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Abstract. Let S be the class of analytic and univalent functions in the
unit disk |z| < 1, that have a series of the form f(z) = z +

∑∞
n=2 anzn.

Let F be the inverse of the function f ∈ S with the series expansion
F (w) = f−1(w) = w +

∑∞
n=2 Anwn for |w| < 1/4. The logarithmic in-

verse coefficients Γn of F are defined by the formula log (F (w)/w) =
2
∑∞

n=1 Γn(F )wn. In this paper, we first determine the sharp bound for
the absolute value of Γn(F ) when f belongs to S and for all n ≥ 1. This
result motivates us to carry forward similar problems for some of its im-
portant geometric subclasses. In some cases, we have managed to solve
this question completely but in some other cases it is difficult to handle
for n ≥ 4. For example, in the case of convex functions f , we show that
the logarithmic inverse coefficients Γn(F ) of F satisfy the inequality

|Γn(F )| ≤ 1

2n
for n ≥ 1, 2, 3

and the estimates are sharp for the function l(z) = z/(1 − z). Although
this cannot be true for n ≥ 10, it is not clear whether this inequality
could still be true for 4 ≤ n ≤ 9.
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1. Introduction

Let A be the class of functions f analytic in the unit disk D = {z : |z| < 1} of
the form

f(z) = z +
∞∑

n=2

anzn. (1.1)

The subclass of A consisting of all univalent functions f in D is denoted by S.
The theory of univalent functions with a strong foundation from the class S is
beautiful when it is being considered both by geometric and analytic consid-
erations, and in addition, logarithmic restrictions and special exponentiation
methods are often useful. During 1960’s, Milin [15] intensively investigated the
impact of transferring the properties of the logarithmic coefficients to that of
the Taylor coefficients of univalent functions themselves or to its powers and
thus, their role in the theory of univalent functions. The inequalities conjec-
tured by Milin attracted much attention because their truth would imply the
truth of the Robertson conjecture and the Bieberbach conjecture, in addition
to few others [6,15,19]. It is then, in 1984, Louis de Branges [5] proved these
inequalities and his proof resolved the most popular problem for the class S,
namely, the statement maxf∈S |an| = n which occurs if and only if f is a ro-
tation of the Koebe function k(z) = z/(1 − z)2. The proof which settles the
Bieberbach conjecture relied not on the coefficients {an} of f but rather the
logarithmic coefficients {γn} of f . Here the logarithmic coefficients γn of f ∈ S
are defined by the formula

log
(

f(z)
z

)

= 2
∞∑

n=1

γn(f)zn for z ∈ D.

We use γn(f) = γn when there is no confusion, and remark that some authors
use γn in place of 2γn.

Let F be the inverse function of f ∈ S defined in a neighborhood of the
origin with the Taylor series expansion

F (w) := f−1(w) = w +
∞∑

n=2

Anwn, (1.2)

where we may choose |w| < 1/4, as we know from Koebe’s 1/4-theorem. Using
a variational method, Löwner [12] obtained the sharp estimate:

|An| ≤ Kn for each n, (1.3)

where Kn = (2n)!/(n!(n + 1)!) and K(w) = w + K2w
2 + K3w

3 + · · · is the
inverse of the Koebe function. There has been a good deal of interest in de-
termining the behavior of the inverse coefficients of f given in (1.2) when the
corresponding function f is restricted to some proper geometric subclasses
of S. Alternate proofs of the inequality (1.3) have been given by several au-
thors but a simpler proof was given by Yang [26]. As with f , the logarithmic
coefficients Γn, n ∈ N, of F are defined by the equation
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log
(

F (w)
w

)

= 2
∞∑

n=1

Γn(F )wn for |w| < 1/4. (1.4)

We have a natural and fundamental question.

Problem 1. Suppose that f ∈ S or of its subclasses and F is the corresponding
inverse of f with the form (1.2). If Γn(F ) denotes the logarithmic inverse
coefficients of F , is it possible to determine the sharp bound for the absolute
value of Γn(F )?

The main aim of this article is to deal with this problem for S and some
of its important geometric subclasses. The article is organized as follows. In
Sect. 2, we solve this problem completely for the family S which motivates the
rest of the investigation. In Sect. 3, we introduce the classes for which we study
this problem, and present solutions to this problem in several subsections with
necessary background materials.

2. Logarithmic Inverse Coefficients for the Class S
Before we continue to study Problem 1 in detail, it is appropriate to deal with
the class S which motivates us to consider further investigation. Let S∗ denote
the class of starlike functions f (i.e f(D) is a domain starlike with respect to
the origin) in S.

Recall that, for f ∈ S and λ > 0, the function (z/f(z))λ is analytic in D

and has the power series expansion of the form

g(z) =
(

z

f(z)

)λ

= 1 +
∞∑

n=1

bn(λ, f)zn. (2.1)

Throughout we use this representation. For the logarithmic inverse coefficients
Γn of F as given by (1.4), the following theorem, whose proof is elegant, is
fundamental in this line of discussion.

Theorem 1. Let f ∈ S (or S∗) and F be the inverse function of f and have
the form (1.2). Then for n ∈ N, the logarithmic inverse coefficients Γn of F
satisfy the sharp inequality

|Γn(F )| ≤ 1
2n

(
2n
n

)

.

Equality is attained if and only if f is the Koebe function or one of its rotations.

Proof. The idea of proof of here is well-known and Lagrange’s series have a
similar idea of the proof. We consider

w
d

dw

(

log
(

F (w)
w

))

=
wF ′(w)
F (w)

− 1 = 2
∞∑

n=1

nΓn(F )wn.
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Using the Cauchy integral formula and the relation (2.1), it is easy to obtain
the following identity for each n ∈ N,

2nΓn(F ) =
1

2πi

∫

C

F ′(w)
F (w)wn

dw

=
1

2πi

∫

F (C)

(
z

f(z)

)n 1
zn+1

dz

= bn(n, f), (2.2)

where C is a Jordan curve surrounding the origin counterclockwise in f(D).
Concerning this identity, see [24, Theorem 3]. With the use of Löwner’s method
[12], it has been proved in [24] that

|bn(λ, f)| ≤ |bn(λ, k)| =
(

2λ
n

)

for λ > 0,

where k equals the Koebe function k(z) = z/(1 − z)2. Hence,

2n |Γn(F )| ≤ bn(n, k), n ∈ N.

Likewise, it was proved in [24] that equality occurs if and only if f equals k or
one of its rotations. Since

(
z

k(z)

)n

= (1 − z)2n =
n∑

j=0

(− 1)j

(
2n
j

)

zj ,

the binomial theorem implies our assertion. �

3. Logarithmic Inverse Coefficients for the Preliminary Classes

3.1. Basic Preliminary Classes of Study

Let B denote the class of all analytic functions φ in D which satisfy the con-
dition |φ(z)| < 1 for z ∈ D. Functions in B0 := {φ ∈ B : φ(0) = 0} are called
Schwarz functions. Let f and g be two analytic functions in D. We say that
f is subordinate to g, written as f ≺ g, if there exists a function φ ∈ B0 such
that f(z) = g(φ(z)) for z ∈ D. In particular, if g is univalent in D, then f ≺ g
is equivalent to f(D) ⊂ g(D) and f(0) = g(0).

The following subclasses of S have been studied extensively in the liter-
ature. See [9,17,21,22] and the references therein.

(1) The class S∗(A,B) is defined by

S∗(A,B) :=
{

f ∈ A :
zf ′(z)
f(z)

≺ 1 + Az

1 + Bz
for z ∈ D

}

,

where A ∈ C and − 1 ≤ B ≤ 0, and this class has been studied extensively
in the literature. For 0 ≤ β < 1, S∗(β) := S∗(1 − 2β,− 1) is the class
of starlike functions of order β. In particular, for B = − 1 and A =
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eiα(eiα−2β cos α), the class S∗(A,B) reduces to the class Sα(β) of spiral-
like functions of order β defined by

Sα(β) :=
{

f ∈ A : Re
(

e−iα zf ′(z)
f(z)

)

> β cos α, z ∈ D

}

,

where β ∈ [0, 1) and α ∈ (−π/2, π/2). Each function in Sα(β) is univa-
lent in D (see [11]). Clearly, Sα(β) ⊂ Sα(0) ⊂ S whenever 0 ≤ β < 1.
Functions in Sα(0) are called α-spirallike, but they do not necessarily
belong to the starlike family S∗ := S∗(1,− 1). See [6,9].

(2) The class G(c) is defined by

G(c) :=
{

f ∈ A : Re
(

1 +
zf ′′(z)
f ′(z)

)

< 1 +
c

2
, z ∈ D

}

,

where c ∈ (0, 1]. Set G(1) =: G. It is known that G ⊂ S∗ and thus,
functions in G(c) are starlike. This class has been studied extensively in
the recent past, see for instance [16,18] and the references therein.

(3) The class U(λ) is defined by

U(λ) :=

{

f ∈ A :

∣
∣
∣
∣
∣
f ′(z)

(
z

f(z)

)2

− 1

∣
∣
∣
∣
∣
< λ, z ∈ D

}

,

where 0 < λ ≤ 1. Set U := U(1), and observe that U � S. See [1,2]. Many
properties of U(λ) and its various generalizations have been investigated
in the literature, we refer for example [17,22] and the references therein.

(4) The class F(α) is defined by

F(α) :=
{

f ∈ A : Re
(

1 +
zf ′′(z)
f ′(z)

)

> α, z ∈ D

}

for α ∈ [− 1/2, 1). In particular, we let F(0) =: C. Functions in C known
to be convex and univalent in D (i.e f(D) is a convex domain). For α ∈
[0, 1), functions in F(α) are convex functions of order α in D, and it is
usually denoted by C(α). The functions in F(− 1/2) (and hence in F(α)
for α ∈ [− 1/2, 0)) are known to be convex in one direction (and hence
close-to-convex) but are not necessarily starlike in D.

3.2. Logarithmic Inverse Coefficients for f ∈ S∗(A, B)
Throughout in the sequel, let Ik(n) denote the semi-closed intervals

[
k
n , k+1

n

)

for k = 0, 1, . . . , n − 1 and n ∈ N.

Theorem 2. Let f ∈ S∗(A,B), δ = (1 − A)/(1 − B) with − 1 ≤ B < A ≤ 1,
and kA,B;n(z) = z(1+Bzn)(A−B)/nB. Then for n ∈ N, the logarithmic inverse
coefficients Γn of F satisfy the following inequalities:
(1) when n ∈ N and n(1 − δ) /∈ N, we have

|Γn(F )| ≤ 1
2n

n−1∏

j=0

n(A − B) + Bj

1 + j
for δ ∈ I0(n) = [0, 1/n). (3.1)
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(2) when n ∈ N and δ ∈ Ik(n), k = 1, 2, . . . , n − 1, we have

|Γn(F )| ≤ n − k

2n2

n−k−1∏

j=0

n(A − B) + Bj

1 + j
. (3.2)

(3) when n ∈ N and n(1 − δ) ∈ N, (3.1) holds for δ ∈ I1(n), and (3.2) holds
for δ ∈ Ik(n), k = 2, 3, . . . , n − 2.

(4) for δ ∈ In−1(n), we have

|Γn(F )| ≤ A − B

2n
, n ∈ N. (3.3)

The inequalities (3.1) and (3.3) are sharp for the functions kA,B;1(z) and
kA,B;n(z), respectively.

Proof. Suppose f ∈ S∗(A,B). From the relation (2.2), we have

2nΓn(F ) = bn(n, f), n ∈ N,

where bn(n, f) is defined by (2.1). In order to compute |Γn(F )|, we shall have to
estimate |bn(n, f)| and for this, we use [7, Theorem 2.7]. It is worth to remark
that one could use the analysis used in [13]. First, take λ = n ∈ N, we note
that the inequality (2.9) in [7] is applicable for k = 0 (in case of n(1 − δ) ∈ N,
the inequality (2.9) in [7] is also applicable but only for k = 1). Therefore for
δ ∈ I0 = [0, 1/n), the inequality (2.9) in [7] yields

|Γn(F )| =
1
2n

|bn(n, f)| ≤ 1
2n

n−1∏

j=0

n(A − B) + Bj

1 + j
for n ∈ N,

which is precisely the inequality (3.1). The equality holds for kA,B;1(z) =
z(1 + Bz)(A−B)/B. We have

(
z

kA,B;1(z)

)n

= (1 + Bz)−ξ =
∞∑

m=0

(− 1)m(ξ)m Bm

(m)!
zm,

where ξ = (A − B)n/B and (a)m = Γ(a + m)/Γ(a) denotes the Pochhammer
symbol. Similarly, for δ ∈ Ik(n), k = 1, 2, . . . , n− 1, the inequality (2.10) in [7]
gives

|Γn(F )| =
1
2n

|bn(n, f)| ≤ n − k

2n2

n−k−1∏

j=0

n(A − B) + Bj

1 + j
.

This gives (3.2). Finally, for δ ∈ In−1(n), the inequality (2.11) in [7] yields

|Γn(F )| =
1
2n

|bn(n, f)| =
A − B

2n
, n ∈ N,

which gives (3.3). It is easily verified that equality holds in (3.3) as the function

kA,B;n(z) = z(1 + Bzn)(A−B)/nB

demonstrates. This completes the proof of Theorem 2. �
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Theorem 2 for the case A = 1 − 2β and B = − 1 takes the following
simple form.

Corollary 3. Let f ∈ S∗(β) for some β ∈ [0, 1), and kβ;n(z) = z/(1 −
zn)2(1−β)/n. Then the logarithmic inverse coefficients Γn of F satisfy the in-
equalities:

(1) for n ∈ N and β ∈ [0, 1/n), we have

|Γn(F )| ≤ 1
2n

n−1∏

j=0

2n(1 − β) − j

1 + j
, (3.4)

(2) for n ∈ N and β ∈ Ik(n), k = 1, 2, . . . , n − 1, we have

|Γn(F )| ≤ n − k

2n2

n−k+1∏

j=0

2n(1 − β) − j

1 + j

(3) for β ∈ In−1(n), we have

|Γn(F )| ≤ 1 − β

n
, n ∈ N. (3.5)

The inequalities (3.4) and (3.5) are sharp for the functions kβ;1(z) and kβ;n(z),
respectively.

We remark that when A = 1 and B = − 1 in Theorem 2, or when β = 0
in Corollary 3, we obtain Theorem 1 for f ∈ S∗. Moreover, we can generalize
Corollary 3 for the class Sα(β) of spiral-like functions of order β.

3.3. Logarithmic Inverse Coefficients for Sα(β)
In [13], the authors proved the following theorem (which we state in our form).

Theorem A . Suppose f(z) = z +
∑∞

n=p+1 anzn ∈ Sα(β) (|α| < π/2, 0 ≤ β <

1), and for integral t ≥ 1, let
(

z

f(z)

)t

= 1 +
∞∑

k=p

b
(p)
k (t, f) zk, 0 < |z| < 1.

Then

|b(p)
k (t, f)| ≤ mp

k

m−1∏

j=0

(∣
∣(2t/p)(1 − β) cos α e−iα − j

∣
∣

j + 1

)

for

−mp ≤ k ≤ (m + 1)p − 1,

where m = 1, . . . ,M + 1, and M = [t(1 − β)/p]. Here [x] denotes the largest
integer not exceeding x.



160 Page 8 of 20 S. Ponnusamy et al. Results Math

Setting p = 1 gives that if f(z) = z+
∑∞

n=2 anzn ∈ Sα(β) and b
(1)
k (t, f) =:

bk(t, f), then we have

|bk(t, f)| ≤
k−1∏

j=0

(∣
∣2t(1 − β) cos α e−iα − j

∣
∣

j + 1

)

(3.6)

where k = 1, . . . ,M + 1, and M = [t(1 − β)]. Moreover,

2nΓn(F ) = bn(n, f), n ∈ N,

and thus, by taking t = n ∈ N in (3.6), we obtain

|Γn(F )| ≤ 1
2n

k−1∏

j=0

(∣
∣2n(1 − β) cos α e−iα − j

∣
∣

j + 1

)

where k = 1, . . . , [n(1 − β)] + 1.
This is the basic and we organize it in the following form. We use results

from [7] and Theorem 2 to prove the following.

Theorem 4. Let f ∈ Sα(β) for some β ∈ [0, 1) and α ∈ (−π/2, π/2). Then the
logarithmic inverse coefficients Γn of F satisfy the inequalities:
(1) for n ∈ N and β ∈ I0(n) = [0, 1/n), we have

|Γn(F )| ≤ 1
2n

n−1∏

j=0

|2n(1 − β)e−iα cos α − j|
1 + j

(3.7)

(2) for n ∈ N and β ∈ Ik(n), k = 1, 2, . . . , n − 1, we have

|Γn(F )| ≤ n − k

2n2

n−k−1∏

j=0

|2n(1 − β)e−iα cos α − j|
1 + j

. (3.8)

(3) for β ∈ In−1(n), we have

|Γn(F )| ≤ (1 − α) cos β

n
. (3.9)

The estimates (3.9) and (3.7) are sharp for fα,β;n(z) = z/(1 − zn)γ/n, γ =
2(1 − β) cos α and fα,β;1(z), respectively.

Proof. Suppose f ∈ Sα(β). From the relation (2.2), we have

2nΓn(F ) = bn(n, f), n ∈ N,

where bn(n, f) is defined by (2.1). In order to find |Γn(F )|, we need to estimate
|bn(n, f)| with the help of [25, Theorem 4]. First, take λ = n ∈ N, we note
that the inequality (47) in [25] is applicable only for k = 0. Therefore for
β ∈ [0, 1/n), the inequality (47) in [25] yields

|Γn(F )| =
1
2n

|bn(n, f)| ≤ 1
2n

n−1∏

j=0

|2n(1 − β)e−iα cos α − j|
1 + j

for n ∈ N,
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which is precisely the inequality (3.7). The equality holds for fα,β(z) = z/(1−
z)γ , γ = 2(1 − β) cos α. We note that

(
z

fα,β(z)

)n

= (1 − z)−θ =
∞∑

m=0

(θ)m

(m)!
zm.

where θ = −nγ. Similarly, for β ∈ Ik(n), k = 1, 2, . . . , n − 1, the inequality
(48) in [25] yields (3.8). Finally, for β ∈ In−1(n), we note that the inequality
(49) in [25] gives

|Γn(F )| =
1
2n

|bn(n, f)| ≤ (1 − α) cos β

n
, n ∈ N,

which establishes (3.9). It is easily verified that equality holds in (3.9) for the
function fα,β;n(z) = z/(1−zn)γ/n. This completes the proof of Theorem 4. �

3.4. Logarithmic Inverse Coefficients for G(c)
Lemma 5. Let f ∈ G(c) for some c ∈ (0, 1] and for each fixed λ > 0, the Taylor
coefficients bm(λ, f) be given by (2.1). Then
(1) for λ ∈ (0, 1], we have

|bm(λ, f)| ≤ λc

m(1 + c)
for m = 1, 2, . . . ; (3.10)

(2) for λ > 1, we have

|bm(λ, f)| ≤ 1
(1 + c)m

m−1∏

j=0

λc + j

1 + j
for m = 1, 2, . . . , [λ] + 1; (3.11)

and

|bm(λ, f)| ≤ [λ]
m(1 + c)[λ]

[λ]−1∏

j=0

λc + j

1 + j
for m = [λ] + 2, [λ] + 3, . . . ; (3.12)

The estimates (3.10) and (3.11) are sharp for the function f ′
c,m(z) = (1−zm)

c
m

and f ′
c;1(z) = f ′

c(z), respectively.

Proof. Suppose that f ∈ G(c). Then we have (see [20])

zf ′(z)
f(z)

− 1 ≺ (1 + c)(1 − z)
1 + c − z

− 1 =
−cz

1 + c − z
.

As

g(z) =
(

z

f(z)

)λ

= 1 +
∞∑

n=1

bn(λ, f)zn,

by the definition of subordination, there exists an analytic function ϕ ∈ B0

such that
zg′(z)
−λg(z)

=
zf ′(z)
f(z)

− 1 =
−cϕ(z)

1 + c − ϕ(z)
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or equivalently

(1 + c)zg′(z) = ϕ(z)(λcg(z) + zg′(z)).

As with the standard procedure, we may write this in series form as

(1 + c)
m∑

k=1

kbk(λ, f)zk +
∞∑

k=m+1

dk(λ, f)zk

= ϕ(z)

(

λc +
m−1∑

k=1

(λc + k)bk(λ, f)zk

)

,

the second sum on the left-hand side being convergent in D. By Clunie’s
method [3,4] (see also Parseval–Gutzmer formula) together with |ϕ(z)| < 1
gives

(1 + c)2m2|bm(λ, f)|2 ≤ λ2c2 +
m−1∑

k=1

[(λc + k)2 − k2(1 + c)2] |bk(λ, f)|2.

(3.13)

Since (λc + k)2 − k2(1 + c)2 = c(λ − k)[c(λ + k) + 2k], the sign of each term
inside the summation symbol on the right-hand side of (3.13) depends on the
expression (λ − k) for k = 1, 2, . . . ,m − 1.

Case I: If λ ∈ (0, 1], then λ − k ≤ 0 for k = 1, 2, . . . ,m − 1. Then from (3.13),
we find that

|bm(λ, f)| ≤ λc

m(1 + c)
for m = 1, 2, . . . ,

which establishes the inequality (3.10).

Case II: If λ > 1, then λ − k > 0 for k = 1, 2, . . . , [λ], and λ − k ≤ 0 for
k = [λ] + 1, [λ] + 2, . . .. Therefore from (3.13), for m = 1, 2, . . . , [λ] + 1, we
obtain

m2|bm(λ, f)|2 ≤ 1
(1 + c)2

(

λ2c2 +
m−1∑

k=1

[(λc + k)2 − k2(1 + c)2] |bk(λ, f)|2
)

.

(3.14)
Now we use the principle of mathematical induction on m. For m = 1, it
follows from (3.14) that |b1(λ, f)| ≤ λc/(1 + c). This gives the estimate (3.11)
for m = 1. For m = 2, . . . , [λ], we now assume that

|bm(λ, f)| ≤ 1
(1 + c)m

m−1∏

j=0

λc + j

1 + j
(3.15)
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holds. Then, using (3.14), (3.15) and simplifying, it follows that

m2|bm(λ, f)|2

≤ 1
(1 + c)2

⎡

⎣λ2c2 +
m−1∑

k=1

(
(λc + k)2 − k2(1 + c)2

) 1
(1 + c)2k

k−1∏

j=0

(
λc + j

1 + j

)2
⎤

⎦

=
1

(1 + c)2

[

λ2c2 +
m−1∑

k=1

(A2
k+1 − A2

k)

]

, Ak =
k

(1 + c)k−1

k−1∏

j=0

λc + j

1 + j
,

=
1

(1 + c)2
A2

m.

Hence, for m = 1, 2, . . . , [λ] + 1, we have

|bm(λ, f)| ≤ 1
(1 + c)m

m−1∏

j=0

λc + j

1 + j
.

This establishes the inequality (3.11).

Case III: Now, we will prove the inequality (3.12). Recall that if λ > 1, then
λ − k ≤ 0 for k = [λ] + 1, [λ] + 2, . . .. From (3.13), for m = [λ] + 2, [λ] + 3, . . .,
we get

m2|bm(λ, f)|2 ≤ 1
(1 + c)2

⎡

⎣λ2c2 +
[λ]−1∑

k=1

[(λc + k)2 − k2(1 + c)2] |bk(λ, f)|2
⎤

⎦ .

(3.16)
Using (3.16) and mathematical induction hypothesis (3.15), we get as before

m2|bn(λ, f)|2

≤ 1

(1 + c)2

⎡

⎣λ2c2 +

[λ]−1∑

k=1

(
(λc + k)2 − k2(1 + c)2

) 1

(1 + c)2k

k−1∏

j=0

(
λc + j

1 + j

)2
⎤

⎦

=
1

(1 + c)2[λ](([λ] − 1)!)2

[λ]−1∏

j=0

(λc + j)2 .

Hence,

|bm(λ, f)| ≤ [λ]
m(1 + c)[λ]

[λ]−1∏

j=0

λc + j

1 + j
for m = [λ] + 2, [λ] + 3, . . . .

This establishes the inequality (3.12). �

If we take c = 1 in Lemma 5, we get the following result.

Corollary 6. Let f ∈ G(1) and for each fixed λ > 0, let the Taylor coefficients
bm(λ, f) be given by (2.1). Then
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(1) for λ ∈ (0, 1], we have

|bm(λ, f)| ≤ λ

2m
for m = 1, 2, . . . ; (3.17)

(2) for λ > 1, we have

|bm(λ, f)| ≤ 1
2m

m−1∏

j=0

λ + j

1 + j
for m = 1, 2, . . . , [λ] + 1; (3.18)

and

|bm(λ, f)| ≤ [λ]
m 2[λ]

[λ]−1∏

j=0

λ + j

1 + j
for m = [λ] + 2, . . . .

The estimate (3.17) is sharp for f ′
1,m and the estimate (3.18) is sharp for

f1(z) = z − z2/2.

Now we are ready to state our next main result.

Theorem 7. Let f ∈ G(c) for some c ∈ (0, 1]. Then the logarithmic inverse
coefficients Γn of F satisfy the inequality

|Γn(F )| ≤ 1
2n(1 + c)n

n−1∏

j=0

nc + j

(1 + j)
for n ∈ N.

The result is best possible for the function f ′
c(z) = (1 − z)c.

Proof. Suppose f ∈ G(c). From the relation (2.2), we have

2nΓn(F ) = bn(n, f), n ∈ N,

where bn(n, f) is defined by (2.1). In order to find |Γn(F )|, we shall estimate
|bn(n, f)| using Lemma 5. For λ = n ∈ N, we note that the inequalities (3.10)
and (3.11) are applicable. Therefore, the inequalities (3.10) and (3.11) yield

|Γn(F )| =
1
2n

|bn(n, f)| for n ∈ N.

The desired conclusion follows. �

Corollary 8. Let f ∈ G(1). Then

|Γn(F )| ≤ (2n − 1)!
(n!)2 2n+1

for n ∈ N.

The result is best possible for the function f0(z) = z − z2/2.
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3.5. Logarithmic Inverse Coefficients for U(λ)
Now, we will discuss the logarithmic inverse coefficients Γn for the class U(λ).
It is a simple exercise to see that f ∈ U(λ) if and only if

f(z) =
z

1 − a2z + λz
∫ z

0
ω(t) dt

, (3.19)

where 2a2 = f ′′(0), ω is analytic and |ω(z)| ≤ 1 for |z| < 1. Moreover, we also
see from (3.19) that

f ′(z)
(

z

f(z)

)2

− 1 = −λz2ω(z),

where λω(0) = − (a3 − a2
2). In [22], the authors proved that if ω(0) = a ∈ D

and

v(x) =
∫ 1

0

x + t

1 + xt
dt =

1
x

− 1 − x2

x2
log(1 + x), x ∈ [0, 1],

where v(0) = lim
x→0+

v(x) = 1/2, then we have the sharp inequality

|a2| ≤ 1 + λv(|a|). (3.20)

Theorem 9. Let f ∈ U(λ) for 0 < λ ≤ 1. Then the logarithmic inverse coeffi-
cients Γn of F satisfy the inequality

|Γ1(F )| ≤ 1
2

[1 + λv(|a|)] and |Γ2(F )| ≤ 1
4
[
(1 + λv(|a|))2 + 2λ|a|] .

Equality is achieved in both inequalities for the function

f(z) =
z

1 − (1 + λv(a))z + λz
∫ z

0
t+a
1+at dt

, (3.21)

where a ∈ (0, 1).

Proof. Suppose f ∈ U(λ). Then from (3.19), we have
z

f(z)
= 1 − a2z + λaz2 + o(z2), for z → 0.

From (2.2), we know that 2nΓn(F ) = bn(n, f) for n ∈ N, and from the last
relation it follows easily that

b1(1, f) = − a2 and b2(2, f) = 3a2
2 − 2a3 = a2

2 + 2λa.

Hence, by using (3.20), we get

2|Γ1(F )| = |a2| ≤ 1 + λv(|a|),
and

4|Γ2(F )| = |a2
2 + 2λa| ≤ (1 + λv(|a|))2 + 2λ|a|.

Equality case is easy to obtain from (3.21). �
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3.6. Logarithmic Inverse Coefficients for F(α)

We see from the definition of F(α) that if f ∈ F(α), then

1 +
zf ′′(z)
f ′(z)

≺ 1 + (1 − 2α)z
1 − z

, i.e.
zf ′′(z)
f ′(z)

≺ 2(1 − α)z
1 − z

.

By the definition of subordination, we get

zf ′′(z)
f ′(z)

=
2(1 − α)ϕ(z)

1 − ϕ(z)
, i.e. zf ′′(z)(1 − ϕ(z)) = 2(1 − α)f ′(z)ϕ(z),

where ϕ ∈ B0. Using the Taylor expansion ϕ(z) =
∑∞

k=1 ckzk and of f(z)
given by (1.1), we can write the above relation in the series representation

a2z + (3a3 − a2c1)z2 + (6a4 − 3a3c1 − a2c2)z3 + · · ·
= (1 − α)

[
c1z + (2a2c1 + c2)z2 + (3a3c1 + 2a2c2 + c3) z3 + · · · ]

and the sharp inequality |cn| ≤ 1−|c1|2 holds for n ≥ 2. Now, we compare the
coefficients of zn for n = 2, 3, 4 and get

⎧
⎨

⎩

a2 = (1 − α)c1

3a3 = (1 − α)((3 − 2α)c2
1 + c2)

6a4 = (1 − α)((2 − α)(3 − 2α)c3
1 + (5 − 3α)c1c2 + c3)

(3.22)

In view of the relation (1.2), we have

f(F (w)) = w, F (0) = 0 = f(0) and F ′(0) = 1 = f ′(0),

where z = F (w). Differentiating this we find that f ′(z)F ′(w) = 1, and further
differentiation gives

⎧
⎪⎪⎨

⎪⎪⎩

f ′′(z)(F ′(w))2 + f ′(z)F ′′(w) = 0,
f ′′′(z)(F ′(w))3 + 3f ′′(z)F ′(w)F ′′(w) + f ′(z)F ′′′(w) = 0,
f (iv)(z)(F ′(w))4 + 6f ′′′(z)(F ′(w))2F ′′(w) + f ′′(z)[3(F ′′(w))2

+ 3F ′(z)F ′′′(w) + F ′′′(w)] + f ′(z)F (iv)(w) = 0.

Setting z = 0 and w = 0, we obtain that
⎧
⎨

⎩

A2 = − a2

A3 = − a3 + 2a2
2

A4 = − a4 + 5a2 a3 − 5a3
2.

(3.23)

Next, we simplify (1.4) and write in the series form

A2w + A3w
2 + A4w

3 + · · · − 1
2
[A2w + A3w

2 + · · · ]2 +
1
3
[A2w + · · · ]3

+ · · · = 2
∞∑

n=1

Γn(F )wn
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Now, we compare the coefficients of wn for n = 1, 2, 3 and find that
⎧
⎪⎪⎨

⎪⎪⎩

2Γ1(F ) = A2

2Γ2(F ) = A3 − 1
2

A2
2

2Γ3(F ) = A4 − A2 A3 +
1
3

A3
2.

(3.24)

From the formulas (3.24) and (3.23), we obtain
⎧
⎨

⎩

2Γ1(F ) = −a2

4Γ2(F )| = − 2a3 + 3a2
2

6Γ3(F ) = −3a4 + 12a2a3 − 10a3
2.

(3.25)

Finally, the formulas (3.22) and (3.25) together yield
⎧
⎪⎪⎨

⎪⎪⎩

2Γ1(F ) = −(1 − α)c1

4Γ2(F )| =
1 − α

3
(− 2c2 + (3 − 5α)c2

1)

6Γ3(F ) =
1 − α

2
(− c3 + (3 − 5α) c1 c2 − (3α − 2)(2α − 1) c3

1).

(3.26)

These equations imply the following sharp bounds for the logarithmic inverse
coefficients.

The first equation in (3.26) gives

Theorem 10. Let f ∈ F(α) for some α ∈ [− 1/2, 1). Then

|Γ1(F )| ≤ 1 − α

2
.

Equality is attained if and only if f ′(z) = (1 − z)−2(1−α) or a rotation of this
function.

The second and the third relations in (3.26) give

Theorem 11. Let f ∈ F(α) for some α ∈ [− 1/2, 1). Then

(a) If α ∈ [− 1/2, 1/5], then

|Γ2(F )| ≤ (1 − α)(3 − 5α)
12

.

Equality is attained in each case if and only if f ′(z) = (1 − z)−2(1−α) or
a rotation of this function.

(b) If α ∈ (1/5, 1), then

|Γ2(F )| ≤ 1 − α

6
.

Equality is attained in each case if and only if f ′(z) = (1 − z2)−(1−α) or
a rotation of this function.
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Proof. Using the sharp inequality |c2| ≤ 1 − |c1|2, we see that the above
expression for Γ2(F ) implies

4|Γ2(F )| ≤ 1 − α

3
(2 + |c1|2(|3 − 5α| − 2))

In the first case the maximum of this expression is attained for |c1| = 1 and
in the second case for |c1| = 0. The extremal functions are calculated using
ϕ(z) = z in the first case and ϕ(z) = z2 in the second case.

Concerning these inequalities compare [14]. �
In their paper [23], Prokhorov and Szynal calculated the maximum of the

expression

|c3 + μc1c2 + υc3
1|

for fixed (μ, υ) ∈ R
2, where ϕ varies in the set of Schwarz functions. It is

obvious that this result can be used to get the maximum of |Γ3(F )| for any
α ∈ [− 1/2, 1). Since some of these inequalities and their extremal functions
are very much involved, we want to mention only those cases, where these
expressions are nice. Hence, we only mention the related cases of the lemma
of Prokhorov and Szynal.

Lemma 12. [23, Lemma 2] Let ϕ(z) =
∑∞

k=1 ckzk ∈ B be a Schwarz function
and

Ψ(ϕ) = |c3 + μc1c2 + υc3
1|.

Then we have the following sharp estimates:
(a) Ψ(ϕ) ≤ 1 if (μ, υ) ∈ D1 ∪ D2, where

D1 =
{

(μ, υ) ∈ R
2 : |μ| ≤ 1

2
, − 1 ≤ υ ≤ 1

}

, and

D2 =
{

(μ, υ) ∈ R
2 :

1
2

≤ |μ| ≤ 2,
4
27

(|μ| + 1)3 − (|μ| + 1) ≤ υ ≤ 1
}

.

(b) Ψ(ϕ) ≤ |υ| if (μ, υ) ∈ D6 ∪ D7, where

D6 =
{

(μ, υ) ∈ R
2 : 2 ≤ |μ| ≤ 4, υ ≥ 1

12
(μ2 + 8)

}

, and

D7 =
{

(μ, υ) ∈ R
2 : |μ| ≥ 4, υ ≥ 2

3
(|μ| − 1)

}

.

It is a lengthy, but straightforward verification that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(μ, υ) ∈ D1, if α ∈ [
1
2 , 7

10

]
,

(μ, υ) ∈ D2, if α ∈ [
0.21605468, 1

2

]
,

(μ, υ) ∈ D6, if α ∈ [− 1
5 , 7

47

]
,

(μ, υ) ∈ D7, if α ∈ [− 1
2 ,− 1

5

]

(3.27)

which help to prove the next result.
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Theorem 13. Let f ∈ F(α) for α ∈ [− 1
2 , 1). Then

|Γ3(F )| ≤ 1 − α

12
, α ∈

[

0.21605468,
7
10

]

.

Equality is attained if f ′(z) = (1 − z3)− 2(1−α)
3 or a rotation of this function.

Also,

|Γ3(F )| ≤ (1 − α)(3α − 2)(2α − 1)
12

, α ∈
[

− 1
2
,

7
47

]

.

Equality is attained if f ′(z) = (1 − z)−2(1−α) or a rotation of this function.

Proof. We see that from the expression (3.26) for Γ3(F ) implies

6 |Γ3(F )| =
1 − α

2

∣
∣
∣c3 − (3 − 5α) c1 c2 + (3α − 2)(2α − 1) c3

1

∣
∣
∣

=:
1 − α

2
|I1|,

where

I1 = c3 + μ c1 c2 + υ c3
1, μ = 5α − 3 and υ = (3α − 2)(2α − 1).

Our aim is to get a sharp bound for |I1|. Lemma 12(a) and (3.27) give |I1| ≤ 1
for D1 ∪ D2 and the desired inequality follows.

Using the second part of Lemma 12 and (3.27), we find that

|I1| ≤ |υ| = (3α − 2)(2α − 1) for D6 ∪ D7.

This completes the proof of Theorem 13. �

If we take α = 0 and α = − 1/2 in Theorems 10, 11 and 13, then we get
the following interesting cases.

Corollary 14. Let f ∈ C. Then

|Γn(F )| ≤ 1
2n

for n = 1, 2, 3.

The estimates are sharp for the function l(z) = z/(1 − z).

Corollary 15. If f ∈ F(− 1/2), then we have the sharp inequalities

|Γ1(F )| ≤ 3
4
, |Γ2(F )| ≤ 11

16
, and |Γ3(F )| ≤ 7

8

The estimates are sharp for the function f0(z) =
z − z2/2
(1 − z)2

.
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4. Concluding Remarks

From Theorem 9, we see that logarithmic inverse coefficients for the family
U(λ) for the remaining coefficients Γn for n ≥ 3 are open.

We recognized that in the case of convex functions f ∈ C,

|Γn(F )| ≤ 1
2n

cannot be valid for n ≥ 10, although this is true for n = 1, 2, 3 by Corollary 14.
In fact, if this were true for n ≥ 10, then the third Lebedev–Milin inequality
(see the book by Gong [8, p. 80]) would imply that the moduli of the coefficients
of the inverses of convex functions are all less than 1. But this is clearly wrong
at least for n ≥ 10 (see [10]). On the other hand, it is natural to ask whether
the last inequality is true for other values of n, namely, for 4 ≤ n ≤ 9. Finally,
Corollary 15 shows that analog problem for the class F(− 1/2) is also open for
n ≥ 4.
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Uc̆ebn. Zaved. Mat. 10, 12–20 (1970). (in Russian)

[3] Clunie, J.G.: On meromorphic schlicht functions. J. Lond. Math. Soc. 34, 215–
216 (1959)

[4] Clunie, J.G., Keogh, F.R.: On starlike and convex schlicht functions. J. Lond.
Math. Soc. 35, 229–233 (1960)

[5] de Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154, 137–152
(1985)

[6] Duren, P.: Univalent Functions (Grundlehren der mathematischen Wis-
senschaften 259, Berlin, Heidelberg, Tokyo). Springer, New York (1983)

[7] Firoz Ali, Md., Vasudevarao, A.: Coefficient estimates of negative powers and
inverse coefficients for certain starlike functions. Proc. Indian Acad. Sci. (Math.
Sci.) 127, 449–462 (2017)



Vol. 73 (2018) Inverse Logarithmic Coefficients Problems Page 19 of 20 160

[8] Gong, S.: The Bieberbach Conjecture. Translated from the 1989 Chinese original
and revised by the author. With a preface by Carl H. FitzGerald. AMS/IP Stud-
ies in Advanced Mathematics, 12. American Mathematical Society, Providence;
International Press, Cambridge (1999)

[9] Goodman, A.W.: Univalent Functions, vols. 1–2. Mariner, Tampa (1983)

[10] Kirwan, W.E., Schober, G.: Inverse coefficients for functions of bounded bound-
ary rotation. J. Anal. Math. 36(1979), 167–178 (1980)

[11] Libera, R.J.: Univalent α-spiral functions. Can. J. Math. 19, 449–456 (1967)
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