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1. The Open Problem

There is an increasing interest in studying the properties of the sums of squared
Bernstein polynomials (see, e.g., [1,3–6] and many papers in http://arxiv.org/).

In this paper, we focus on a very recent open problem on the subject.
Let T2 := {(x, y) ∈ R

2 | x ≥ 0, y ≥ 0, x + y ≤ 1} and n be a positive
integer. For (x, y) ∈ T2,

A2,n(x, y) :=
∑

i+j≤n

(
n!

i!j!(n − i − j)!
xiyj(1 − x − y)n−i−j

)2

,

is the sum of squares of the functions from the Bernstein basis on the unit
triangle T2.

The following open problem concerning A2,n was recently posed.

Problem 1 [7, Problem 1]. Is A2,n convex on T2?
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2. Notation

Let m,n be positive integers and fk : Rm → R, k = 1, . . . ,m, be affine
functions. Define Sm,n : Rm → R,

Sm,n(x) :=
∑

k1+···+km=n

(
n!

k1! · · · km!
f1(x)k1 . . . fm(x)km

)2

, x ∈ R
m.

(the sum is over all m-tuples of nonnegative integers (k1, . . . , km) satisfying
the constraint k1 + · · · + km = n).

In particular, Sm,n(x) may be the sum of squares of the functions from
the multivariate Bernstein basis on a non-standard simplex.

3. The Main Result

The following is the main result of the paper.

Theorem 2. Sm,n is convex on R
m.

Proof. We have
(

m∑

k=1

fk(x)eitk

)n

=
∑

k1+···+km=n

n!
k1! . . . km!

f1(x)k1eit1k1 . . . fm(x)kmeitmkm (1)

From (1), using the Parseval identity, we obtain

Sm,n(x) =
1

(2π)m

∫

[−π,π]m

∣∣∣∣∣

m∑

k=1

fk(x) eitk

∣∣∣∣∣

2n

dt1 . . . dtm.

Using the triangle inequality and the fact that the function t �→ t2n is convex
on R, we get ∣∣(1 − λ)a + λb

∣∣2n ≤ (1 − λ)|a|2n + λ|b|2n,

for any a, b ∈ C, λ ∈ [0, 1] and n ≥ 1. Let x, y ∈ R
m and λ ∈ [0, 1]. We note

that the affine functions fk satisfy the equalities:

fk

(
(1 − λ)x + λy

)
= (1 − λ)fk(x) + λfk(y), λ ∈ R, x, y ∈ Rm.

We have:
∣∣∣∣∣

m∑

k=1

fk

(
(1 − λ)x + λy

)
eitk

∣∣∣∣∣

2n

=

∣∣∣∣∣(1 − λ)
m∑

k=1

fk(x)eitk + λ

m∑

k=1

fk(y)eitk

∣∣∣∣∣

2n
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≤ (1 − λ)

∣∣∣∣∣

m∑

k=1

fk(x)eitk

∣∣∣∣∣

2n

+ λ

∣∣∣∣∣

m∑

k=1

fk(y)eitk

∣∣∣∣∣

2n

(2)

Integrating both sides of inequality (2) we obtain

Sm,n

(
(1 − λ)x + λy

) ≤ (1 − λ)Sm,n(x) + λSm,n(y),

and the proof is complete. �

4. An Answer to the Open Problem

Let

Am,n(x)

:=
∑

k1+···+km+1=n

(
n!

k1! . . . km+1!
x1

k1 . . . xm
km(1 − x1 − . . . − xm)km+1

)2

be the sum of squares of the functions from the m-dimensional Bernstein basis
on the standard simplex

Tm :=
{
(x1, . . . , xm) ∈ R

m | x1 ≥ 0, . . . , xm ≥ 0, x1 + · · · + xm ≤ 1
}
,

(see, e.g., [2, (5.2.89)]).
The following direct consequence of Theorem 2 answers and generalizes

the Open Problem 1. In [6,7], using properties of the Legendre polynomials,
the authors restrict themselves to the interval [0, 1]. Using a Parseval identity
and the definition of the convexity, we prove that Am,n is convex not only on
Tm, but on R

m.

Corollary 3. Am,n is convex on R
m.

Proof. We note that Am,n(x) = Sm+1,n(x) for fk(x) = xk, k = 1, . . . , m, and
fm+1(x) = 1 − x1 − · · · − xm.

The proof is complete. �

Remark 4. We note that:

• For m = 1, Corollary 3 gives a simple affirmative answer to [5, Conjec-
ture 3.2];

• For m = 2, Corollary 3 answers the Open Problem 1.
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