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Abstract. Many articles have been written about functional equations
characterizing derivations on integral domains (or sometimes commuta-
tive rings) of characteristic 0. Here we synthesize several recent results
by various authors and extend them by showing that they hold more
generally on commutative rings of sufficiently large finite characteristic.

Mathematics Subject Classification. 39B52, 39B72, 13N15.

Keywords. Derivation of any order, linear function, integral domain,
commutative ring, homogeneity.

1. Introduction

Solutions of functional equations linking additive functions have a long and rich
history, a sampling of which can be found in [1–3,6,8,10] and their references.
As in other recent papers [2,3,6] we consider functional equations of the form

n∑

k=1

xpkfk(xqk) = 0, x ∈ R, (1)

for additive functions fk : R → S, where S is a commutative ring with subring
R. Here pk and qk are nonnegative integers. Under appropriate conditions on
the ring S, it has been shown in [2,3,6] that the expected solutions are linear
combinations of derivations of various orders and linear functions. The present
author [1–3] took a direct approach, while Gselmann et al. [6] worked with
a multivariate version. Here we unify those results while at the same time
weakening the assumptions on the ring S.

We assume without further mention that our rings have a multiplicative
identity denoted by 1. That a function f : R → S is additive means
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f(x + y) = f(x) + f(y)

for all x, y ∈ R. A derivation from R into S is an additive function d : R → S
which satisfies also the (Leibniz) product rule

d(xy) = xd(y) + d(x)y,

for all x, y ∈ R. A mapping B : R × R → S is called a bi-derivation if B
is a derivation in each variable when the other variable is fixed. We define
derivations of all nonnegative (integer) orders inductively as follows. Let N

denote the set of positive integers and N0 = N ∪ {0}.

Definition 1. Let S be a commutative ring and let R be a subring of S. The
zero function on R is the only derivation of order 0. For each n ∈ N, suppose
we have defined derivations of order at most n − 1. If f : R → S is additive,
then f is said to be a derivation of order at most n if there exists a function
B : R × R → S which is a derivation of order at most n − 1 in each variable
such that

f(xy) − xf(y) − f(x)y = B(x, y), x, y ∈ R. (2)

We refer to such a function B as a bi-derivation of order at most n − 1.
For each n ∈ N0 let Dn(R,S) denote the set of all derivations of order at

most n from R into S. If the meaning of R and S are clear we may abbreviate
Dn(R,S) by Dn.

It is evident that the definition of derivation of order at most 1 agrees
with the previous definition of derivation.

The terminology “derivation of order at most n” differs slightly from that
of other papers on this topic. Many authors (including the present one) have
referred to an element of Dn as a derivation of order n, and an element of
Dn\Dn−1 as a nontrivial derivation of order n. In the present paper we say
that an element of Dn is a derivation of order at most n, and an element of
Dn\Dn−1 is a derivation of order n (exactly). The use of the qualifier “at most”
is justified because of the nesting property

D0(R,S) ⊆ D1(R,S) ⊆ · · · ⊆ Dn(R,S) ⊆ · · ·
which holds for any commutative rings R ⊆ S (see for example [4,7]).

One of the primary tools used in [1–3,6] is a basic homogeneity theorem
which permits the separation of Eq. (1) into constituent equations that are
homogeneous of different degrees. As an example, the equation

x3f1(x) + x2f2(x) + x2f3(x2) + xf4(x2) = 0

can be separated into the two equations

x3f1(x) + x2f3(x2) = 0 and x2f2(x) + xf4(x2) = 0

which are homogeneous of degree 4 and degree 3, respectively. Then various
methods can be used to solve these homogeneous equations.
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The fundamental homogeneity theorem (see Lemma 2.2 in [1] or Lemma
3 in [3]) enabling this separation of (1) into homogeneous equations required
that R must be an integral domain of characteristic 0 with field of fractions
S. These restrictions are lifted in the present paper, where we shall prove in
Theorem 4 that R does not need to be an integral domain, nor must it have
characteristic 0. This significantly broadens the applicability of the method.

We observe that an additive function f belongs to Dn if and only if

f(x1x2 · · · xn+1) −
∑

1≤i≤n+1

xif(x1 · · · x̂i · · · xn+1)

+
∑

1≤i<j≤n+1

xixjf(x1 · · · x̂i · · · x̂j · · · xn+1) − · · ·

+ (−1)n
∑

1≤i≤n+1

x1 · · · x̂i · · · xn+1f(xi) = 0,

for all x1, . . . , xn+1 ∈ R. Here the hat ̂ over an argument indicates the
omission of that argument. This fact about derivations is proved by a simple
induction argument as can be found for example in Proposition 4.5 of [1] but
goes back further (cf. [8,10]). We will use this fact freely.

Note that the equation in the previous paragraph can be written more
concisely as

n∑

j=0

(−1)j
∑

card(I)=j

(
∏

i∈I

xi

)
f

⎛

⎝
∏

r∈{1,...,n+1}\I
xr

⎞

⎠ = 0

for all x1, . . . , xn+1 ∈ R, where the second summation is taken over all subsets
of cardinality j of the index set {1, . . . , n + 1}.

Gselmann et al. [6] proved several multivariate characterizations of deriva-
tions and derived from them some of the univariate results proved in [1,2] by
the present author. The authors of [6] also stated that the multivariate charac-
terizations are more effective than their univariate versions for the purpose of
determining precise forms of the unknown functions. While we tend to agree
generally with this statement, it is not universally true as we will demonstrate
with examples.

In the present work we combine several of the results of [1–3] and [6] into a
common framework. The most significant aspect of our paper is the extension
of previous results by the weakening of assumptions on the rings R and S.
In the next section we present a stronger fundamental homogeneity result
(Theorem 4) for equations of the form (1). This new homogeneity theorem is
the foundation for the paper’s main results which appear in the third section.
The fourth and final section contains some remarks and examples.
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2. Fundamental Homogeneity Theorem

Let G and H be commutative semigroups. A map φ : G → H is homogeneous
of degree n ∈ N0 provided that

φ(kx) = knφ(x), x ∈ G, k ∈ N.

In case R and S are rings and φ : R → S, we apply the previous definition
to the additive groups of the rings. It was shown in [1] that if S is an integral
domain of characteristic 0, the functions hj : R → S are homogeneous of
degree j for 0 ≤ j ≤ n, and

n∑

j=0

hj(x) = 0, x ∈ R,

then hj = 0 for each j = 0, 1, . . . , n. That result also applies to functions of
more than one variable.

Here we prove an extension of that result, borrowing from the ideas used
by Gselmann et al. [6]. We will show that for equations of form (1) there is no
need to assume that S is an integral domain nor that S is a vector space over
the field Q of rationals. What is essential is an assumption about divisibility
by sufficiently large positive integers in S.

We use basic facts about multi-additive functions as found for example
in the work [9] of Székelyhidi. Let G and H be commutative semigroups and
n ∈ N. A function A : Gn → H is said to be n-additive if A is a homomorphism
of G into H in each variable. We extend this definition to the case n = 0 by
defining G0 := G and saying that a function A : G0 → H is 0-additive if it
is constant. The diagonalization of an n-additive function A : Gn → H is the
function A∗ : G → H defined by

A∗(x) := A(x, . . . , x), x ∈ G.

Observe that an n-additive function A : Gn → H is homogeneous of degree 1
in each variable; that is,

A(x1, . . . , xj−1, kxj , xj+1, . . . , xn) = kA(x1, . . . , xn), x1, . . . , xn ∈ G, k ∈ N,

for each j ∈ {1, . . . , n}. Its diagonalization A∗ is homogeneous of degree n:

A∗(kx) = knA(x), x ∈ G, k ∈ N.

If G is a commutative semigroup, H is a commutative group, and y ∈ G,
then the difference operator Δy acting on a function f : G → H is defined by

Δyf(x) := f(x + y) − f(x), x ∈ G.

Two results of fundamental importance in the theory of multi-additive
symmetric functions are the polarization formula, which is next, and the corol-
lary which follows it.
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Proposition 2. Let G be a commutative semigroup, H a commutative group,
and n ∈ N0. If A : Gn → H is n-additive and symmetric, then for all
y1, . . . , ym ∈ G we have

Δy1,...,ym
A∗ =

{
n!A(y1, . . . , yn) for m = n

0 for m > n.

Corollary 3. Let G be a commutative semigroup, H a commutative group, and
n ∈ N0. Suppose multiplication by n! is either surjective in G or injective in
H. If A : Gn → H is n-additive and symmetric, then A∗ = 0 implies A = 0.

Now we use these tools to construct an improved homogeneity theorem
for equations of form (1). For convenience of notation we adopt the convention
that x0 = 1 for all x ∈ R. We also abbreviate the double subscripted objects
pj,k and fj,k respectively as pjk and fjk.

Theorem 4. Let n ∈ N0, let S be a commutative ring with subring R, and let
multiplication by n! be bijective in S. For each j ∈ {0, . . . , n}, let mj ∈ N0 and
suppose hj : R → S has the form

hj(x) =
mj∑

k=1

xpjkfjk(xj−pjk), x ∈ R, (3)

where fjk : R → S is additive and pj1 . . . , pjmj
∈ {0, . . . , j}. If

n∑

j=0

hj = 0,

then hj = 0 for every j ∈ {0, . . . , n}.
Proof. The proof is by induction on n. For n = 0 there is nothing to prove.
Now let N ∈ N, suppose the statement is true for 0 ≤ n ≤ N − 1, and let S be
a commutative ring with subring R such that multiplication by N ! is bijective
in S. Also suppose for each 0 ≤ j ≤ N that hj has the form (3) and

N∑

j=0

hj = 0. (4)

Define for each j ∈ {0, . . . , N} the function Φj : Rj → S by

Φj(x1, . . . , xj) :=
mj∑

k=1

1(
j

pjk

)
∑

card(I)=pjk

(
∏

i∈I

xi

)
fjk

⎛

⎝
∏

r∈{1,...,j}\I
xr

⎞

⎠

for all x1, . . . , xj ∈ R, where the second summation is taken over all subsets of
cardinality pjk of the index set {1, . . . , j}. This definition is possible because
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of the bijectivity of multiplication by N ! in S. By the additivity of fjk, for
each j the function Φj is a symmetric j-additive function with diagonal

Φ∗
j (x) = Φj(x, . . . , x) =

mj∑

k=1

xpjkfjk(xj−pjk) = hj(x), x ∈ R.

Thus by hypothesis we have
N∑

j=0

Φ∗
j = 0.

Now for any y1, . . . , yN ∈ R, applying Δy1,...,yN
to the previous equation

we get by the polarization formula (Proposition 2)

0 = Δy1,...,yN

N∑

j=0

Φ∗
j = Δy1,...,yN

Φ∗
N = N !ΦN (y1, . . . , yn).

Since multiplication by N ! is injective in S is we conclude that ΦN = 0. Hence
hN = Φ∗

N = 0 and Eq. (4) reduces to
N−1∑

j=0

hj = 0.

By the inductive hypothesis the proof is finished. �

This theorem, which we will call the Fundamental Homogeneity Theorem,
allows us to restrict our attention to homogeneous functional equations of the
form (1). That is, we need only consider such equations in which there is an
h ∈ N0 with pk+qk = h for all 1 ≤ k ≤ n, since any non-homogeneous equation
of form (1) can be decomposed into a set of such homogeneous equations.

We will see also in the next section that both the Fundamental Homo-
geneity Theorem itself and the idea of its proof enable us to strengthen many
known results about functional equations characterizing derivations.

3. Main Results

In this section we combine and extend known results from [1–3,6] by weakening
the assumptions on R and S.

The first result strengthens Proposition 5 of [3], where it was stated for
the case that R is an integral domain of characteristic zero and S is the fraction
field of R (see also Corollary 2 in [6]). Here we do not assume that R is an
integral domain, and we allow rings of sufficiently large finite characteristic.

Theorem 5. Let n ∈ N, let S be a commutative ring with subring R, and
suppose f : R → S is additive. Also suppose multiplication by (n+1)! is either
surjective in R or injective in S. Then f ∈ Dn if and only if
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n∑

j=0

(−1)j
(

n + 1
j

)
xjf(xn+1−j) = 0, x ∈ R. (5)

Proof. First suppose Eq. (5) holds and define Φ : Rn+1 → S by

Φ(x1, . . . , xn+1) :=
n∑

j=0

(−1)j
∑

card(I)=j

(
∏

i∈I

xi

)
f

⎛

⎝
∏

r∈{1,...,n+1}\I
xr

⎞

⎠

for all x1, . . . , xn+1 ∈ R, where the second summation is taken over all subsets
of cardinality j of the index set {1, . . . , n + 1}. Then Φ is (n + 1)-additive and
symmetric. Moreover

Φ∗(x) = Φ(x, . . . , x) =
n∑

j=0

(−1)j
(

n + 1
j

)
xjf(xn+1−j) = 0

for all x ∈ R. Thus by Corollary 3 we get Φ = 0, hence f ∈ Dn.
Conversely, if f ∈ Dn then Φ = 0, so Φ∗ = 0 and therefore f satisfies

(5). �
We illustrate with an example on a ring of finite characteristic.

Example 6. Let K be a finite field of order q = pr where r ∈ N and p is a
prime number larger than n + 1. Consider the polynomial ring R = K[x], and
let S = R. Then char(R) = char(K) = p > n + 1. Therefore multiplication
by (n + 1)! is bijective in R, hence f : R → R satisfies Eq. (5) if and only if
f ∈ Dn.

The next result generalizes Theorem 5 from [2], where it was stated for the
case that R is an integral domain with char(R) = 0. It also extends Corollary
4 and Theorem 5 in [6], where it is stated for the case when R is a linear space
over Q and S = R.

Theorem 7. Let n ∈ N, let S be a commutative ring with subring R, and
suppose fi : R → S is additive with fi(1) = 0 for each i ∈ {1, . . . , n + 1}. In
addition suppose multiplication by (n+1)! is bijective in S. Then the following
are equivalent:

n∑

j=0

xjfn+1−j(x
n+1−j) = 0, x ∈ R. (6)

n∑

j=0

1
(n+1

j

)
∑

card(I)=j

(
∏

i∈I

xi

)
fn+1−j

⎛

⎝
∏

r∈{1,...,n+1}\I
xr

⎞

⎠ = 0, x1, . . . , xn+1 ∈ R.

(7)

fn+1−j = (−1)j
j∑

k=0

(n+ 1 − j + k

k

)
dn−j+k (0 ≤ j ≤ n), (8)

where dn−j+k ∈ Dn−j+k.
In short, f1, . . . , fn+1 satisfy (6) or (7) if and only if each fi ∈ Dn.
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Proof. We prove (6) ⇒ (7) ⇒ (8) ⇒ (6). Suppose f1, . . . , fn+1 are additive
functions with fi(1) = 0 such that (6) holds. We define Φ : Rn+1 → S by

Φ(x1, . . . , xn+1) :=
n∑

j=0

1(
n+1
j

)
∑

card(I)=j

(
∏

i∈I

xi

)
fn+1−j

⎛

⎝
∏

r∈{1,...,n+1}\I
xr

⎞

⎠

for all x1, . . . , xn+1 ∈ R, where the second summation is taken over all subsets
of cardinality j of the index set {1, . . . , n + 1}. Then Φ is (n + 1)-additive and
symmetric. As in the proof of the previous theorem this leads immediately to
Φ∗ = 0 and thence to Φ = 0 which is (7).

The equation Φ = 0 [that is (7)] is solved in Theorem 5 of [6] under the
assumption that S is a linear space over Q, however an examination of the
proof shows that it only requires the ability to divide uniquely by (n + 1)! in
S. The solution is exactly of the form (8).

The implication (8) ⇒ (6) is a straightforward computation. �

From this we get the following corollary, which encompasses Theorem 4.8
of [1] together with Theorem 4 and Corollary 3 of [6]. The second half of this
result is proved in [1,6] for the case R = S = an integral domain of character-
istic 0. The new thing here is the case of integral domains of sufficiently large
finite characteristic.

Corollary 8. Let n ∈ N, let S be a commutative ring with subring R, and
suppose multiplication by (n+1)! is bijective in S. Suppose also that f : R → S
is additive with f(1) = 0. If there exist constants a1, . . . , an+1 ∈ S such that f
satisfies either

n∑

j=0

an+1−jx
jf(xn+1−j) = 0, x ∈ R, (9)

or
n∑

j=0

an+1−j(
n+1
j

)
∑

card(I)=j

(
∏

i∈I

xi

)
f

⎛

⎝
∏

r∈{1,...,n+1}\I
xr

⎞

⎠=0, x1, . . . , xn+1∈R,

(10)
then aif ∈ Dn for each i ∈ {1, . . . , n + 1}, with

n+1∑

k=1

kakf = 0. (11)

Now suppose in addition that R is an integral domain and S is the field
of fractions of R. Then the following are equivalent:
(i) f ∈ Dn.
(ii) f satisfies (9) with at least one of the constants a1, . . . , an+1 nonzero.
(iii) f is a solution of (10) with at least one of the constants a1, . . . , an+1

nonzero.
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Moreover if f �= 0 then we also have
n+1∑

k=1

kak = 0.

Proof. Suppose there exist constants a1, . . . , an+1 ∈ S such that either (9) or
(10) holds. Defining fi := aif for 1 ≤ i ≤ n + 1, we get respectively Eqs. (6)
or (7). So by Theorem 7 we have

an+1−jf = (−1)j
j∑

k=0

(
n + 1 − j + k

k

)
dn−j+k (12)

for 0 ≤ j ≤ n, where di ∈ Di for each i ∈ {0, . . . , n}. In particular, aif ∈ Dn

for each i. The appropriate weighted sum of Eq. (12) for 0 ≤ j ≤ n yields (11)
in a straightforward calculation.

For the second part, suppose also that R is an integral domain, S is
the field of fractions of R, and at least one of the constants a1, . . . , an+1 is
nonzero. We get immediately (ii) ⇒ (i) and (iii) ⇒ (i) from the first part. For
the reverse implications we put an+1−j = (−1)j for each j. Theorem 5 shows
that (i) ⇒ (ii), and (i) ⇒ (iii) is verified by a simple inductive argument using
the definition of Dn as noted in the Introduction. �

Also we have the following generalization of Theorem 7 in [3]. It demon-
strates how the degrees of the derivations in the solution are reduced when
an equation has “gaps,” i.e. missing terms. Specifically, if there are only m
nonzero terms in Eq. (13) below, then each fi is a derivation of order at most
m − 1.

Theorem 9. Let n,m ∈ N with m ≤ n, let S be a commutative ring with subring
R, and suppose multiplication by (n + 1)! is bijective in S. Suppose also that
fi : R → S is additive and fi(1) = 0 for i ∈ I, where I ⊂ {1, . . . , n + 1} with
card(I) = m. If ∑

i∈I

xifi(xn+1−i) = 0, x ∈ R, (13)

then fi ∈ Dm−1 for each i ∈ I.

Proof. We follow the path of the proof of Theorem 7 in [3], making only two
changes: (i) we replace each reference to Proposition 4 in [3] by a reference to
Theorem 7 above, and (ii) we take ci = 0 for every i in the proof of Theorem
7 since we are now assuming fi(1) = 0. �

4. Further Remarks

Theorem 7, Corollary 8, and Theorem 9 also have their counterparts when it
is not assumed that the unknown additive functions vanish at the unity of R.
We state one of these counterparts here.
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Remark 10. In the setup of Theorem 7, assume only that each fi : R → S
is an additive solution of (6) or (7), but not that fi(1) = 0. Then we define
f̃i : R → S by

f̃i(x) := fi(x) − xfi(1), x ∈ R, 1 ≤ i ≤ n + 1,

so each f̃i is additive and vanishes at 1. By Theorem 7 we find that f̃i has the
form (8), so fi has the form

fn+1−j(x) = (−1)j
j∑

k=0

(
n + 1 − j + k

k

)
dn−j+k(x) + cn−j+k · x, (0 ≤ j ≤ n)

where dn−j+k ∈ Dn−j+k and cn−j+k := fn−j+k(1). Furthermore the constants
ci must satisfy

n+1∑

i=1

ci = 0.

The counterparts of Corollary 8 and Theorem 9 are analogous.
For equations with missing powers (i.e. (13) where I �= {1, . . . , n + 1})

Gselmann et al. [6] introduced a multivariate method in which they first ex-
pand the equation so that it has as many free variables as the degree of ho-
mogeneity, and then substitute the value 1 as many times as the number of
missing powers. They state that the multivariate version provides a “more
effective and subtle way” [than the univariate version] to determine the struc-
ture of the unknown functions. We claim that this is not always the case, and
the relative efficiency of one method as compared to another method depends
on the functional equation. In particular, the univariate method (specifically
Theorem 9) seems to be at least as efficient and perhaps simpler for sparse
equations (i.e. equations where card(I) is very small). We illustrate with three
examples.

Example 11. Let S be a commutative ring with subring R, and let multiplica-
tion by 6 be bijective in S. Suppose f, g : R → S are additive functions such
that f(1) = g(1) = 0 and

f(x3) + x2g(x) = 0, x ∈ R. (14)

By Theorem 9 we get immediately that f, g ∈ D1, so Eq. (14) reduces to

x2(3f(x) + g(x)) = 0.

Applying Theorem 9 once more we have 3f + g = 0 (since 3f + g ∈ D0) and
the solution is

f ∈ D1, g = −3f.

For comparison, the solution by the multivariate method is given in Ex-
ample 5 of [6].
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Example 12. Let S be a commutative ring with subring R, and suppose mul-
tiplication by 17! is bijective in S. Suppose f, g : R → S are additive functions
such that f(1) = g(1) = 0 and

f(x17) + x4g(x13) = 0, x ∈ R. (15)

By Theorem 9 we get immediately that f, g ∈ D1, so Eq. (15) reduces to

x16(17f(x) + 13g(x)) = 0.

Applying Theorem 9 once more we have 17f + 13g = 0 and the solution is

f ∈ D1, g = −17
13

f.

For comparison we give also the solution by the multivariate method.
Since the equation is of degree 17 we introduce 17 free variables and expand
(15) to the multivariate equation

f(x1 · · · x17) +
∑

card(J)=4

1(
17
4

)

⎛

⎝
∏

j∈J

xj

⎞

⎠ g

⎛

⎝
∏

k∈{1,...,17}\J
xk

⎞

⎠ = 0,

for all x1, . . . , x17 ∈ R, where the summation is taken over all four-element
subsets of the index set {1, . . . , 17}. Since there are 15 missing powers in (15),
we set 15 of the variables equal to 1 and set the remaining variables equal to
each other. Say x1 = x2 = x and x3 = · · · = x17 = 1. The result is

f(x2) +
1(
17
4

)
[
2
(

15
3

)
xg(x) +

(
15
4

)
g(x2)

]
= 0,

which simplifies to
[
f(x2) +

39
68

g(x2)
]

+
13
34

xg(x) = 0.

According to Theorem 7 the solution of this equation is

f +
39
68

g = d1 ∈ D1,
13
34

g = −2d1,

from which it follows that

f = 4d1, g = −68
13

d1.

This solution is clearly equivalent to the one found by the univariate method.

Example 13. Let S be a commutative ring with subring R, and suppose multi-
plication by 5! is bijective in S. Suppose f, g, h : R → S are additive functions
such that f(1) = g(1) = h(1) = 0 and

f(x5) + xg(x4) + x4h(x) = 0, x ∈ R. (16)
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By Theorem 9 we get immediately that f, g, h ∈ D2, so let us put f = d2 ∈ D2.
We also use Corollary 6 from [3] which shows how to express d(xn) for any
n > 2 in terms of d(x2) and d(x) when d ∈ D2. The results are

f(x5) = d2(x5) = 10x3d2(x2) − 15x4d2(x),

g(x4) = 6x2g(x2) − 8x3g(x).

Substituting these into (16) and rearranging we get

x3(10d2 + 6g)(x2) + x4(h − 8g − 15d2)(x) = 0.

Applying Theorem 9 to this equation we find that

10d2 + 6g = d1 ∈ D1,

h − 8g − 15d2 = −2d1.

Simple calculations lead to the solution

f = d2,

g = −5
3
d2 +

1
6
d1,

h =
5
3
d2 − 2

3
d1.

For comparison, the solution by the multivariate method is given in Ex-
ample 6 of [6]. The two solutions are in agreement via the correspondence
(D1,D2) = (− 3

2d1,
5
3d2 + 1

3d1).

We close with a small curiosity.

Remark 14. In [5] Gselmann observed that most characterizations of deriva-
tions require a pair of functional equations. She proved an alienation-type the-
orem and from that produced a single functional equation that characterizes
derivations on fields. Here we present a single functional equation characteriz-
ing derivations on (not necessarily commutative) rings.

Let S be a ring with subring R, and suppose f : R → S is any function
satisfying the functional equation

f(xy + z) = xf(y) + f(x)y + f(z), x, y, z ∈ R. (17)

Putting x = 1 here we have

f(y + z) = f(y) + f(1)y + f(z), y, z ∈ R.

Since addition is commutative in any ring this means

f(y) + f(1)y + f(z) = f(z) + f(1)z + f(y), y, z ∈ R,

therefore f(1)y = f(1)z. Taking y = 1 and z = 0 we get that f(1) = 0, thus f
is additive. Now Eq. (17) reduces to the Leibniz (or product) rule

f(xy) = xf(y) + f(x)y, x, y ∈ R,

hence f ∈ D1.
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