〉

1 + |x|2 , (94)

where U = (ui
j) is a skew-symmetric matrix, e = (ei) is a constant vector

satisfying

|e| = 1, Ue = 0, δij − eiej = δklui
kuj

l . (95)

Proof. For n = 2, it has been proved in [8] that F is flat-parallel. Now assume
that F is of constant flag curvature K. Then it follows from Theorem 4.1 that
its flag curvature K is given by (37). First we can write (37) as

(· · · )α2 + 12(n − 1)β4r200 = 0, (96)
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which implies r00 = cα2 for some scalar function c = c(x). Since ||β||α = 1, we
have ri + si = 0. Then it is easily shown that c = 0 and hence r00 = 0. Now
plug rij = 0, rij|k = 0, qij = 0, si = 0 into (96) we have

(4K − 4nK − tl l)α
2 + 4(nλ − λ + tl l)β

2 = 0. (97)

By (97) we easily get

K = − tl l
4(n − 1)

=
λ

4
≥ 0, (since tl l ≤ 0). (98)

Hence we have

tl l = −(n − 1)λ (= constant). (99)

By rij = 0, si = 0, (98) and (99), it follows from (33) that

R̄i
k = λ(α2δi

k − yiyk),

which shows that α is of constant sectional curvature λ ≥ 0. If λ = 0, then it is
easy to show that F is flat-parallel since by (98), we have tl l = 0 (this implies
that β is closed and then parallel by r00 = 0). If λ > 0, since r00 = 0 and α
is of constant sectional curvature, by solving Killing fields on a Riemannian
space of constant sectional curvature, it follows that, up to a scaling on F , α
and β can be locally given by (94) with U, e satisfying (95) (cf. [8]).

Conversely, assume r00 = 0 and α is of constant sectional curvature μ
with ||β||α = 1. First by assumption we have

rij = 0, ri = 0, si = 0, qij = rimsm
j = 0, ti = smsm

i = 0. (100)

Then by (100), it follows from the first formulas of (9) and the second formula
of (8) that

sij|k = −blR̄
l

k ij = −μ(biajk − bjaik), tij = blsli|j = −μ(aij − bibj), (101)

It is clear that the second formula implies tl l = −(n−1)μ. Now we use Theorem
4.1 to verify that F is of constant flag curvature, namely, we show that (32)
and (33) hold for some scalar function λ = λ(x) and K in (37) is a constant.
Now define λ := −tl l/(n−1) = μ, and then (33) naturally holds since Bij = 0.
Finally we verify (32). By (100), the first formula of (101) and tl l = −(n −
1)μ, we see that (32) also holds automatically. Therefore, F is of scalar flag
curvature by Theorem 4.1, and its flag curvature is given by (37). Now by (37)
we have

K = λs2 +
4s2 − 1
4(n − 1)

tl l. (102)

Since tl l = −μ(n − 1) as shown above, we have K = μ/4 = constant by
(102). �
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5. Construction by Warped Product Method

In this section, we will use Corollary 4.3 to show a family of examples of
projectively flat Kropina metrics with α in a warped product.

Let M = R×M̃ be a product manifold, where M̃ is an (n−1)-dimensional
manifold. Let {xA}n

A=2 be a local coordinate system on M̃ . A Riemann metric
α of warped product type is defined as

α2 = (y1)2 + h2(x1)α̃2, (103)

where α̃2 = ãACyAyC is a Riemann metric on M̃ . The Riemann curvature
tensors R̄ of α and R̃ of α̃ in (103) are related by

R̄1
k =

h′′

h
(y1yk − α2δ1k), (104)

R̄A
C = R̃A

C − (h′)2(α̃2δA
C − yAỹC) − h′′

h
(y1)2δA

C , (105)

where yk := akly
l, ỹC := ãCAyA. Define η = η(x1) :=

∫
h(x1)dx1, and then a

direct computation shows that

ηi|j = η′′α2, (ηi := ηxi),

where the covariant derivative is taken with respect to α. The converse is
proved in the following.

Lemma 5.1. [3,11] Let α be a Riemann metric on M . Suppose there are two
functions η and ξ on M with dη �= 0 such that

ηi|j = ξaij , (ηi := ηxi).

Then α is a warped product on M = R × M̃ , namely, locally η depends only
on the the parameter x1 of R, ξ = η′′(x1) and α can be expressed as

α2 = (y1)2 + (η′(x1))2α̃2.

Now we show a construction of examples of Kropina metrics of scalar flag
curvature.

Proposition 5.2. Let F = α2/β be an n(≥ 2)-dimensional Kropina metric on
a product manifold M = R × M̃ , where

α2 := (y1)2 + h2(x1)α̃2, β := y1, (106)

where h �= 0 is a smooth function on R and α̃ is an (n − 1)-dimensional
Riemann metric on M̃ . Then F is locally projectively flat if and only if α̃ is
locally flat. In this case, the flag curvature K is given by

K = −(β

α

)6{h′′

h
+ 3(h′)2

( α̃

α

)2}
. (107)
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Proof. For n = 2, we can directly verify that F = α2/β defined by (106) is
projectively flat (we may put α̃ = c(x2)y2). We consider n ≥ 3. For the α and
β defined by (106), a direct computation shows that ||β||α = 1 and (40) holds
with

ε =
h′

h
, u =

(h′

h

)′
. (108)

So F is locally projectively flat if and only if (41) holds by Corollary 4.3.
It can be easily verified that (41) is equivalent to

R̄1
k =

[ − (u + ε2)(y1)2 − ε2h2α̃2
]
δ1k + (u + ε2)y1yk − uh2α̃2bk, (109)

and
R̄A

C =
[ − (u + ε2)(y1)2 − ε2h2α̃2

]
δA
C + ε2h2yAỹC , (110)

where ỹC := ãCAyA. By (104), we see that (109) is equivalent to

u + ε2 =
h′′

h
, (111)

which automatically holds by (108). By the first equation in (108), it follows
from (105) that (110) is equivalent to

R̃A
C =

[ − ε2h2 + (h′)2
]
(α̃2δA

C − yAỹC) = 0. (112)

Now suppose F is locally projectively flat. Then we have (112), namely,
α̃ is locally flat. Conversely, if α̃ is locally flat, then by the above proof, we
can easily get (41).

Finally, by (42), we obtain the flag curvature K given by (107). �
By Proposition 5.2, F = α2/β in dimension n ≥ 2 is locally projectively

flat, where α and β are defined by (106) with h �= 0 being arbitrary and α̃
being locally flat.

Proposition 5.3. Let F = α2/β be an n(≥ 2)-dimensional Kropina metric,
where α and β satisfy (40) with ||β||α = 1, dε �= 0 and u = f(ε) �= 0 for some
function f . Then F is locally projectively flat if and only if α and β can be
locally written as

α2 = (y1)2 + h2(x1)α̃2, β = y1, (113)
where α̃ is a locally flat Riemann metric. Further, h can be actually determined
by f .

Proof. We firstly show (113) by (40). Define

ϕ :=
∫

1
f(ε)

e
∫

ε
f(ε)dεdε. (114)
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Then by (40) with u = f(ε) �= 0, we can easily verify that

ϕi|j = ε e
∫

ε
f(ε)dεaij , (εi := εxi). (115)

Obviously we have dϕ �= 0. Then by (115) and Lemma 5.1, α is a warped
product which can be locally written as the first expression in (113) with
h(x1) = ϕ′(x1). By (114), we can define

g(ϕ) :=
∫

1
f(ε)

dε.

Further by (40) we have

β =
εi

f(ε)
dxi =

dε

f(ε)
= d

(∫
1

f(ε)
dε

)
= d(g(ϕ)) = g′(ϕ)ϕ′(x1)dx1. (116)

Then by ||β||α = 1, α in (113), and (116), we must have g′(ϕ)ϕ′(x1) = 1 and
β = y1.

Therefore, by Proposition 5.2, we conclude that F is locally projectively
flat if and only if α̃ in (113) is locally flat. �

6. Proof of Theorem 1.2

Let F = α + β be a Randers metric and (h, ρ) be its navigation data. It is
known that

α2 =
(1 − b2)h2 + ρ2

(1 − b2)2
, β = − ρ

1 − b2
, (b = ||β||α = ||ρ||h).

By assumption there hold limb→1− h = α̃ and limb→1− ρ = β̃. Therefore we
have

lim
b→1−

F = lim
b→1−

(√
(1 − b2)h2 + ρ2

(1 − b2)2
− ρ

1 − b2

)

= lim
b→1−

h2

√
(1 − b2)h2 + ρ2 + ρ

=
α̃2

2β̃
=

1
2
F̃ , (let β̃ > 0 by F̃ > 0).

This proves Theorem 1.2 (i).
Since F̃ = limb→1− 2F , we have G̃i = limb→1− Gi. So for the curvatures

W i
k,D i

h jk,W o of F and corresponding W̃ i
k, D̃ i

h jk, W̃ o of F̃ , we obtain

lim
b→1−

W̃ i
k = W i

k, lim
b→1−

D̃ i
h jk = D i

h jk, lim
b→1−

W̃ o = W o.

Therefore, if F is of scalar flag curvature (resp. locally projectively flat, or
Douglassian), then F̃ is also of scalar flag curvature (resp. locally projectively
flat, or Douglassian).
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Now assume F is of weakly isotropic flag curvature with the flag curvature
K in the form

K =
3θ

F
+ σ,

where θ is a 1-form and σ = σ(x) is a scalar function. Since θ and σ are
uniquely determined by F , by taking the limit b → 1− on both sides of the
above, we see that F̃ is also of weakly isotropic flag curvature. Thus by [8],
F is of constant flag curvature. This fact can also be proved in another way.
Let (h, ρ) be the navigation data of the Randers metric F = α + β. Since
F is of weakly isotropic flag curvature, it is known that h =

√
hijyiyj is of

isotropic sectional curvature μ = μ(x) (a constant in dimension n ≥ 3) and
ρ = ρiy

i satisfies ρi|j + ρj|i = chij for some scalar function c = c(x) [10].
Since limb→1− h = α̃ and limb→1− ρ = β̃, by taking the limit b → 1−, we have
r̃00 = c̃α̃2 from ρi|j + ρj|i = chij , and α̃ is of isotropic sectional curvature μ̃,
where c̃ := limb→1− c and μ̃ := limb→1− μ. We have c̃ = 0 from r̃00 = c̃α̃2 and
||β̃||α̃ = 1. Further, we have μ̃ = μ = constant in dimension n ≥ 3 and in
particular μ̃ = 0 in dimension n = 2. So r̃00 = 0 and α̃ is of constant sectional
curvature. Thus by Corollary 4.8, F̃ = α̃2/β̃ is of constant flag curvature. �

Remark 6.1. In Theorem 1.2, let F = α + β be a Randers metric and (h, ρ)
be its navigation data. Suppose that h =

√
hijyiyj and ρ = ρiy

i are locally
given by (ρi := hijρj)

h =

√
(1 + μ|x|2)|y|2 − μ〈x, y〉2

1 + μ|x|2 ,

ρi = −2(λ
√

1 + μ|x|2 + 〈d, x〉)xi +
2|x|2di

1 +
√

1 + μ|x|2 + ui
kxk + ei + μ〈e, x〉xi,

where λ, μ are constants, U = (ui
k) is a skew-symmetric matrix and d, e ∈ Rn

are constant vectors. To take b = ||β||α → 1−, we only require hijρ
iρj = 1.

A direct computation gives a Kropina metric F̃ = α̃2/β̃ in two cases: (A).
α̃ = |y|, β̃ = 〈e, y〉; (B). α̃ = h and β̃ is given by

β̃ =
〈Ux + e, y〉
1 + μ|x|2 ,

where U and e satisfy

|e| = 1, Ue = 0, μ(δij − eiej) = δklui
kuj

l .

Remark 6.2. For a given Kropina metric F = α2/β with ||β||α = 1, we can
construct a family of Randers metrics F̄ = ᾱ + β̄ with F as the limit of F̄ as
b̄ = ||β̄||ᾱ → 1−. Define

ᾱ2 =
(1 − b̄2)α2 + b̄2β2

(1 − b̄2)2
, β̄ = − b̄β

1 − b̄2
, (|b̄| < 1).
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Then it can be easily verified that F̄ = ᾱ+ β̄ is a Randes metric with b̄ = ||β̄||ᾱ
and F = limb̄→1− 2F̄ .
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