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On m-Kropina Finsler Metrics of Scalar Flag
Curvature
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Abstract. In this paper, we consider a special class of singular Finsler
metrics: m-Kropina metrics which are defined by a Riemannian metric
and a 1-form. We show that an m-Kropina metric (m # —1) of scalar flag
curvature must be locally Minkowskian in dimension n > 3. We charac-
terize by some PDEs a Kropina metric (m = —1) which is respectively
of scalar flag curvature and locally projectively flat in dimension n > 3,
and obtain some principles and approaches of constructing non-trivial
examples of Kropina metrics of scalar flag curvature.
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1. Introduction

The flag curvature in Finsler geometry is a natural extension of the sectional
curvature in Riemannian geometry, and every two-dimensional Finsler metric
is of scalar flag curvature. It is the Hilbert’s fourth problem to study and clas-
sify projectively flat metrics. The Beltrami Theorem states that a Riemannian
metric is locally projectively flat if and only if it is of constant sectional curva-
ture. It is known that every locally projectively flat Finsler metric is of scalar
flag curvature. However, the converse is not true. There are regular or singular
Finsler metrics of constant flag curvature which are not locally projectively
flat [1,17]. Therefore, it is an interesting point to study and classify Finsler
metrics of scalar flag curvature. This problem is far from being solved for gen-
eral Finsler metrics. Thus we shall investigate some special classes of Finsler
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metrics. Recent studies on this problem are concentrated on Randers metrics,
square metrics and some other special («, §)-metrics.

A Randers metric is defined by F' = a+(, where « is a Riemannian metric
and § is a 1-form with b = ||f]|o < 1. After many mathematicians’ efforts,
Bao—Robles—Shen finally classify Randers metrics of constant flag curvature by
using the navigation method [1]. Further, Shen—Yildirim characterize Randers
metrics of scalar flag curvature and classify Randers metrics of weakly isotropic
flag curvature [10]. There are Randers metrics of scalar flag curvature which
are neither of weakly isotropic flag curvature nor locally projectively flat [2].
So far, the problem of classifying Randers metrics of scalar flag curvature still
remains open.

A square metric is written as F' = (a + 3)?/«, where « is a Riemannian
metric and G is a 1-form with b = ||3|o < 1. In [9], Shen—Yildirim determine
the local structure of locally projectively flat square metrics of constant flag
curvature. Zhou shows that a square metric of constant flag curvature is locally
projectively flat [18]. Later on, we prove that a square metric in dimension
n > 3 is of scalar flag curvature iff. it is locally projectively flat [7].

In [13], we consider an (o, §)-metric F = a¢p(8/a) with ¢(s) satisfying

{14 (k1 + ks)s® + kas } 0" (s) = (k1 + kas®) {o(s) — s¢'(s) },

where kq, ko, k3 are constant with ko # k1ks. We prove that if 3 is closed and
the dimension n > 3, then F is of scalar flag curvature if and only if F' is
locally projectively flat, and for a special case given by ¢(s) = 1 + a1s + es>
with a1 and € # 0 being constant, we show that F' is of scalar flag curvature
if and only if F is locally projectively flat.

The Finsler metrics mentioned above are regular. It seems hard to char-
acterize a general regular (a, )-metric of scalar flag curvature in dimension
n > 3. On the other hand, singular Finsler metrics, such as Kropina metrics
and m-Kropina metrics, have a lot of applications in the real world. In this pa-
per, we will study m-Kropina metrics of scalar flag curvature. An m-Kropina
metric has the following form

F=aol"™pm™ m+0,1.

When m = —1, F is called a Kropina metric [4]. There have been a few research
papers on Kropina metrics [6,8,12,14-17]. m-Kropina metrics naturally appear
in characterizing a class of singular («, §)-metrics which are locally projectively
flat [14,15] and locally projectively flat with constant flag curvature [16]. Note
that due to the deformation (6) below for an m-Kropina metric, we can always
assume b = ||8]|o = 1 without loss of generality.

Theorem 1.1. Let F = a'=™3™ be an n(> 3)-dimensional m-Kropina metric
(m # —1) with ||f]|la = 1. Then F is of scalar flag curvature iff. F is locally
Minkowskian, or more precisely, F is flat-parallel (« is locally flat and 3 is
parallel with respect to o).
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In [8], we show that an n(> 2)-dimensional m-Kropina metric (m # —1)
of constant flag curvature is locally Minkowskian. In [15], we prove that an n(>
3)-dimensional locally projectively flat m-Kropina metric (m # —1) is locally
Minkowskian. Therefore, Theorem 1.1 generalizes the corresponding results in
[8,15]. Besides, we indicate that a two-dimensional Douglas m-Kropina metric
(m # —1) is locally Minkowskian [14].

The case m = —1 will be much more complicated. In Sect. 4 below, we
give respective characterizations by some PDEs for a Kropina metric to be
of scalar flag curvature and locally projectively flat in dimension n > 3 (see
Theorem 4.1 and Theorem 4.2 below). In Sect. 4.4, we use Theorem 4.1 to prove
the known local classification for a Kropina metric of constant flag curvature
(see Corollary 4.8). However, it is difficult to determine the local structure of
a Kropina metric of scalar flag curvature, even if it is locally projectively flat
(cf. [14,15]). Here we will show some methods (including using Corollary 4.3
below) of constructing non-trivial Kropina metrics of scalar flag curvature.

Kropina metrics are related to Randers metrics to some extent. Every
Kropina metric is the limit of a family of Randers metrics F' = a + (3 as the
norm b = ||3||a — 17 (see Remark 6.2 below). Further, we have the following
result.

Theorem 1.2. Let ' = o+ 3 be a Randers metric (depending on a constant
parametric vector) and (h,p) be the navigation data of F. Suppose
a = limy_ - h is a Riemann metric and E = limy_,1- p @5 a non-zero 1-
form. Define a Kropina metric F by F= &2/5. Then

(i) F =limy_ - 2F, and ||3]|5 = 1.

(ii) If F is of scalar flag curvature (resp. locally projectively flat, or Douglas-
sian), then F is also of scalar flag curvature (resp. locally projectively
flat, or Douglassian). If F is of weakly isotropic flag curvature, then F
s of constant flag curvature.

In Theorem 1.2, let ' = F,, depend on the constant parametric vec-
tor v. The limit b — 1~ means that the function b = b(z) close to the
constant function 1, which gives some conditions on v (refer to the exam-
ple in Remark 6.1 below). The conditions on v are used to check whether or
not a2 = limy_,;- h% = limy_,;- (1 — b?)(a® — (%) is a Riemann metric and
B = limy_,;- p = —limy_,;- (1 — b?)3 is a non-zero 1-form. By Theorem 1.2,
to construct non-trivial Kropina metrics of scalar flag curvature in dimension
n > 3, we can have a try on the known examples of Randers metrics of scalar
flag curvature (cf. [2]).

Next we give another principle of constructing Kropina metrics of scalar
flag curvature.

Theorem 1.3. Let F = o2/ be a Kropina metric with ||3||o = 1 and define
F = F + 1, where n is a closed 1-form with ||n||s sufficiently small.
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(i) If F is of scalar flag curvature, then F is also a Kropina metric of scalar
flag curvature.

(ii) Let F be of constant flag curvature. Then F is locally projectively flat if
and only if F is flat-parallel, or equivalently, F can be locally written in
the form

=yl
Theorem 1.3 (ii) easily follows from a result in [16], since therein we prove

that a locally projectively flat Kropina metric with constant flag curvature is
flat-parallel. By Theorem 1.3 (ii), we can easily obtain a family of Kropina
metrics which are of scalar flag curvature but are neither locally projectively
flat nor of constant flag curvature in general. Take n = (z,y) with x close to
origin, and then F' in (1) is a projectively flat Kropina metric with the flag
curvature given by

3yt

4 (ny* + [y»)*
Additionally, using Corollary 4.3 below and a warped product method,

we obtain a family of Kropina metrics which are locally projectively flat (see
Proposition 5.2 below).

2. Preliminaries

For a Finsler metric F, the Riemann curvature R, = R’ (y) 52 ®dax* is defined
by

- oG! - 0%GH - 02Gt oG 0G7

Ry, =2— ) —— +2G ——— — —— 2
k oz Y Ox Oyk + Oyidyk Oyl Oyk’ 2)

where the spray coefficients G* are given by

G = 3o (s~ (7]}, 3)

The Ricci curvature Ric is the trace of the Riemann curvature, that is, Ric :=
R™ . A Finsler metric is said to be of scalar flag curvature if there is a function
K = K(x,y) such that

R =KF*(6, — F2%y'yk), yk := (F?/2) 109" (4)

If K is a constant, F' is said to be of constant flag curvature. A Finsler metric
F' is said to be projectively flat in U, if there is a local coordinate system
(U, z%) such that G* = Py’, where P = P(z,y) is called the projective factor
satisfying P(x, \y) = AP(x,y) for A > 0.
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The Weyl curvature W and the Douglas curvature Dhi jk are two im-
portant projectively invariant tensors and they are defined respectively by

Wk-—Rk—n_lk—n+1aym(Rk—n_l5k)Z/7 (5)
, 03 . 1 oG™

D’L' = 1—771.

h ik 3yh8yﬂ8yk( n+1 8ymy)

In two-dimensional case, there is a projectively invariant tensor W¢ called
Berwald-Weyl tensor. A Finsler metric is called a Douglas metric if D, ik =0
A Finsler metric is of scalar flag curvature if and only if W% = 0. An n-
dimensional Finsler metric is locally projectively flat if and only if: W* =0
and D, ;; =0 for n >3, and W° = 0 and D)’ ;;, = 0 for n = 2 [5].

An (o, 8)-metric F' is a Finsler metric defined by a Riemannian metric
a = +/a;;j(z)y'ys and a 1-form 8 = b;(x)y’ on a manifold M, which is expressed
in the following form:

F=a¢(s), s=p/a,

where ¢(s) is a suitable function. If we take ¢(s) = 1+ s, then we get the well-
known Randers metric F' = a + . In applications, there are a lot of singular
Finsler metrics. In this paper, we will discuss a class of singular («, 3) Finsler
metrics—m-Kropina metrics.
An m-Kropina metric is of the form F = o' ~™3™, where m # 0, 1 is real.
In particular, it is called a Kropina metric when m = —1. For an m-Kropina
metric F' = o'=™#™, we introduce a special deformation on o and . Define
a new pair (a, B) by
a:=b"a, B:=0b""1p, (6)

which appears first in [8]. It is interesting that under the deformation (6), the
m-Kropina metric F = a'~™#™ keeps formally unchanged, that is,

F=a=mgm  (||8lla =1 (7)

It has been shown that the deformation (6) plays an important role on the
study of m-Kropina metrics [8,14-16]. Due to (7), we can always assume
[|8]l« = 1 for an m-Kropina metric F' = o'~™3™ without loss of general-
ity.
For a Riemann metric o = \/a;;4'y’ and a 1-form 3 = b;y’, define
k k

rij 1= 5(()1‘] + bj|i)a Sij 1= i(bllj — bj|i)7 T = a TRy, 5= A Sk,

Dij == Tikaj7 Qij = Tikskja tij == Sikskj7 rj=bry, s;=0b's;y,

pj =iy, €5 = Vaiy, ry= by, b= by, =l
where b is defined by b" := a"b;, (a") is the inverse of (a;;), and V3
= b jyidxj denotes the covariant derivative of 3 with respect to o. We use a;;
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to raise or lower the indices of a tensor. For a tensor 7;; as an example, define
TiO = Ejyj and TOO = njyiyj’ etc.

Lemma 2.1. Here we list some identities as follows:

Qik: + Qi = Tile 71— 2Dik — U™ (P +Tmk)i) Qik =tik+ k)i — 0" Smklis
(8)
Sijlk = Tiklj — Tkl — O Ry 10 b0 (Pl — Trkfo) =tk — Qi + 0™ Skjms
(9)
b Grem = —Trms™ = 0" s + i, 7% =0, (10)

where R denotes the Riemann curvature tensor of a. If ||8]|a = constant, we
have

e+ 8k =0, b"Gm =8ms™, blbksku =2¢ls, bibjbkrmk = —4s;5', (11)

bm8i|m = QSmTim - bkblT;ﬁ"l = —Qbmqim - bkblTki”. (12)
For an m-Kropina metric F' = o!=™3™ by (3) we get

m (m — 1)srgp + 2masg

2(m —1) S[mb2 — (m+ 1)52] (bi_2a*15yi). (13)

G = Gg— asfﬁ-

(m—1)s

Then by (5) and (13), we can get the expressions of the Weyl curvature tensor
W for an m-Kropina metric F' = a!~™3™. We have given a Maple program
in [7] to compute the Weyl curvature for any (a, 3)-metric. In this paper, we
will write out the whole expression of the Weyl curvature for a Kropina metric
(m = —1); while for m # —1, we will not write out the expression since it is
very long, but some key terms will be given, similarly like what we have done
in studying square metrics in [7].

For readers to verify the expression of W7 for an m-Kropina metric
F = a'=™p3™ we give the expression of a leading term. We see that W?_ x

(n? = 1)(m — 1)?83 [mb*a? — (m + 1)62}5 = 0 can be written as
(n + 1)m7b8A14a14 + A12a12 + Aloalo —+ -+ AQO{Q + Ay =0, (14)
where Ay, Ag, ..., Aj4 are polynomials in (y?), and Ay4 is given by

Ay = —(n— 1)[(b°g + sos" )b, — (tobk + Bti)b; + BB}, + s'sp)]
+ (25587 + 67t )(B0} + y'br).

When m = —1, eliminating the factor —b%a!® from (14) we obtain

(n + 1)b*Bya* +2(n +1)BB2a* + 43%By = 0, (15)
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where By = Aj4, and Bs, By are given by (denote by W the Weyl curvature
of a)
By = (b4sj0‘j +b2qp — b2bjso‘j — b2rjjso — 0% qo; + 750)(266% + y'b,)
—y b7 (25587 + thjj)yk +B(r — bz?’jj)sk +b6%B(qr + bQSjk‘j —Vaqu; — Vsy);)]
+(n — 1) [ (bt g+ s0—tob")yk + (b2s0j0 — b2 qoo — oS0 — 53)b by, + B(ro — s0)b' sy,
+ 86 (% qor — 2b%qro + 2b250‘k — bzsk‘o — 28o7k) — (b23i0|0 + 7008" — 7%950) by,
— b2 Briys, — b2 B(rros’ — 2r'ys0 + 2b25i0‘,€ — b%iklo)],
Bo = (n+ l)ﬂ(bQ'rO‘O — bQTjjroo + 6250‘0 — 2b%qo0 — bgbj'roo‘j - 'rg — sg + rroo — 27’050)5}C
—(n+ 1)(b4sj0‘j +b%q0 — b2bjso‘j — b2rjjso — b2qu0j + 1"50)y"”yy/1C
+B8y*[(n+ 1)(ro + so)(ri+sk) — (n + 1)(r — bQTjj)TkoJr(n — 2)b%ry 0 — (2n — 1)bPrg)y,
+ (n 4+ )b (qro + qok) + (n — 2)b%s 0 — (2n — Db%sq)s, + (n + 106 ryg 4]
+(n® = D{yrl(roso + 55 + bq00 — b%s0)0)b" + b*roos’ + b7 (6% 5o — sor'o)]
+ Bb*[(ro+50)Tr0 — (T + $k)T00 —b* (Troj0 — o0 1) +D2 B> W, + roor’y, — rorro) }-

Lemma 2.2. Let F = o?/f3 be an n-dimensional Kropina metric. Then Wi =0
is equivalent to (15), and the Ricci curvature Ric of F is given by

. _ . 1

Ric = Ric — m{bQ(bztll + 2slsl)a4 +4s [b4slo|z —(n— 1)b2t0+(r — b2rll)so
+b%(q0 — blsou — blqol)]oz?’ + 452 [(r— b2t oo + (n — 2)s2 + 2(2n — 3)roso
—(n— 2)b250‘0 + b2r0|0 — 7"8 — 2nb2qoo — blr00|l]a2

+4(n — 1)s*[2ro0(2r0 — s0) — b*roo)0] o — 12(n — 1)541"30}, (16)

where Ric denotes the Ricci curvature of .

3. Proof of Theorem 1.1
Lemma 3.1. 3 is closed <= t;; = 0 <= th =0.

Lemma 3.2. Let F' = o'~™3™ be an m-Kropina metric (m # —1) of scalar

flag curvature on an n(> 3)-dimensional manifold M. Then oo satisfies
2 1
roo = 27[mb%a® — (m +1)8%] — mﬁso, (17)

where 7 = 7(x) is a scalar function.

Proof. Since F = o!=™3™ is of scalar flag curvature, we have W = 0. Then
we have (14). Now a2 x (14) can be written as

CLmb*a® — (m +1)8%] — 24(n — 2)(m + 1)* 8%y (b, — Byx) [(m — 1)Broo
+2ma250]2 =0, (18)
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where C} are polynomials in (y'). It is easy to see that mb®a? —(m+1)3? is an
irreducible polynomial in (3*) since m # 0 and n > 2. Further, if o?by, — Byx
is divisible by mb?a? — (m + 1)3? for all k, then there are scalar functions
T = Ti(z) such that

a?by, — By = Tk [mb2a2 —(m+ 1)62].
Contracting the above with y* we have 79 = 0 and hence by, — By = 0. This

is a contradiction. Now since n > 2 and m # —1, it follows from (18) that
(m — 1)Broo + 2ma?sg is divisible by mb?a? — (m + 1)3%, which implies

(m —1)Broo 4 2ma’sy = [mb*a® — (m + 1)), (19)
where 6 is a 1-form. Eq. (19) is equivalent to
m(2so — b*0)a® + B[(m — 1)rgo + (m +1)63] = 0. (20)
By (20), there is a scalar function 7 = 7(z) such that
259 — b*0 = —2(m — 1)b*70. (21)
Now plugging (21) into (20) immediately yields (17). O

Lemma 3.3. Let F = a!=™3™ be an m-Kropina metric (m # —1) of scalar

flag curvature. Then we have

25, sF
b2

Proof. Since F' = a'~™3™ is of scalar flag curvature, we have (14), and further

we can rewrite (14) as

th = — (22)

L84+ mS(n+ 1)b¥al?, T =0, (23)
where D} are polynomials in (y*) and T are defined by
T":= m[(n—1)(b'ty — s'sg — b°t'y) + yi(thjj + 2s;57)]
+2(m + 1) (b*too + 53)y".

Now it follows from (23) that there are polynomials f* in (y%) of degree two
such that

T; — fiB = 0. (24)

Contracting (24) with y* we get
m(2ss" 4+ 025 )at + [(2 4 3m — nm) (b too + s3) +m(n — 1)Bto]a® — fo8 = 0.
Then by (25), we have fy = 0a? for some 1-form 0 = 6,(z)y’. Plugging it 5121?2)

(25) gives
0 = 2m(2sxs" + b2t%)ai; + 2(2 4+ 3m — nm) (b?t;; + si55)

+m(n —1)(bt; + bt;) — (b:6; + b;6;). (26)

Contracting (26) with a% yields
(24 3m)b*th, + 2(1 + 2m)sis® — b%6, = 0. (27)
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Further contracting (26) with '/ gives
mb*th, — 25" — bF0), = 0. (28)
Now it is easy to follow from (27) and (28) that (22) holds. O

Proof of Theorem 1.1. Let F = a!~™ 3™ be an n(> 3)-dimensional m-Kropina
metric (m # —1) of scalar flag curvature. Then under the deformation (6),
F = &1*’”5’” is also an m-Kropina metric of scalar flag curvature. So we
obtain Lemma 3.2 and Lemma 3.3 under a and 5 Note that b? = 1, and then
by (17) we have

- ~r o~ ~~ 1~ ~_
Tij =27 [maij — (m + 1)blbj] — L—’_l(bisj + bjsi), (29)
M —
We will prove 7;; = 0 by (29). This fact is essentially proved in [8,15]. For
convenience, we give the proof here. Contracting (29) with b* and using ||3||5
= constant = 1 we have
2

@+@:—ﬁ@—m_1

5 =0. (30)

Contracting (30) with b we get 7 = 0 and then by (30) again we have 5;=0.
Thus by (29) again we have
Fij =0.

Next by (22) we have

th, = —25,5". (31)
Since we have proved 53, = 0, we have Pfk = 0 by (31). Thus Lemma 3.1 implies
that § is closed. Thus by this fact and 7;; = 0, we obtain that § is parallel
with respect to &. Now by (13) we see that F' is projectively related to a since
G' = G%. So a is of constant sectional curvature. Then & is flat since 3 # 0 is
parallel. ]

4. Kropina Metrics of Scalar Flag Curvature

4.1. Characterization Theorems

Theorem 4.1. Let F = /3 be an n(> 2)-dimensional Kropina metric with
||8]la = 1. Denote by R, the Riemann curvature tensor of a. Then F is of
scalar flag curvature if and only if the following hold

th — (n—3)ss N o
_ n—3)sts; — ¢t ) X . ) ) )
Ry = %(0&252 —y'yk) — Boodj, — B',® + Bory' + B' oy,

n—1
+ TiOTko — roorik, (33)
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where the symbol (i/7) above denotes the terms obtained from the proceeding

terms by interchanging the indices © and j, and ¢}, o; and Bik are defined by
x 1 , 1

Qip * = gbpbl [(ripli — T2a1p)br — (i/K)] — ibl('f‘lkh’ + k) — Pik — Sijk,  (34)

o= 2[(71 — 3)slsl — tll —(n— 1)/\] bi +2(n — 1)bpbl(rlp|i — Tlip), (35)

bro;
4(n—1)

and X = A(x) is a scalar function. In this case, the flag curvature K of F is
given by

1
By, = = (i + brgps) +

] g+ (/) (36)

s? [ 3s? s
K = )\82 + E{ o2 T‘go + a(’/’omo + 67"0080) + 3(100 + 383 - bl(’/‘lo|0 — 7‘00”)}
1

oy [0 D = 200 20 = 657l o)

In [14,15], we give a way to characterize locally projectively flat Kropina
metrics in dimension n > 2 by (38) and an equation on the spray G°, of a.
Now using Theorem 4.1, we can obtain a different way to characterize locally
projectively flat Kropina metrics by adding a Douglasian condition (38) in
n > 3.

Theorem 4.2. Let F' = o?/3 be an n(> 3)-dimensional Kropina metric with
[1Blla = 1. Then F is locally projectively flat if and only if (33) and the fol-
lowing hold

sij = biSj - bjSZ'. (38)

In this case, the flag curvature K of F is given by (37), and o; in (33) are
given by

oi =2(n—1)[b's; — (A + si8")bi]. (39)

In a special case, we have the following simple corollary. We will construct
some examples in Sect. 5 below by Corollary 4.3.

Corollary 4.3. Let F = o?/3 be an n(> 3)-dimensional Kropina metric with
[18]la = 1. Suppose
bij; = €(ai; — bib;), € = ubi, (40)

where u = u(x), e = e(x) are scalar functions and €; := €,i. Then F is locally
projectively flat if and only if

R', = — 2(a®0 — y'yp) — u(a®biby, + 5265 — By'b — Byxb?). (41)
In this case, the flag curvature K is given by

K =s%[e%(3s® — 4) —u]. (42)



Vol. 74 (2019) On m-Kropina Finsler Metrics of Scalar Flag Curvature Page 11 of 24 21

Remark 4.4. It is known in [10] that a Randers metric F' = a+ 3 in dimension
n > 2 is of scalar flag curvature if and only if for some scalar A = A(z),

1 m m
Sijlk = m(aiks jlm — AjkS i\m)a (43)

Rik = )\(0425,?C — yiyk) + a2tik + tood,i — troy’ — tioyk - 3$iosk0. (44)

In Theorem 4.1, for a Kropina metric of scalar flag curvature, we obtain the
equations (32) and (33) similar to (43) and (44). However, the characterization
and proof for a Kropina metric are much more complicated than that for a
Randers metric.

4.2. Proof of Theorem 4.1

Proposition 4.5. Let F' = o?/3 be an n(> 2)-dimensional Kropina metric
with ||8]]a = 1. Then F is of scalar flag curvature if and only if (33) and the
following hold

1
tij = bit]’ —+ bjti — SiSj + —
n—

T {(tll + 2s's))ai; — [tll —(n— 3)slsl]bibj},

(45)

th, —(n—3)s's .
Sij|k = {tj _ %bj}aik + T‘iij + qkzb] + sj\kbi — (Z/]), (46)

1 . 1
Qi = §bmbl [(Fimi = T1ipm )b — (i/k)] — ibl(rlk\i + k) — Pik — Sije- (47)

Proof. Assume F = o?/f is of scalar flag curvature in dimension n > 2. By
% =0, we get (15). Here we put b = [|3||o = 1 and hence rj, + s, =0 =r
n (15). First, (15) can be written as

(--)B— (n+1)a'by [(n = 1)(tio — tobi + s0s;) — (th, + 28lsl)yi] =0, (48)

where the omitted term is a homogeneous polynomial in (y). Then by (48)
we have

pibj — (t' + 2s's1)ai;
a n—1

tij = tjbz' — SiSy 5 (49)
where p; = p;(z) are some scalar functions. By (49), using ¢;; = t;; we get
pPi = O’bi — (n - l)ti, (50)

where o = o(z) is a scalar function. Plugging (50) into (49) and then contract-
ing (49) with a¥, we get

o=t — (n—3)s's. (51)

Now plugging (50) and (51) into (49) we obtain (45).
By t; and t;o given by (45), we can write (48)/0 as

()8 +2(+1)a’b.C; = 0, (52)
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where C; is a homogeneous polynomial of degree two in y (the expression is
omitted here). It is easy to see from (52) that C; is divisible by 3. Hence we
have C; = ¢ for a 1-form c;o = ¢;;3”, which is equivalent to

qo+s g —bgor — blsou—rt;s0 th — (n—3)sls
Siolo = | yi + {MO&Z — qoo + so|0}bi
n—1 n—1
— ot + sorio — T008i — ciol . (53)
n—1
Plug (53) into (52) and then (52)/(23) can be written as
(-+)B+ (n+1)aDy, =0, (54)

where Dy, is a 1-form (the expression is omitted here). It is easy to see from
(54) that Dy, is divisible by . Hence we have D, = fi.0 for a scalar function
fik, which is equivalent to

(TL — 1)8’Lk)|j — 2(’/’7, — 1)Sij|k + = fikb]" (55)
Interchanging j, k in (55) we have
(n — 1)Sij|k — 2(n — 1)Sik|j + ..o = fijbka (56)

Then 2 x (55) + (56) gives

! I I I
Qi+ 5 5 = Uqi = bsjp — 145,

th, — (n—3)sls
Sijle = n—1 o { = bt
2b i bz - i‘_2b'i
+ kCij + J;(’f ’;)fﬂ s fik — biqrj + bisj|p + 557k — ik (57)
n_

By (53) and (57) we get
fij = 2Cij. (58)
By (58) and s, + s;i% = 0, it follows from (57) that

g+ —blap—blsju—rls; 4~ (n—3)sls,
O:{ n—1 + n—1 bj_tj}aik
biC‘k ..
= bigrj + bisji — ~ 1t (i/7)- (59)

Contracting (59) with b6’ we can first get the expression of b'cjy, and then
using b'cy and contracting (59) with b/ we can get the expression of ¢;;. Now
plugging c¢;, into (59) yields

|

+(i/3). (60)

Contracting (60) with a’* we obtain
Slj|l = bl(qjl +s51) +(n—1)t; —|—rllsj —qj+ [(n— 1)sts; — bm(blsm” — slmll)] b;.
(61)

1 1
b (b s — s mu) o

1 1 l 1
qj+5j|l*bq]'1*b8juf’rlsj'
s'si| b +

— tj} (air — bibr)

n—1 n—1

Finally, plugging (58), ¢;; and (61) into (57) we obtain (46).
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By (46), we can determine the expressions of the following quantities
l l m 1
Sik|0s S o S k1> Siolks Siojo, bTS y-

Plug these quantities into (52) and then (52) is equivalent to (Wx := ay W)

- 1

Wik = —— {sli(@®air — yiyr) + (2q00 + b'rooy + 1'1700) @ik
- (Tlﬂ"ko =+ bl?"ko\l + qro + fIOk)yi} + (8110 — 90:)yx + (Trojo — Toolk)bi
+ (qri — Sijk)” + TroTi0 — To0Tik- (62)

Lemma 4.6 (62). is equivalent to the following equation

Rik = )\(042512 - yiyk) + [bl(roou - 7"10\0) + qoo — 30‘0](5,2 + Tiofko - TooTik
+(q' — ka)ag + %[bl(rzmk + Tikjo — 27ko1) — qro — Gok + Skjo + So\k]yi
+ (S\io — 0"y + (Trojo — Took )b’ (63)

where A = \(z) is a scalar function, and R, denotes the Riemann curvature

of a.
Proof. = : By the definition of the Weyl curvature W, of o we have
= _ 1 =, j
Wik = Rix — —— Ricooaix + —— Ricgoy;, (64)
n—1 n—1

where R;j := aimRTr,; and Ric;, denote the Ricci tensor of a. By R = Ry;
and (64) we get

= = 1 5. =
Wit — Wi = m(Rlckoyi — Ricioyr). (65)
Plugging (62) into (65) yields

Troyi—Tiye+(n—1) [ (s5)—Sijitari—qir )+ (rrojo—Tooyk ) bi— (Tiojo —To0ji)bk] =0,

(66)
where we define
Ty == (n — 2)qor — qro — (1 — 1)sgj0 — blryop — mror’; — Ricko.
Contracting (66) with y*b? we get
(-+)o? + BTy + (n — )b (roop — r10j0)] = 0. (67)
By (67) we obtain
To + (n — 1)bl(7”00|l — 7“10|0) = (n + 1)770(2, (68)

where n = n(x) is a scalar function. Then it follows from the definition of T;
and (68) that

Ricoo = (n—3)qo0—(n— 1)sojo—(n+ 1)na2+(n—2)blroo|l —(n— 1)bl7“lo|0 —rlro0.
(69)
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By (69) we can get Ricyg. Plugging (69) and Ricko into (64) we get Wiy, and

then by (64) and (62) we obtain (63), where X is defined by
(n+1)n— sil
A= L. (70)
<= : Suppose that (63) holds. Using the first formula in (8) and b =
constant we have

qoo = — 500 — Poo — b'T10)0- (71)

Contracting (63) over i,k we get Ricg, and then using (71) we obtain (69)

with 7 defined by (70). Now plugging (69) and (63) into (64), we immediately

obtain (62). O

Since R;; = Ry, the right hand side of (63) must be symmetric in the
indices 4, k. Then it follows from (63) that the symmetric condition is equivalent
to

0= [bl(rzmk + Tikjo — 27kor) — Gko + Gok — Skjo + Sok]Yi + 2(Tkojo — Took)bi

+2(qri + spji)a® — (i/k). (72)
Lemma 4.7. (46) and (63) < (46), (47) and (33).

Proof. = : To simplify (72), we first give two formulas as follows by (46),
(71) and (63):

(n—3)sls; — t!,

b (r10j0 — Toopt) = [)\ - ](042 — %) + (to — qo + b's1)B(73)

n—1
n—3)sts; — t!
qoi — Qio = 2[>\ - %} (yi — Bby)
n—1
+2(to — qo + b'sop)b; + Sijo — So|i
— b (rusjo + T10i — 2riop)- (74)

To show (73) and (74), by the first formula in (9) we have
bl(ﬁom —Tool1) = bl(3l0|0 + b Ry), 010 — Tooli = Siojo + V" Ry (75)

Contracting (63) with b;b*, and then using (71), the second formula of (9), the
first formula of (10) and the third formula of (11), we have

b™b Ryt = (A—s18")a® = AB%+ (b 5011 —to—q0) B— 2500455 —b'r10/0—Poo- (76)
Similarly, by (46), (71) and the first formula of (10), we have
255! + tlla2 (n—3)s;s' —t,
n—1 n—1

ﬂQ + 206ty — Sg + 280|0 + blTlOlO + Poo-

(77)
Then by the first formula in (75), we obtain (73) from (76) and (77). Now by
a contraction of (63) we get b* Ry;, and then using the obtained b* Ry;, (46),
(73) and the first formula of (10), we obtain (74) from the second formula in
(75).

l
b si010 =
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Now contracting (72) with y* and using (73), we can write (72) as
A;a* + 8B; =0, (78)

where A;, B; are polynomials in y. By (78) we have B; = o;a?, which is
expressed as follows

n—3)sls; —t! a?
Tooli —Ti0l0 = [)\—()_fl]ﬁyi—(to—%-i-blsou)yﬁ‘Q(n_l)azﬂ (79)
Plugging (79) into (78) yields
n—3)sts; — ¢
b (1310 + 10 — 2rion) = [)\ - %} (2y: — Bby)
B
to — bt b + ———o0;.
+ (to — qo + b'so)bi + 2 — 1)0 (80)
Now by (74), (79) and (80), we see that (72) is equivalent to
b g; — biO'
Qik — Qki = Ski — Sik + o Tk (81)

2(n—1)
By a contraction on (80), we easily obtain (35) for the expression of o; by

the second formula of (9) and the third formula of (11). Now using (35), we can

easily obtain (47) by (71) and (81) since we can write (71) as ¢;x + qx; = - - -
Finally, by (35), (79) and (80) are respectively reduced to

2
a~o; — 0oYi

Tooli — T0]0 = m7 (82)

(TL—?))SlSl —tll . bido—f—ﬂdi
n—1 YT o —1)

Now under the formulas (47), (82) and (83), we can easily show that (63) is

equivalent to (33) with Bj;j defined by (36), where we have used (by (35))

bloy = —2t!, — 2(n — )X+ 2(n — 3)s;5". (84)

<= : To verify (63), by the last argument above, we only need to verify
(82) and (83), and then we get (63) following from (33).

Contracting (33) with b;b* and using (35), (71), (84), and the second
formula of (9), the first formula of (10) and the third and fourth formulas of
(11), we obtain

b (a0 + 7o) — 2ri01) = 2 [A - (83)

(n—2)sst —t,
n—1

(a® — B2) — 515 8% + 2(b™S0jm — 0) 8

—280|0 + S§ — Poo — bl(27"lo|0 — Too|1)- (85)

Similarly, by (46), (71) and the first formula of (10), we have (77). Then by

the first formula in (75), we also obtain (73) by (85) and (77). Next we prove
(82). First , by (47) and (35) we have
ooby — Bor 1
= J0Ok TPk 2y,

O =) 2 (

b R,y = [2)\ 2

101k + Tik|0) — Pro — So|k- (86)
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Now by (46) and (33), we can get sjoo and b'Ryj respectively. Then we can
obtain (82) from the second formula in (75), by using (35), (73), (84), (86), the
second formula of (9), the first formula of (10) and (12). For (83), it follows
from (82) by (84). O

Conversely, let (46), (33), (45) and (47) be satisfied. Then F is of scalar
flag curvature, since it is easy to see from the above proof that the Weyl
curvature of F' vanishes if (46), (33), (45) and (47) are satisfied. This completes
the proof of Proposition 4.5. O

Proof of Theorem 4.1. = : Let F' be of scalar flag curvature. Then we have
(33), and (45)—(47) by Proposition 4.5. It is obvious that (32) follows from
(46) and (47).

<= : By Proposition 4.5, we only need to show that (45) and (47) au-
tomatically hold, provided that (32) and (33) hold. In fact, we can show that
(32) directly implies (45) and (47). By (8) in Lemma 2.1 and r; = —s;, we
have

1 T
tik = —Sik — Skli — Pik + §b (Smilk + Smkli — Tmilk — Tmk|i)s  (87)
1
Qik = —Si|k — Dik + §bm(8mi\k — Smk|i = Tmilk = Tmk|i)- (88)
A direct computation from (32) gives

m —
b S|k =

th 4 258 n —3)s;st — ¢t
U . aik+bi{—( Jeu Loy, —

1
n_1 Ebmbv(rmkﬂv +rmv|k)+smrmk

n—1
m 1 oy NGl 1 m
-b (sk|m+5m\k)}+bk[ti+§b b (rmuw,i —Tmi,v)ﬁ‘gb (Prilke ki)

+Dik + Si|k + Sk|i — SiSk- (89)

Now plugging (89) into (87) and (88) respectively and using the first formula
of (10) and (12), we obtain (45) and (47) respectively.

For the proof of (37), we first get Ricoo by (33) and slo‘l by (32), and
then plugging them into K = Ric/((n — 1)F?) yields (37), where Ric is given
by (16) with b = 1. O

4.3. Proofs of Theorem 4.2 and Corollary 4.3

Proof of Theorem 4.2. Tt is shown in [15] that a Kropina metric F = o?/f3
with [|8]]o = 1 is a Douglas metric if and only if (38) holds. Therefore, by
Theorem 4.1, we only need to use (38) to show that (32) holds. By (38) and
definitions, we easily get

tij = —Slslbib]‘ — Si8j7 ti = —slslbi, tll = —2slsl,

Gik = —8i8K — S Tmibk, ¢ = 515'b;. (90)
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Now for the left hand side of (32), we have

38 38
Sijlk D) (i + sin)sy + bisjik — (Tjk + Sjk)si — bjsipk ") s (ran + bis)
+bisjp — (i/7),
and for the right hand side of (32), we also obtain the same result as above
by using t;,t!; and ¢}, = gir in (90). Thus we have verified (32). For (39), it

directly follows from using the second formula in (9) and then plugging ¢/ 1 st
of (90) into (35). O

Proof of Corollary 4.3. Since [ is closed by (40), we see that (38) automati-
cally holds. Plug (40) into (39) and (36) we get
o = —2(n— 1)Ab;, B, = —Absby,. (91)
Now plugging (40) and (91) into (33) we obtain
R'y = —€(00, = y'yn) + (A + €)(a®0'by + 526, — By'b — Byxb’). - (92)
By (40) and (91), it follows from (82) that
Atute®=0. (93)
Then (92) and (93) imply (41), and we get (42) from (37), (40) and (93). O

4.4. Kropina Metrics of Constant Flag Curvature

It has been solved for the local structure of Kropina metrics of constant flag
curvature (cf. [8,17]). In this section, we will use Theorem 4.1 to investigate
it.

Corollary 4.8. Let F' = o?/3 be an n-dimensional Kropina metric with ||3]|q
= 1. Then F is of constant flag curvature if and only if « is of constant
sectional curvature p and B satisfies roo = 0. In this case, we have p > 0, and
F is flat-parallel (o is flat and B is parallel), or up to a scaling on F, a and
B can be locally written as

_ VA Py — (z,y)?
o =
14 |z?

(Uz +e,y)
1+ |22

, b= ; (94)

where U = (u}) is a skew-symmetric matriz, e = (e') is a constant vector
satisfying

le| =1, Ue=0, §7 —c'ed = uiul. (95)
Proof. For n = 2, it has been proved in [8] that F is flat-parallel. Now assume

that F' is of constant flag curvature K. Then it follows from Theorem 4.1 that
its flag curvature K is given by (37). First we can write (37) as

(--)a? +12(n — 1)B*%3, =0, (96)
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which implies rgg = ca? for some scalar function ¢ = ¢(z). Since ||3||o = 1, we
have r; + s; = 0. Then it is easily shown that ¢ = 0 and hence rogg = 0. Now
plug 75 = 0,75, = 0,q;5 = 0,5; = 0 into (96) we have

(4K — 4nK —t'))a® +4(n) — X\ +t'))3% = 0. (97)
By (97) we easily get

l
tl

K="1p

A
=220 (since ¢!, < 0). (98)

Hence we have
t', = —(n — 1)\ (= constant). (99)
By r;j = 0,5, =0, (98) and (99), it follows from (33) that
Rik = )\(O[26;€ - ylyk)a

which shows that « is of constant sectional curvature A > 0. If A = 0, then it is
easy to show that F is flat-parallel since by (98), we have #! ; = 0 (this implies
that 3 is closed and then parallel by 7o = 0). If A > 0, since 799 = 0 and «
is of constant sectional curvature, by solving Killing fields on a Riemannian
space of constant sectional curvature, it follows that, up to a scaling on F, «
and § can be locally given by (94) with U, e satisfying (95) (cf. [8]).

Conversely, assume rgp = 0 and « is of constant sectional curvature u
with ||8]|o = 1. First by assumption we have

T = 0, r, = O7 S; = O’ qij = ’rimsn} = O’ tz = smsnz = 0. (100)

Then by (100), it follows from the first formulas of (9) and the second formula
of (8) that

sijle = —biRy i; = —p(biaze —bjair),  tij = b'sy); = —plai; —bib;), (101)

It is clear that the second formula implies t!; = —(n—1)u. Now we use Theorem
4.1 to verify that F is of constant flag curvature, namely, we show that (32)
and (33) hold for some scalar function A = A(z) and K in (37) is a constant.
Now define A := —t!,/(n—1) = p, and then (33) naturally holds since B;; = 0.
Finally we verify (32). By (100), the first formula of (101) and ¢!, = —(n —
1)u, we see that (32) also holds automatically. Therefore, F' is of scalar flag
curvature by Theorem 4.1, and its flag curvature is given by (37). Now by (37)
we have

452 —1
K="+ ——t,. 102
Since t!, = —pu(n — 1) as shown above, we have K = u/4 = constant by

(102). O
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5. Construction by Warped Product Method

In this section, we will use Corollary 4.3 to show a family of examples of
projectively flat Kroplna metrics with « in a Warped product.

Let M = R x M be a product manifold, where M is an (n—1)-dimensional
manifold. Let {z}"_, be a local coordinate system on M. A Riemann metric
« of warped product type is defined as

o = (y')* + n*(ah)a?, (103)
where a? = 'dAcyAgC is a Riemann metric on M. The Riemann curvature
tensors R of a and R of & in (103) are related by

_ h//

R = (' — a?8)), (104)

— ~ - h//

R'e = Rie — (W)*(@%68 — y"io) — - (0')*08, (105)
where y;. == any', jo = acay?. Define n = n(x = [h(z , and then a

direct computation shows that

m; =n"a% (0 = ng),

where the covariant derivative is taken with respect to «. The converse is
proved in the following.

Lemma 5.1. [3,11] Let o be a Riemann metric on M. Suppose there are two
functions n and & on M with dn # 0 such that
Mi; = Eaij, (M6 = Ngi).

Then « is a warped product on M = R X M, namely, locally n depends only
on the the parameter x' of R, & = n"(x') and o can be expressed as

0? = (y') + (o (21)) a2,

Now we show a construction of examples of Kropina metrics of scalar flag
curvature.

Proposition 5.2. Let F = o?/3 be an n(> 2)-dimensional Kropina metric on
a product manifold M =R x M, where

a2 — (y1)2 + h2($1)a27 ﬁ = y17 (106)

where h # 0 is a smooth function on R and & is an (n — 1)-dimensional

Riemann metric on M. Then F is locally projectively flat if and only if o is
locally flat. In this case, the flag curvature K is given by

K:—(g) {%ﬂ+3(h) (i)Q}. (107)
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Proof. For n = 2, we can directly verify that F' = a2/ defined by (106) is
projectively flat (we may put & = c¢(z?)y?). We consider n > 3. For the a and
3 defined by (106), a direct computation shows that ||5]|o = 1 and (40) holds
with ,
€=, u= (ﬁ)’. (108)
So F is locally projectively flat if and only if (41) holds by Corollary 4.3.
It can be easily verified that (41) is equivalent to

le = [f (u+ 62)(y1)2 - 62h2&2]§,i + (u+ ez)ylyk — uh®a®by, (109)

and
R4, = [—(u+eH)y')? - thzaz]éé + 2%y e, (110)
where J¢ 1= acay?. By (104), we see that (109) is equivalent to
h//
2= — 111
u+e€ n (111)

which automatically holds by (108). By the first equation in (108), it follows
from (105) that (110) is equivalent to

RA4 = [~ En2 + (W)?] (@208 — y*5c) = 0. (112)
Now suppose F' is locally projectively flat. Then we have (112), namely,
a is locally flat. Conversely, if « is locally flat, then by the above proof, we

can easily get (41).
Finally, by (42), we obtain the flag curvature K given by (107). O

By Proposition 5.2, F' = o?/3 in dimension n > 2 is locally projectively
flat, where o and § are defined by (106) with A # 0 being arbitrary and &
being locally flat.

Proposition 5.3. Let ' = o?/3 be an n(> 2)-dimensional Kropina metric,
where « and B satisfy (40) with ||B||o = 1, de # 0 and uw = f(e) # 0 for some
function f. Then F 1is locally projectively flat if and only if a and B can be
locally written as

o = (y')? +n*(ah)a?, B=y', (113)
where & is a locally flat Riemann metric. Further, h can be actually determined

by f.
Proof. We firstly show (113) by (40). Define

Q= / % el Fladede. (114)
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Then by (40) with u = f(e) # 0, we can easily verify that

€

iy =€ el 0%, (6 =€), (115)

Obviously we have dy # 0. Then by (115) and Lemma 5.1, « is a warped
product which can be locally written as the first expression in (113) with
h(z') = ¢'(x'). By (114), we can define

/——&

_ixizﬁz LG _ _ a1
ﬂ_f(ﬁ)d f(e) d(/f(e)d> d(g(p)) = g (@) (x")dz".  (116)

Then by ||B]|a =1, « in (113), and (116), we must have ¢'(¢)¢’(z') = 1 and
B=y.

Therefore, by Proposition 5.2, we conclude that F' is locally projectively
flat if and only if & in (113) is locally flat. O

Further by (40) we have

6. Proof of Theorem 1.2

Let F' = o+ 8 be a Randers metric and (h, p) be its navigation data. It is
known that

2 _ (1 —0*)h* + p?
ST

b= ©=1lla=loll)-

By assumption there hold limy_,;- A = & and lim,_,,- p = B Therefore we
have

1 —b2)h2 & p2 2
lim F— lim (OS2 e ) g f
b1 b—1- (1-102)2 1— b2 b—1= /(1 = b2)h2 + p2 + p

52 1. _ N
=—==—-F, (let>00by F>0).
G=ah )
This proves Theorem 1.2 (i).

Since F = limy_,;- 2F, we have Gi = limy ;- G So for the curvatures
Wi D, o W° of F and corresponding kaDh ko We of F we obtain

lim Wi, =W, lim D,'., =D, ,, lim W°=W°.
b1 F koo oy Thak L
Therefore, if F' is of scalar flag curvature (resp. locally projectively flat, or

Douglassian), then F is also of scalar flag curvature (resp. locally projectively
flat, or Douglassian).
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Now assume F' is of weakly isotropic flag curvature with the flag curvature

K in the form
36

K—F‘FO'

where 0 is a 1-form and ¢ = o(x) is a scalar function. Since 6 and o are
uniquely determined by F, by taking the limit b — 17 on both sides of the
above, we see that F is also of weakly isotropic flag curvature. Thus by [8],
F' is of constant flag curvature. This fact can also be proved in another way.
Let (h,p) be the navigation data of the Randers metric ' = a + (. Since
F is of weakly isotropic flag curvature, it is known that h = /h;;y'y? is of
isotropic sectional curvature p = p(x) (a constant in dimension n > 3) and
p = piy" satisfies p;; + pjj; = chy; for some scalar function ¢ = ¢(z) [10].
Since limy_,;- h = a and limy_,;- p = E, by taking the limit b — 1=, we have
Too = ca? from pilj + pjli = chij, and a is of isotropic sectional curvature fi,
where ¢ := lim,_,;- ¢ and g := lim,_,;- p. We have ¢ = 0 from 7o = ca? and
[|Blla = 1. Further, we have i = pu = constant in dimension n > 3 and in
particular z = 0 in dimension n = 2. So 7 oo = 0 and « is of constant sectional
curvature. Thus by Corollary 4.8, F=a2 / ﬁ is of constant flag curvature. [

Remark 6.1. In Theorem 1.2, let F = o + 8 be a Randers metric and (h, p)
be its navigation data. Suppose that h = \/h;;jy'y? and p = p;y’ are locally
given by (p’ := hp;)
= VO plaP)yP? — ple,y)?
1+ plaf?

2|$|2di
14+ /1 + pfz|?

where A, p are constants, U = (u}) is a skew-symmetric matrix and d,e € R"

p = —20W/TH plof + (d,a))a’ + +uak + e + pule, o),

are constant vectors. To take b = ||f||o — 17, we only Trequire hijp'p? = 1.
A direct computatlon gives a Kroplna metric F = &2 / ﬂ in two cases: (A).
a=lyl, B=(e,y); (B). @ =hand J is given by
G Uztey)
L+ plzf?

where U and e satisfy
le|=1, Ue=0, u(0” —e'el) =" uiu].

Remark 6.2. For a given Kropina metric F = o?/f with |||l = 1, we can
construct a family of Randers metrics F' = & + 8 with I as the limit of F' as
b=1|8]la — 1. Define

, (B eRe - 6B

e T <1 E R I O

(|b] < 1).
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Then it can be easily verified that ' = a+ 3 is a Randes metric with b = ||3||4
and F' = limg_,;- 2F.
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