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Limits of Sequences of Bochner Integrable
Functions Over Sequences of Probability
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Abstract. We prove limits of sequences of Bochner integrable functions
over sequences of probability measures spaces. A sample result: Let X be
a bounded closed convex set in a Banach space F , a ∈ X and E a non-null
Banach space. Let (Ωn, Σn, μn)n∈N

be a sequence of probability measure
spaces, ϕn : Ωn → X a sequence of μn-Bochner integrable functions.
Then the following assertions are equivalent:

(i) limn→∞
∫
Ωn

‖ϕn (ωn) − a‖F dμn (ωn) = 0.

(ii) For each uniformly continuous and bounded function f : X → E,
the following equality holds

lim
n→∞

∫

Ωn

f (ϕn (ωn)) dμn(wn) = f (a) in norm of E.
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1. Introduction and Notation

The main purpose of this paper is to prove the result as stated in Abstract.
For this we prove first a result analogous result to the Niculescu’s characteriza-
tion of weakly compact operators on C (K)-spaces, see Lemma 1, from which
we deduce a very general result concerning the convergence of sequences of
integrals, see Theorem 1. Then, we prove various results for limits/the limit
of sequences of Bochner integrable functions in which sequences of probability
measures may vary, see Propositions 1 and 2. Further, in the case of lp spaces
we give some results, see Propositions 3 and 4 which show that the result in
the case of Hilbert spaces proved in Proposition 2 is not necessary true in
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general. We apply these results in the case of the Rademacher functions, see
Corollaries 1 and 3. Let us recall some basic concepts and notation in vector
integration; for more details we refer the reader to the ”Vector measures” of
Diestel and Uhl see [4]. Let (Ω,Σ, μ) be a measure space, E a Banach space
over the scalar field K = R (or C). A function f : Ω → E is μ -Bochner
integrable if f is μ-measurable and

∫
Ω

‖f (ω)‖E dμ (ω) < ∞. In this case∫
Ω

f (ω) dμ (ω) ∈ E denote the Bochner integral. Let us recall the inequality∥
∥
∫
Ω

f (ω) dμ (ω)
∥
∥

E
≤ ∫

Ω
‖f (ω)‖E dμ (ω). Recall that if (X, ρ) is a metric space,

x ∈ X, M > 0 then B (x,M) is the closed ball with center at x and radius M
and non-empty subset A of X is bounded if diam (A) := sup

(a,b)∈A×A

ρ (a, b) < ∞.

If (X, ρ) and (E, σ) are metric spaces, a function f : X → E is bounded if the
set f (X) ⊂ E is bounded. All notation and notion used and not defined in
this paper are standard, e.g. see [4,5].

2. The Basic Results

The following lemma is the main result of this paper. It is analogous to the
Niculescu’s characterisation of weakly compact operators on C (K)-spaces, see
[5, Theorem 15.2, page 309], [8, Theorem 1]. For other type results in various
direction we recommend the reader to consult the papers of Niculescu, [8–10]
and the papers [1,7].

Lemma 1. Let (X, ρ) be a metric space, (E, σ) be a metric space, f : X → E
a uniformly continuous and bounded function and x ∈ X. Let also 0 < p < ∞.
Then: ∀ε > 0, ∃ηε > 0 such that for each finite measure space (Ω,Σ, μ), each
μ -measurable function ϕ : Ω → X the following relation holds

∫

Ω

[σ (f (ϕ (ω)) , f (x))]p dμ (ω)

≤ [ηεdiam (f (X))]p
∫

Ω

[ρ (ϕ (ω) , x)]p dμ (ω) + εpμ (Ω) .

Proof. Let us note that since ϕ is μ-measurable, f continuous, the function
ω → σ (f (ϕ (ω)) , f (x)) is μ-measurable and bounded by diam (f (X)) < ∞
(f is bounded), thus μ-integrable ((Ω,Σ, μ) is a finite measure space). Let
ε > 0. Since f is uniformly continuous, there exists δε > 0 such that for
each (u, v) ∈ X × X with ρ (u, v) < δε it follows that σ (f (u) , f (v)) < ε.
Let us define M (δε) = {ω ∈ Ω | ρ (ϕ (ω) , x) ≥ δε} and note that by Markov
inequality

μ (M (δε)) ≤ 1

[δε]p

∫

Ω

[ρ (ϕ (ω) , x)]p dμ (ω) . (1)
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We have
∫

Ω

[σ (f (ϕ (ω)) , f (x))]p dμ (ω) =
∫

M(δε)

[σ (f (ϕ (ω)) , f (x))]p dμ (ω)

+
∫

CM(δε)

[σ (f (ϕ (ω)) , f (x))]p dμ (ω) . (2)

For each ω ∈ CM (δε) we have ρ (ϕ (ω) , x) < δε from where

σ (f (ϕ (ω)) , f (x)) < ε

and, by integration,
∫

CM(δε)

[σ (f (ϕ (ω)) , f (x))]p dμ (ω) ≤ εpμ (CM (δε)) ≤ εpμ (Ω) . (3)

Also for each ω ∈ M (δε) we have

σ (f (ϕ (ω)) , f (x)) ≤ sup
(a,b)∈X×X

σ (f (a) , f (b)) = diam (f (X))

and then, by integration,
∫

M(δε)

[σ (f (ϕ (ω)) , f (x))]p dμ (ω) ≤ [diam (f (X))]p μ (M (δε))

which by (1) gives us
∫

M(δε)

[σ (f (ϕ (ω)) , f (x))]p dμ (ω) ≤ [diam (f (X))]p

[δε]
p

∫

Ω

[ρ (ϕ (ω) , x)]p dμ (ω) .

(4)
Then, for ηε = 1

δε
from (2–4) we get the relation from the statement. �

Remark 1. (i) If (X, ρ) is a compact metric space, then each continuous func-
tion f : X → E is uniformly continuous and bounded, hence Lemma 1 holds.
(ii) If (X, ρ) is a metric space and E a Banach space then, f : X → E is
bounded if and only if ‖f‖∞ := sup

x∈X
‖f (x)‖ < ∞. In this, case diam (f (X)) ≤

2 ‖f‖∞.

The next result is a general result for limits of sequences of Bochner
integrals over sequences of probability measure spaces.

Theorem 1. Let (X, ρ) be a metric space, (xn)n∈N
⊂ X, (E, σ) be a metric

space. Let 0 < p < ∞, (Ωn,Σn, μn)n∈N
be a sequence of measure spaces with

sup
n∈N

μn (Ωn) < ∞, ϕn : Ωn → X a sequence of μn-measurable functions. If

lim
n→∞

∫

Ωn

[ρ (ϕn (ωn) , xn)]p dμn (ωn) = 0
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then, for each uniformly continuous and bounded function f : X → E the
following equality holds

lim
n→∞

∫

Ωn

[σ (f (ϕn (ωn)) , f (xn))]p dμn (ωn) = 0.

Proof. Let ε > 0. Then by Lemma 1 there exists ηε > 0 such that for each
natural number n the following relation holds

∫

Ωn

[σ (f (ϕn (ωn)) , f (xn))]p dμn (ωn)

≤ [ηεdiam (f (X))]p
∫

Ωn

[ρ (ϕn (ωn) , xn)]p dμn (ωn) + εpμn (Ωn) .

Since M = sup
n∈N

μn (Ωn) < ∞ we deduce

∫

Ωn

[σ (f (ϕn (ωn)) , f (xn))]p dμn (ωn)

≤ [ηεdiam (f (X))]p
∫

Ωn

[ρ (ϕn (ωn) , xn)]p dμn (ωn) + εpM.

Then

lim sup
∫

Ωn

[σ (f (ϕn (ωn)) , f (xn))]p dμn (ωn)

≤ [ηεdiam (f (X))]p lim sup
∫

Ωn

[ρ (ϕn (ωn) , xn)]p dμn (ωn) + εpM.

which, by the hypothesis, gives us that

lim sup
∫

Ωn

[σ (f (ϕn (ωn)) , f (xn))]p dμn (ωn) ≤ εpM.

Since ε > 0 is arbitrary we deduce

lim sup
∫

Ωn

[σ (f (ϕn (ωn)) , f (xn))]p dμn (ωn) ≤ 0

that is,

lim
n→∞

∫

Ωn

[σ (f (ϕn (ωn)) , f (xn))]p dμn (ωn) = 0.

�

3. Limits of Sequences of Bochner Integrable Functions Over
Sequences of Probability Measure Spaces

In the sequel we use Theorem 1 to give the necessary and sufficient condi-
tions that to obtain limits of sequences of Bochner integrable functions over
sequences of probability measure spaces. We need the following well-known
result, see [4, Corollary 8, page 48]: Let (Ω,Σ, μ) be a probability measure
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space, E a Banach space and ϕ : Ω → E a μ-Bochner integrable function.
Then

∫
Ω

ϕdμ ∈ co ϕ (Ω).

Proposition 1. Let X be a bounded closed convex set in a Banach space F ,
a ∈ X and E a non-null Banach space. Let (Ωn,Σn, μn)n∈N

be a sequence of
probability measure spaces, ϕn : Ωn → X a sequence of μn-Bochner integrable
functions. Then the following assertions are equivalent:

(i) limn→∞
∫
Ωn

‖ϕn (ωn) − a‖F dμn (ωn) = 0.
(i) For each uniformly continuous and bounded function f : X → E, the

following equality holds

lim
n→∞

∫

Ωn

f (ϕn (ωn)) = f (a) in norm of E.

Proof. As we already remarked since X is closed and convex,
∫
Ωn

ϕndμn ∈ co

ϕ (Ωn) ⊂ X for all natural numbers n.
(i)⇒(ii). Indeed, by (i) and Theorem 1 we have

lim
n→∞

∫

Ωn

‖f (ϕn (ωn)) − f (a)‖E dμn (ωn) = 0

and from
∥
∥
∥
∥

∫

Ωn

f (ϕn (ωn)) dμn (ωn) − f (a)
∥
∥
∥
∥ =

∥
∥
∥
∥

∫

Ωn

[f (ϕn (ωn)) − f (a)] dμn (ωn)
∥
∥
∥
∥

E

≤
∫

Ωn

‖f (ϕn (ωn)) − f (a)‖E dμn (ωn)

we get (ii).
(ii)⇒(i). Let e ∈ E with ‖e‖ = 1 and take in (ii) f : X → E, f (x) =

‖x − a‖F e. Note that since X is bounded f is bounded (obvious uniformly
continuous). �

We need the following well-known result. For the sake of completeness
we include its proof.

Remark 2. Let (Ω,Σ, μ) be a probability measure space, H a Hilbert space,
f : Ω → H a μ -Bochner integrable function and a ∈ H. Then
∫

Ω

‖f (ω) − a‖2
dμ (ω) =

∫

Ω

‖f (ω)‖2
dμ (ω)−2R

〈∫

Ω

f (ω) dμ (ω) , a

〉

+‖a‖2
.

Proof. If z ∈ C then Rz denote the real part of z. Let x∗ : H → K, x∗ (x) =
R 〈x, a〉. We use the well-known result: x∗ (∫

Ω
f (ω) dμ

(ω)) =
∫
Ω

x∗ (f (ω)) dμ (ω), that is,
∫
Ω
R 〈f (ω) , a〉 dμ (ω) = R

〈∫
Ω

f (ω) dμ
(ω) , a〉, see [4, The Hille Theorem, page 47]. Then
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∫

Ω

‖f (ω) − a‖2
dμ (ω) =

∫

Ω

‖f (ω)‖2
dμ (ω) − 2

∫

Ω

R 〈f (ω) , a〉 dμ (ω) + ‖a‖2

=
∫

Ω

‖f (ω)‖2
dμ (ω) − 2R

〈∫

Ω

f (ω) dμ (ω) , a

〉

+ ‖a‖2
.

�

The next result extend problem 6.7 in [11] to the case of Hilbert spaces;
for some concrete applications, see also [6, Problems III. 4.4–4.6] where, in the
proofs, the authors use the law of large numbers.

Proposition 2. Let X be a closed bounded convex non-empty set in a Hilbert
space H, E a non-null Banach space. Let (Ωn,Σn, μn)n∈N

be a sequence of
probability measure spaces, ϕn : Ωn → X a sequence of μn-Bochner integrable
functions with limn→∞

∫
Ωn

ϕndμn = a ∈ X. Then the following assertions are
equivalent:

(i) limn→∞
∫
Ωn

‖ϕn‖2
dμn = ‖a‖2.

(ii) for each uniformly continuous and bounded function f : X → E, the
following equality holds

lim
n→∞

∫

Ωn

f (ϕn (ωn)) dμn (ωn) = f

(

lim
n→∞

∫

Ωn

ϕndμn

)

in norm of E.

Proof. (i)⇒(ii). Let n be a natural number. Then since μn (Ωn) = 1 we have
∫

Ωn

‖ϕn (ωn) − a‖H dμn (ωn) ≤
(∫

Ωn

‖ϕn (ωn) − a‖2
H dμn (ωn)

) 1
2

and since H is a Hilbert space, by Remark 2, we deduce
∫

Ωn

‖ϕn (ωn) − a‖H dμn (ωn)

≤
√∫

Ωn

‖ϕn‖2
H dμn − 2R

〈∫

Ω

ϕn (ωn) dμ (ωn) , a

〉

+ ‖a‖2
.

By the hypothesis (i)

limn→∞

(∫

Ωn

‖ϕn‖2
H dμn − 2R

〈∫

Ω

ϕn (ωn) dμ (ωn) , a

〉

+ ‖a‖2

)

= 0

and then limn→∞
∫
Ωn

‖ϕn (ωn) − a‖H dμn (ωn) = 0. From Proposition 1 we
get (ii).

(ii)⇒(i). Let e ∈ E with ‖e‖ = 1. Take in (ii) f : X → E, f (x) = ‖x‖2
e

and note that since X is bounded, f is Lipschitz, thus uniformly continuous
(obvious bounded). �
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Corollary 1. Let H be a Hilbert space, (xnk)n∈N, 1≤k≤n ⊂ H be a triangular
matrix such M = supn∈N (‖xn1‖ + · · · + ‖xnn‖) < ∞. Let also E be a non-null
Banach space. Then the following assertions are equivalent:

(i) limn→∞
(
‖xn1‖2 + · · · + ‖xnn‖2

)
= 0.

(ii) For each uniformly continuous and bounded function f : B (0,M) → E,
the following equality holds

lim
n→∞

∫

[0,1]

f (xn1r1 (t) + · · · + xnnrn (t)) dt = f (0) in norm of E.

Proof. Let ϕn : [0, 1] → B (0,M) be defined by ϕn (t) = xn1r1 (t) + · · · +
xnnrn (t). Then

∫
[0,1]

ϕn (t) dt = 0 and by orthonormality of Rademacher func-

tions and since H is a Hilbert space,
∫
[0,1]

‖ϕn (t)‖2
H dt = ‖xn1‖2+ · · ·+‖xnn‖2.

Thus limn→∞
∫
[0,1]

‖ϕn (t)‖2
H dt = 0 if and only if limn→∞

( ‖xn1‖2 + · · ·
+ ‖xnn‖2 )

= 0. The equivalence between (i) and (ii) follows from Proposi-
tion 2. �

A natural question is whether the result in Proposition 2 is true in
arbitrary Banach spaces. As we will show in the sequel, in general, the answer
is no. We recall Tannery’s theorem, see [2, page 123]: If |ank| ≤ bk for all
natural numbers n and k, the series

∑∞
k=1 bk is convergent and for all k ∈ N,

limk→∞ ank ∈ K, then limn→∞ (
∑∞

k=1 ank) =
∑∞

k=1 limn→∞ ank.

Proposition 3. Let 1 ≤ p < ∞, a = (ak)k∈N
∈ lp,

Ca =
{
(tk)k∈N

∈ lp | |tk| ≤ |ak| , ∀k ∈ N
}

and (xnk)n,k∈N
a double sequence of scalars such that

|xnk| ≤ |ak| ,∀n, k ∈ N.

Let (Ωn,Σn, μn)n∈N
be a sequence of probability measure spaces, ϕnk : Ωn → K

a double sequence of μn-measurable functions such that

|ϕnk (ωn)| ≤ |ak| ,∀n, k ∈ N.

Let also E be a non-null Banach space. Then the following assertions are
equivalent:

(i) limn→∞
∫
Ωn

|ϕnk (ωn) − xnk|p dμn (ωn) = 0 for all k ∈ N.
(ii) for each continuous function f : Ca → E the following equality holds

lim
n→∞

∫

Ωn

∥
∥f

(
(ϕnk (ωn))k∈N

) − f
(
(xnk)k∈N

)∥
∥p

E
dμn (ωn) = 0.

In particular, if (i), holds then,

lim
n→∞

[∫

Ωn

f
(
(ϕnk (ωn))k∈N

)
dμn (ωn) − f

(
(xnk)k∈N

)
]

= 0 in norm of E.
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Proof. First note that since a ∈ lp, by the well-known characterization of
compact sets in lp, see [3, Exercise 6, page 6], Ca is a compact set in lp and
obvious a convex set. Also by the hypothesis, xn = (xnk)k∈N

∈ Ca. For each
natural number n, let ϕn : Ωn → Ca be defined by ϕn (ωn) = (ϕnk (ωn))k∈N

and note that ϕn are μn-measurable. For all natural numbers n we have
∫

Ωn

‖ϕn (ωn) − xn‖p
lp

dμn (ωn) =
∞∑

k=1

∫

Ωn

|ϕnk (ωn) − xnk|p dμn (ωn) . (5)

We have also |ϕnk (ωn) − xnk| ≤ |ϕnk (ωn)|+|xnk| ≤ 2 |ak| , and by integration
∫

Ωn

|ϕnk (ωn) − xnk|p dμn (ωn) ≤ 2p |ak|p ,∀n, k ∈ N.

(i)⇒(ii). By (i) and Tannery’s theorem from (5) it follows that

lim
n→∞

∫

Ωn

‖ϕn (ωn) − xn‖p
lp

dμn (ωn) = 0.

By Remark 1(i) and Theorem 1 we get (ii).
(ii)⇒(i). Let e ∈ E be such that ‖e‖ = 1. For all k ∈ N let f : Ca → E

be defined by f (t1, ..., tn, ...) = tk ‖e‖ and note that

f
(
(ϕnk (ωn))k∈N

) − f
(
(xnk)k∈N

)
= (ϕnk (ωn) − xnk) e.

From (ii) we have

lim
n→∞

∫

Ωn

∥
∥f

(
(ϕnk (ωn))k∈N

) − f
(
(xnk)k∈N

)∥
∥p

E
dμn (ωn) = 0

that is (i). Moreover, if (i) holds, then (ii) holds and from
∥
∥
∥
∥

∫

Ωn

f
(
(ϕnk (ωn))k∈N

)
dμn (ωn) − f

(
(xnk)k∈N

)
∥
∥
∥
∥

E

=
∥
∥
∥
∥

∫

Ωn

[
f

(
(ϕnk (ωn))k∈N

) − f
(
(xnk)k∈N

)]
dμn (ωn)

∥
∥
∥
∥

E

≤
∫

Ωn

∥
∥f

(
(ϕnk (ωn))k∈N

) − f
(
(xnk)k∈N

)∥
∥

E
dμn (ωn)

≤
(∫

Ωn

∥
∥f

(
(ϕnk (ωn))k∈N

) − f
(
(xnk)k∈N

)∥
∥p

E
dμn (ωn)

) 1
p

we get the conclusion. �

Corollary 2. Let 1 ≤ p < ∞, a = (ak)k∈N
∈ lp,

Ca =
{
(tk)k∈N

∈ lp | |tk| ≤ |ak| , ∀k ∈ N
}

.

Let (Ωn,Σn, μn)n∈N
be a sequence of probability measure spaces, ϕnk : Ωn → K

a double sequence of μn-measurable functions such that

|ϕnk (ωn)| ≤ |ak| ,∀n, k ∈ N.
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Let also E be a non-null Banach space. Then the following assertions are
equivalent:

(i) limn→∞
∫
Ωn

|ϕnk (ωn)|p dμn (ωn) = 0 for all k ∈ N.
(ii) for each continuous function f : Ca → E the following equality holds

lim
n→∞

∫

Ωn

f
(
(ϕnk (ωn))k∈N

)
dμn (ωn) = f (0) in norm of E.

Proof. (i)⇒(ii). From (i), by Proposition 3 we get (ii).
(ii)⇒(i). Let e ∈ E be such that ‖e‖ = 1. For all k ∈ N let f : Ca → E

be defined by f (t1, ..., tn, ...) = |tk|p e. Then, f (0) = 0 and
∫

Ωn

f
(
(ϕnk (ωn))k∈N

)
dμn (ωn) =

(∫

Ωn

|ϕnk (ωn)|p dμn (ωn)
)

e.

From (ii) we get (i). �

Corollary 3. Let 1 ≤ p < ∞, a = (ak)k∈N
∈ lp and

Ca =
{
(tk)k∈N

∈ lp | |tk| ≤ |ak| , ∀k ∈ N
}

.

Let (αnk)n,k∈N
⊂ K be such that |αn1| + · · · + |αnk| ≤ |ak|, ∀n, k ∈ N. Let also

E be a non-null Banach space. The following assertions are equivalent:

(i) limn→∞
√

|αn1|2 + · · · + |αnk|2 = 0 for all k ∈ N.
(ii) for each continuous function f : Ca → E the following equality holds

lim
n→∞

∫ 1

0

f
(
(αn1r1 (t) + · · · + αnkrn (t))k∈N

)
dt = f (0) in norm of E.

Proof. Let ϕnk : [0, 1] → K be defined by ϕnk (t) = αn1r1 (t) + · · · + αnkrk (t)
and note that |ϕnk (t)| ≤ |ak|, ∀n, k ∈ N. Also

∫ 1

0
ϕnk (t) dt = 0, ∀n, k ∈ N. By

Khinchin’s inequality we have

Ap

√
|αn1|2 + · · · + |αnk|2 ≤

(∫ 1

0

|ϕnk (t)|p dt

) 1
p

≤ Bp

√
|αn1|2 + · · · + |αnk|2

where Ap, Bp are Khinchin’s constants, see [5, page 10]. Then for all k ∈ N,

limn→∞
∫ 1

0
|ϕnk (t)|p dt = 0 if and only if limn→∞

√
|αn1|2 + · · · + |αnk|2 = 0.

The equivalence between (i) and (ii) follows from Corollary 2. �

The next result show that Proposition 2 does not hold, in general Banach
spaces.

Proposition 4. Let 2 ≤ p < ∞, m = [p/2] be the integer part of p/2, a =
(ak)k∈N

∈ lp and

Ca =
{
(tk)k∈N

∈ lp | |tk| ≤ |ak| , ∀k ∈ N
}

.
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Let (Ωn,Σn, μn)n∈N
be a sequence of probability measure spaces, ϕnk : Ωn → R

a double sequence of μn-measurable functions for all n, k ∈ N such that

|ϕnk (ωn)| ≤ |ak| ,∀n, k ∈ N

and

lim
n→∞

∫

Ωn

ϕnk (ωn) dμn (ωn) = λk ∈ K for all k ∈ N.

Let also E be a non-null Banach space. Then the following assertions are
equivalent:

(i) limn→∞
∫
Ωn

[ϕnk (ωn)]i dμn (ωn) = (λk)i for all 2 ≤ i ≤ 2m.
(ii) For each continuous function f : Ca → E the following equality holds

lim
n→∞

∫

Ωn

f
(
(ϕnk (ωn))k∈N

)
dμn (ωn)

= f

((

lim
n→∞

∫

Ωn

ϕnk (ωn) dμn (ωn)
)

k∈N

)

in norm of E.

Proof. First note that
∣
∣
∣
∫
Ωn

ϕnkdμn

∣
∣
∣ ≤ ∫

Ωn
|ϕnk| dμn ≤ |ak|, ,∀n, k ∈ N.

Passing to the limit as n → ∞ we get |λk| ≤ |ak| for all k ∈ N. Then
λ = (λk)k∈N

∈ Ca, xn =
(∫

Ωn
ϕnk (ωn) dμn (ωn)

)

k∈N

∈ Ca and as we will

prove next xn → λ in norm of lp. Indeed, for each natural number n we have

‖xn − λ‖p
lp

=
∞∑

k=1

∣
∣
∣
∣

∫

Ωn

ϕnk (ωn) dμn (ωn) − λk

∣
∣
∣
∣

p

and
∣
∣
∣
∫
Ωn

ϕnk (ωn) dμn (ωn) − λk

∣
∣
∣ ≤ 2 |λk| ≤ 2 |ak|. By Tannery’s theorem,

limn→∞ ‖xn − λ‖lp
= 0.

(i)⇒(ii). For each n, k ∈ N,
∣
∣
∣ϕnk (ωn) − ∫

Ωn
ϕnk (ωn) dμn (ωn)

∣
∣
∣ ≤ 2 |ak|

and thus since 2m ≤ p,
∣
∣
∣
∣ϕnk (ωn) −

∫

Ωn

ϕnkdμn

∣
∣
∣
∣

p

≤ (2 |ak|)p−2m

∣
∣
∣
∣ϕnk (ωn) −

∫

Ωn

ϕnkdμn

∣
∣
∣
∣

2m

.

Here we use: if 0 ≤ α ≤ β, x1 ≤ x2, then αx2 ≤ αx1βx2−x1 . Since for α ∈ R,
|α|2m = α2m by integration

∫

Ωn

∣
∣
∣
∣ϕnk (ωn) −

∫

Ωn

ϕnkdμn

∣
∣
∣
∣

p

dμn (ωn)

≤ (2 |ak|)p−2m
∫

Ωn

(

ϕnk (ωn) −
∫

Ωn

ϕnkdμn

)2m

dμn (ωn) . (6)
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Now, by the Newton binomial formula, and the hypothesis (i) we have

lim
n→∞

∫

Ωn

(

ϕnk (ωn) −
∫

Ωn

ϕnkdμn

)2m

dμn (ωn)

=

2m∑

i=0

(−1)i Ci
2m lim

n→∞

(∫

Ωn

ϕ2m−i
nk (ωn) dμn (ωn)

) (∫

Ωn

ϕnk (ωn) dμn (ωn)

)i

= λ2m
k

2m∑

i=0

(−1)i
Ci

2m = 0. (7)

From (6) and (7) we deduce that for all natural numbers k

lim
n→∞

∫

Ωn

∣
∣
∣
∣ϕnk (ωn) −

∫

Ωn

ϕnkdμn

∣
∣
∣
∣

p

dμn (ωn) = 0.

Then, from Proposition 3, limn→∞
[∫

Ωn
f

(
(ϕnk (ωn))k∈N

)
dμn (ωn) − f (xn)

]

= 0 in norm of E. Since xn →λ in norm of lp and f is continuous, limn→∞ f (xn)
= f (λ) in norm of E and (ii) follows.

(ii)⇒(i). Let e ∈ E with ‖e‖ = 1. For each 2 ≤ i ≤ 2m let fi :
Ca → E, fi

(
(tk)k∈N

)
= (ti)

i
e. Then f

(
(ϕnk (ωn))k∈N

)
= (ϕni (ωn))i

e and
f

(
(λk)k∈N

)
= (λi)

i
e. By (ii) we get (i). �

We show now that ϕnk : [0, 1]n → [0, 1], ϕnk (x1, ..., xn) = xk−1
1 +···+xk−1

n

n
verifies the condition (i) in Proposition 4. Indeed, we have

∫

[0,1]n
ϕnk (x1, ..., xn) dx1 · · · dxn =

1
k

and, as it follows from Proposition 2 for H = R,

lim
n→∞

∫

[0,1]n
[ϕnk (x1, ..., xn)]i dx1 · · · dxn =

1
ki

for all natural numbers i, see also [6,11].
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