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Abstract. We consider nonlinear integral equations of a special type that
appear in the inverse spectral theory of integral and integro-differential
operators. We generalize the approach for solving equations of this type
by introducing some abstract nonlinear equation and proving its global
solvability. Moreover, we establish the uniform stability of such nonlinear
equations.
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1. Introduction

Consider the nonlinear integral equation

f(x) =
∞∑

n=1

(
ψn(x)y∗n(x) +

∫ x

0

Ψn(x, t)y∗n(t) dt
)
, 0 < x < b, (1)

where y(x) is an unknown function and

y∗1(x) = y(x), y∗(n+1)(x) = y∗n ∗ y(x) =
∫ x

0

y∗n(t)y(x − t) dt, n ≥ 1,

while f(x) and ψn(x), Ψn(x, t), n ≥ 1, are some known square-integrable
functions. This equation appears in the inverse spectral theory of integral and
integro-differential operators (see [1–3,5,10,11] and the references therein). In
particular, in [1] (see also [2]) it was proved that, under natural assumptions
on the functional sequences {ψn(x)}, {Ψn(x, t)} and the equality ψ1(x) = 1,
Eq. (1) has a unique solution y(x) ∈ L2(0, b) for each left-hand side f(x) ∈
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L2(0, b). In other words, Eq. (1) possesses a global unique solution. We note
that in concrete applications to the inverse spectral theory the coefficient ψ1(x)
usually equals to b − x, i.e., in addition to the nonlinearity, Eq. (1) is com-
plicated also by the singularity at the end of the interval. In this situation
one can guaranty, generally speaking, only the local square integrability of the
solution, namely, y(x) ∈ L2(0, β) for each β ∈ (0, b). However, in concrete
cases (see, e.g., [1–3]) using additional properties of the functions ψn(x) and
Ψn(x, t), inspired by the specifics of the problem, one can establish that the
solution belongs to an appropriate weighted space, e.g., (b−x)y(x) ∈ L2(0, b).

Furthermore, the works [4,12,13] deal with more general nonlinear equa-
tions, which cannot be represented in the form (1), i.e. as a series with convo-
lution powers of the unknown function. In this ”non-convolutional” case the
global solvability has been also established. Moreover, in [6,7,9] in connec-
tion with inverse spectral problems for integro-differential Dirac systems there
arose a vectorial analog of Eq. (1).

The goal of the present paper is twofold. Firstly, we introduce an abstract
equation generalizing Eq. (1) as well as all the cases having appeared in [1–7,9–
13], including the vectorial and ”non-convolutional” ones, and prove its global
solvability and uniform stability with respect to the left-hand side. Secondly,
applying the obtained results to the vectorial analog of Eq. (1), we establish its
global solvability along with the uniform full stability (i.e. the uniform stability
with respect to all components of the equation). We note that the stability of
nonlinear equations of this type has not been previously studied even in simple
situations.

Now let us clarify the key notions. For this purpose we consider the
equation

f = Py, (2)

where P : R1 → R2 is some operator, Rk is a metric space with the metric
ρk( · , · ), k = 1, 2. For definiteness, we assume that P is an injection, i.e. Eq.
(2) has at most one solution. Equation (2) is called locally solvable if the image
set PR1 is open in R2. In particular, (2) is called solvable globally if PR1 = R2,
i.e. if P is a surjection. Assuming the local solvability of (2), we say that it
is stable, if for any fixed ỹ ∈ R1 we have ρ1(y, ỹ) → 0 as ρ2(f,P ỹ) → 0. A
stronger and more useful version of stability involves an estimate of ρ1(y, ỹ)
via ρ2(f,P ỹ), e.g., when for any ỹ ∈ R1 there exist positive δ = δ(ỹ,P) and
C = C(ỹ,P) such that for all f ∈ R2, obeying ρ2(f, f̃) ≤ δ with f̃ = P ỹ, the
following estimate holds:

ρ1(y, ỹ) ≤ Cρ2(f, f̃), (3)

where y is the solution of (2). Further, assuming the global solvability of (2),
we call Eq. (2) uniformly stable, if for arbitrary fixed R > 0 and g ∈ R2, and
for f, f̃ ∈ R2 estimate (3) holds with C = C(P, g, R) (i.e. depending only on
P, g and R) as soon as ρ2(f, g) ≤ R and ρ2(f̃ , g) ≤ R. Here ỹ is the solution of
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the equation f̃ = P ỹ, while y is the one of (2). The mentioned stabilities are
ones with respect to the left-hand side of Eq. (2). Full stability applies, when
the solution of (2) is stable also with respect to some perturbations of P.

The paper is organized as follows. In the next section we introduce an
abstract nonlinear equation, generalizing (1), and prove its global solvability
(Theorem 1). In Sect. 3 we establish the uniform stability of this abstract
equation with respect to its left-hand side (Theorem 2). In Sects. 4 and 5 we
use the results obtained in Sects. 2 and 3 for proving the global solvability
(Theorem 3) and the uniform full stability (Theorem 4) of the vectorial analog
of Eq. (1).

2. The Abstract Nonlinear Equation

Fix N ≥ 1 and consider the space HN (a, b) := (L2(a, b))N of vector-functions
y(x) = (yν(x))ν=1,N , a < x < b, with the norm

‖y‖HN (a,b) := max
ν=1,N

‖yν‖L2(a,b). (4)

Denote Δa,b := {(x, t) : a < t < x < b} and consider also the space HN (a, b) :=
(L2(Δa,b))N2

of matrix-functions K(x, t) = (Kνj(x, t))ν,j=1,N , a < t < x < b,
with the norm

‖K‖HN (a,b) := max
ν=1,N

N∑

j=1

‖Kνj‖L2(Δa,b), (5)

‖Kνj‖L2(Δa,b) =

√∫ b

a

dx

∫ x

a

|Kνj(x, t)|2 dt.

We also put ‖·‖a := ‖·‖L2(0,a), ‖·‖ā := ‖·‖HN (0,a) and Ba,r := {y ∈ HN (0, a) :
‖y‖ā ≤ r}.

In this section we establish the global solvability of the nonlinear equation

f(x) = y(x) + Dy(x), 0 < x < b, (6)

in the space HN (0, b), where D is a nonlinear operator of the special class
introduced in the following definition.

Definition 1. We say that the operator D = (Dν)ν=1,N : HN (0, b) → HN (0, b)
belongs to the class Eb,N , if the following four conditions are fulfilled:

(i) For each vector-function y(x) ∈ HN (0, b) and for each number γ ∈ (0, b)
the image vector-function Dy(x) on the interval (0, γ) does not depend
on values of y(x) on (γ, b);

(ii) For all R > 0 and r > 0 there exists δ ∈ (0, b] such that D : Bδ,R → Bδ,r;
(iii) For all R > 0 and α > 0 there exists δ ∈ (0, b] such that

‖Dy − Dỹ‖δ̄ ≤ α‖y − ỹ‖δ̄

for all functions y(x), ỹ(x) ∈ Bδ,R;
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(iv) For all δ ∈ (0, b/2] and y(x) ∈ HN (0, 2δ) the following representation
holds:

Dνy(x) = Dνy(1)(x) +
N∑

j=1

∫ x

δ

Kδ,νj(x, t; y(1))y(2)j(t) dt, 0 < x < 2δ, ν = 1, N,

(7)
where Kδ(x, t; y(1)) := (Kδ,νj(x, t; y(1)))ν,j=1,N ∈ HN (δ, 2δ), y(j)(x) =
(y(j)ν(x))ν=1,N ∈ HN (0, 2δ),

y(1)(x) =
{

y(x), x ∈ (0, δ),
0, x ∈ (δ, 2δ), y(2)(x) =

{
0, x ∈ (0, δ),
y(x), x ∈ (δ, 2δ), (8)

and the matrix-function Kδ(x, t; y(1)) does not depend on y(2)(x).
Moreover, we say that D ∈ E ′

b,N , if D ∈ Eb,N and for all δ ∈ (0, b/2]
the HN (δ, 2δ)-norm of the kernel Kδ(x, t; y(1)) determined in (iv) is a bounded
(nonlinear) functional on y(1), i.e.

CD,δ(r) := sup
‖y‖δ̄≤r

‖Kδ(x, t; y)‖HN (δ,2δ) < ∞, r ≥ 0. (9)

Remark 1. In conditions (ii)–(iv) of Definition 1 one and the same symbol
D denotes the natural extensions of the operator D to the spaces HN (0, β),
β ∈ (0, b), which, by virtue of condition (i), are determined uniquely.

Remark 2. It is easy to check that for each operator D ∈ Eb,N in conditions (ii)
and (iii) of Definition 1 one can take any sufficiently small δ > 0. In other
words, these conditions can be represented in the following equivalent form:
(ii′) For all R, r > 0 there exists δ ∈ (0, b] such that D : Bδ1,R → Bδ1,r for all

δ1 ∈ (0, δ].
(iii′) For all R > 0 and α > 0 there exists δ ∈ (0, b] such that

‖Dy − Dỹ‖δ1
≤ α‖y − ỹ‖δ1

for each δ1 ∈ (0, δ] and for all functions y(x), ỹ(x) ∈ Bδ1,R.

Indeed, let y(x), ỹ(x) ∈ Bδ1,R for a certain δ1 ∈ (0, δ]. Put

yc(x) :=
{

y(x), x ∈ (0, δ1),
0, x ∈ (δ1, δ),

ỹc(x) :=
{

ỹ(x), x ∈ (0, δ1),
0, x ∈ (δ1, δ).

Then, obviously, yc(x), ỹc(x) ∈ Bδ,R. According to (ii), we have Dyc(x) ∈ Bδ,r.
On the other hand, by virtue of (i), we get

‖Dy‖δ1
= ‖Dyc‖δ1

≤ ‖Dyc‖δ̄ ≤ r,

i.e. (ii′) is proven. Further, according to (iii), we have

‖Dyc − Dỹc‖δ̄ ≤ α‖yc − ỹc‖δ̄ = α‖y − ỹ‖δ1
.

On the other hand, by virtue of (i) we get

‖Dy − Dỹ‖δ1
= ‖Dyc − Dỹc‖δ1

≤ ‖Dyc − Dỹc‖δ̄ ≤ α‖y − ỹ‖δ1

and we arrive at (iii′).
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The following theorem gives the global solvability of Eq. (6), when D is
an operator of the class Eb,N .

Theorem 1. Let f(x) ∈ HN (0, b) and D ∈ Eb,N . Then Eq. (6) has a unique
solution y(x) ∈ HN (0, b).

Proof. By virtue of condition (i) in Definition 1, one can solve Eq. (6) by steps,
i.e. first find its solution on (0, γ) for some γ ∈ (0, b) and then seek it on (γ, b).

Consider the operator Φy(x) := f(x) − Dy(x). Choose δ > 0 so that
‖f‖δ̄ ≤ 1 and conditions (ii), (iii) in Definition 1 are met for R = 2, r = 1 and
some α ∈ (0, 1). Under these settings the operator Φ maps Bδ,2 into Bδ,2 and
is a contracting mapping in Bδ,2. Then, by virtue of the contracting mappings
principle, Eq. (6) has a unique solution on the interval (0, δ) that belongs to
the ball Bδ,2.

Further, let for some δ ∈ (0, b/2] a solution of Eq. (6) has been already
found on the interval (0, δ). Then we look for a solution on (0, 2δ) in the form
y(x) = y(1)(x) + y(2)(x), where y(1)(x) = (y(1)ν(x))ν=1,N = 0 on (δ, 2δ) and
y(2)(x) = (y(2)ν(x))ν=1,N = 0 on (0, δ). Thus, according to condition (iv) in
Definition 1, Eq. (6) for x ∈ (δ, 2δ) takes the form

ξν(x) = y(2)ν(x) +
N∑

j=1

∫ x

δ

Kδ,νj(x, t; y(1))y(2)j(t) dt, δ < x < 2δ, ν = 1, N,

(10)
where (ξν(x))ν=1,N = Φy(1)(x) ∈ HN (δ, 2δ) and (Kδ,νj(x, t; y(1)))ν,j=1,N ∈
HN (δ, 2δ) are known functions, which are independent of y(2)(x). Equation
(10) has a unique solution y(2)(x) ∈ HN (δ, 2δ). Thus, we established that
a solution of Eq. (6) on the interval (0, δ) can be uniquely extended to the
interval (δ, 2δ). Continuing this process, in a finite number of steps we find a
solution y(x) ∈ HN (0, b) of Eq. (6) on the entire interval (0, b).

Let us show that this solution y(x) is unique. Indeed, let
ỹ(x) = (ỹν(x))ν=1,N ∈ HN (0, b) be another solution. Then, according to the
first our choice of δ, for some δ1 ∈ (0, δ) the both solutions y(x) and ỹ(x) on
(0, δ1) belong to the ball Bδ1,2 and, hence, by virtue of Remark 2 and the con-
tracting mappings principle, y(x) = ỹ(x) a.e. on (0, δ1). In view of uniqueness
of the continuation of solution to (δ1, b), they will coincide a.e. on (0, b). �

Remark 3. One can see that Theorem 1 would hold also if in conditions (ii) and
(iii) of Definition 1 one required only any fixed R and r such that R > r > 0
and any fixed α ∈ (0, 1). However, requiring arbitrary R allows one to prove
the uniform stability of equation (2) (for D ∈ E ′

b,N satisfying Condition A, see
Sect. 3). Moreover, the arbitrariness of r and α allows the class Eb,N to be
closed with respect to the linear operations (see also [13]).
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3. Uniform Stability of the Abstract Equation

In this section we prove the uniform stability of Eq. (6) with respect to its
left-hand side, when the operator D belongs to E ′

b,N and satisfies the following
additional condition.

Condition A. For each pair of functions (y, ỹ) ∈ (HN (0, b))2 there exists a
matrix-function P ( · , · ; y, ỹ) = (Pνj( · , · ; y, ỹ))ν,j=1,N ∈ HN (0, b) such that
the following relation holds:

Dνy(x) − Dν ỹ(x) =
N∑

j=1

∫ x

0

Pνj(x, t; y, ỹ)ŷj(t) dt, 0 < x < b, ν = 1, N,

(11)
where ŷj(x) = yj(x) − ỹj(x), j = 1, N, and the HN (0, b)-norm of this function
P (x, t; y, ỹ) is a bounded (nonlinear) functional on the pair (y, ỹ), i.e.

CPD (r) := sup
max{‖y‖b̄,‖ỹ‖b̄}≤r

‖P (x, t; y, ỹ)‖HN (0,b) < ∞, r ≥ 0. (12)

For the future needs, we provide the stability in the case, when the op-
erator D is not fixed but belongs to some fixed set D. For this purpose we
introduce the following two definitions.

Definition 2. We say that D is an uniform subset of E ′
b,N , if D ⊂ E ′

b,N and
additionally the following three conditions are fulfilled:

(ii+) For all R > 0 there exist R1 > R and δ ∈ (0, b] such that D : Bδ,R1 →
Bδ,R1−R for any D ∈ D;

(iii+) For all R > 0 there exist α ∈ (0, 1) and δ ∈ (0, b] such that

‖Dy − Dỹ‖δ̄ ≤ α‖y − ỹ‖δ̄

for any operator D ∈ D and for all functions y(x), ỹ(x) ∈ Bδ,R;
(iv+) For D ∈ D the functions CD,δ(r) determined in (9) are uniformly ma-

jorated by some nondecreasing function, i.e.

CD,δ(r) := sup
D∈D

CD,δ(r) < ∞, r ≥ 0, δ ∈
(
0,

b

2

]
. (13)

Definition 3. Let D be a set of operators D, satisfying Condition A. We say
that the set D uniformly satisfies Condition A, if

CPD
(r) := sup

D∈D
CPD (r) < ∞, r ≥ 0, (14)

and the set {D0 : D ∈ D} is bounded.

The following theorem gives the uniform stability of Eq. (6) with respect
to the left-hand side, when the operator D belongs to a fixed uniform subset
D of E ′

b,N , uniformly satisfying Condition A.
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Theorem 2. Fix R > 0 and let ‖f‖b̄, ‖f̃‖b̄ ≤ R. Let also D be an uniform
subset of E ′

b,N , uniformly satisfying Condition A.

Then there exists a constant C = C(R,D) such that for all D ∈ D the
estimate

‖ŷ‖b̄ ≤ C‖f̂‖b̄ (15)

holds, where f̂(x) = f(x) − f̃(x) and ŷ(x) = y(x) − ỹ(x), while y(x) is the
solution of Eq. (6) and ỹ(x) is the one of the equation

f̃(x) = ỹ(x) + Dỹ(x), 0 < x < b. (16)

Before proceeding directly to the proof, let us provide the following three
auxiliary assertions.

Lemma 1. Let K(x, t) = (Kνj(x, t))ν,j=1,N ∈ HN (a, b) be the kernel of the
Volterra linear integral operator K = (Kν)ν=1,N : HN (a, b) → HN (a, b) acting
by the formula

Kνy(x) =
N∑

j=1

∫ x

a

Kνj(x, t)yj(t) dt, a < x < b, ν = 1, N.

Then for the resolvent kernel R(x, t) = (Rνj(x, t))ν,j=1,N , i.e. for the
kernel of the integral operator R = (Rν)ν=1,N := (I +K)−1 − I, where I is the
identity operator and

Rνy(x) =
N∑

j=1

∫ x

a

Rνj(x, t)yj(t) dt, a < x < b, ν = 1, N,

the estimate
‖R‖HN (a,b) ≤ F

(
‖K‖HN (a,b)

)
(17)

holds with some nondecreasing function F ( · ) : [0,∞) → [0,∞) independent of
K(x, t).

Proof. is analogous to the scalar case N = 1 (see [14]). For convenience of
the reader, we briefly provide the arguments for arbitrary N. Obviously, the
resolvent kernel R(x, t) satisfies the linear integral equation

Rνj(x, t) = −Kνj(x, t) −
N∑

s=1

∫ x

t

Kνs(x, τ)Rsj(τ, t) dτ,

a < t < x < b, ν, j = 1, N.

The method of successive approximations gives Rνj(x, t) =
∑∞

n=1
R

(n)
νj (x, t),

ν, j = 1, N, where

R
(1)
νj (x, t) = −Kνj(x, t), R

(n+1)
νj (x, t) = −

N∑

s=1

∫ x

t

Kνs(x, τ)R(n)
sj (τ, t) dτ,

a < t < x < b.
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Having put

Aν(x) :=

√√√√
N∑

s=1

∫ x

a

|Kνs(x, τ)|2 dτ , ν = 1, N,

Bj(t) :=

√√√√
N∑

s=1

∫ b

t

|Ksj(τ, t)|2 dτ, j = 1, N,

F0(x, t) := 1, Fk+1(x, t) :=
N∑

ν=1

∫ x

t

A2
ν(τ)Fk(τ, t) dτ, k ≥ 0,

by induction we get

Fk(x, t) ≤ F k
1 (x, t)
k!

, k ≥ 0, |R(n)
νj (x, t)|2 ≤ A2

ν(x)B2
j (t)Fn−2(x, t),

ν, j = 1, N, n ≥ 2.

Since F1(x, t) ≤ N‖K‖2
HN (a,b) for a ≤ t ≤ x ≤ b and

∫ b

a

A2
ν(x) dx =

N∑

s=1

‖Kνs‖2
H1(a,b) ≤ ‖K‖2

HN (a,b), ν = 1, N

∫ b

a

B2
j (t) dt =

N∑

s=1

‖Ksj‖2
H1(a,b), j = 1, N,

we arrive at

‖R
(n)
νj ‖H1(a,b) ≤ (‖K‖HN (a,b)

√
N)n−2

√
(n − 2)!

‖K‖HN (a,b)

N∑

s=1

‖Ksj‖H1(a,b),

ν, j = 1, N, n ≥ 2.

This yields

‖Rνj‖H1(a,b) ≤ ‖Kνj‖H1(a,b) + ‖K‖HN (a,b)

N∑

s=1

‖Ksj‖H1(a,b)

×
∞∑

n=0

(‖K‖HN (a,b)

√
N)n

√
n!

, ν, j = 1, N,

and, hence,

‖R‖HN (a,b) ≤ ‖K‖HN (a,b) +
∞∑

n=0

(‖K‖HN (a,b)

√
N)n+2

√
n!

,

which finishes the proof. �
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According to the proof of Lemma 1, in (17) one can take

F (x) = x +
∞∑

n=0

(x
√

N)n+2

√
n!

.

Lemma 2. Any nonlinear operator D, satisfying Condition A, is bounded, i.e.

CD(r) := sup
‖y‖b̄≤r

‖Dy‖b̄ < ∞, r ≥ 0. (18)

Moreover, if a set D uniformly satisfies Condition A, then

CD(r) := sup
D∈D

CD(r) < ∞, r ≥ 0. (19)

Proof. By virtue of (11), we get

Dνy(x) = Dν0(x) +
N∑

j=1

∫ x

0

Pνj(x, t; y, 0)yj(t) dt, 0 < x < b, ν = 1, N.

Using the Cauchy–Bunyakovsky–Schwarz inequality along with (4), (5)
and (12), we arrive at

‖Dy‖b̄ ≤ ‖D0‖b̄ + ‖P (x, t; y, 0)‖HN (0,b)‖y‖b̄ ≤ ‖D0‖b̄ + ‖y‖b̄CPD(‖y‖b̄),

which implies (18) with CD(r) ≤ ‖D0‖b̄ + rCPD (r). Further, by virtue of (14),
the latter estimate gives (19), where CD(r) ≤ supD∈D ‖D0‖b̄ + rCPD

(r). �

Lemma 3. Fix R > 0 and let ‖f‖b̄ ≤ R. Let also D be an uniform subset of
E ′

b,N , uniformly satisfying Condition A.

Then there exists a constant r0 = r0(R,D), depending only on R and D,
such that the solution of Eq. (6) belongs to the ball Bb,r0 for all D ∈ D.

Proof. According to conditions (ii+) and (iii+) in Definition 2, there exist
R1 > R, α ∈ (0, 1) and δ ∈ (0, b] such that D : Bδ,R1 → Bδ,R1−R and

‖Dz − Dz̃‖δ̄ ≤ α‖z − z̃‖δ̄, z, z̃ ∈ Bδ,R1 ,

for all D ∈ D. As in Remark 2, it is easy to show that here one can take the
minimal δ > 0 from conditions (ii+) and (iii+). Thus, the contracting mappings
principle yields y(x) ∈ Bδ,R1 .

Further, supposing y(x) ∈ Bδ,r1 for some δ ∈ (0, b/2], let us prove that
y(x) ∈ B2δ,r2 for some r2 > 0 independent of f(x) and D. Indeed, solving Eq.
(10) with respect to y(2)(x) = (y(2)ν(x))ν=1,N on (δ, 2δ) we get

y(2)ν(x) = ξν(x) +
N∑

j=1

∫ x

δ

Rδ,νj(x, t; y(1))ξj(t) dt, δ < x < 2δ, ν = 1, N,
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where Rδ(x, t; y(1)) := (Rδ,νj(x, t; y(1)))ν,j=1,N ∈ HN (δ, 2δ) is the resolvent
kernel for the kernel Kδ(x, t; y(1)) = (Kδ,νj(x, t; y(1)))ν,j=1,N determined by
(7). Thus, we have

‖y(2)‖HN (δ,2δ) ≤
(
1 + ‖Rδ(x, t; y(1))‖HN (δ,2δ)

)
‖ξ‖HN (δ,2δ), (20)

where ξ(x) := (ξν(x))ν=1,N = f(x) − Dy(1)(x). By virtue of Lemmas 1, 2 and
(9), (13), we get

‖Rδ(x, t; y(1))‖HN (δ,2δ) ≤ F
(
‖Kδ(x, t; y(1))‖HN (δ,2δ)

)
≤ F (CD,δ(r1))

≤ F (CD,δ(r1)),
‖Dy(1)‖HN (δ,2δ) ≤ ‖Dy(1)‖2δ ≤ CD(r1) ≤ CD(r1),

which along with (20) give

‖y(2)‖HN (δ,2δ) ≤
(
1 + F (CD,δ(r1))

)
(R + CD(r1)) =: r2 − r1.

Hence, ‖y‖2δ ≤ ‖y(1)‖δ̄ + ‖y(2)‖HN (δ,2δ) ≤ r2 with r2 depending only on R, r1

and D.
Repeating the previous step finitely many times, we establish ‖y‖b̄ ≤ r0

with the constant r0 independent of concrete f(x) ∈ Bb,R and D ∈ D. �

Now we are in position to give the proof of Theorem 2.

Proof of Theorem 2. Subtracting Eq. (16) from (6) and using Condition A, we
get

f̂ν(x) = ŷν(x) + Dνy(x) − Dν ỹ(x) = ŷν(x)

+
N∑

j=1

∫ x

0

Pνj(x, t; y, ỹ)ŷj(t) dt, 0 < x < b, ν = 1, N,

which along with Lemma 1 give

‖ŷ‖b̄ ≤
(
1 + F

(
‖P (x, t; y, ỹ)‖HN (0,b)

))
‖f̂‖b̄.

Using (12), (14) and Lemma 3, we arrive at (15) with the constant C =
(1 + F (CPD

(r0))) depending only on R and D. �

Obviously, any finite subset D ⊂ E ′
b,N is automatically uniform. Moreover,

if all operators in a finite set D satisfy Condition A, then D automatically
satisfies Condition A uniformly. Thus, the following corollary from Theorem 2
holds.

Corollary 1. Fix R > 0 and let ‖f‖b̄, ‖f̃‖b̄ ≤ R. Let also the operator D belong
to E ′

b,N and satisfy Condition A. Then there exists C = C(R,D) > 0 such that
estimate (15) holds.
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4. Global Solvability of the Convolutional Equation in the
Vectorial Case

In this section we apply the results of Sect. 2 to the vectorial analog of Eq. (1),
having appeared in the inverse spectral theory for integro-differential Dirac
systems (see [6,7,9]):

fν(x) =
∞∑

n=1

mn,N∑

j=1

(
ψνnj(x)Qnj [y](x) +

∫ x

0

Ψνnj(x, t)Qnj [y](t) dt
)
,

0 < x < b, ν = 1, N, (21)

where mn,N is the number of all possible convolutional monomials Qnj [y] of
the form

Qnj [y](x) = yi1 ∗ yi2 ∗ · · · ∗ yin
(x), 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ N. (22)

In particular, m1,N = N and we agree that

Q1j [y](x) = yj(x), ψν1j(x) = δν,j , j = 1, N, (23)

where δν,j is the Kronecker delta. Assume that ψνnj(x) ∈ L2(0, b) and
Ψνnj(x, t) ∈ H1(0, b) for all ν, n, j and

‖ψνnj‖b ≤ An, ‖Ψνnj‖H1(0,b) ≤ An, ν = 1, N, j = 1,mn,N , n ≥ 2,
(24)

for some fixed A > 0 independent of ν, n and j.

The following theorem gives the global solvability of Eq. (21) in HN (0, b).

Theorem 3. For each vector-function f(x) = (fν(x))ν=1,N ∈ HN (0, b) Eq. (21)
has a unique solution y(x) = (yν(x))ν=1,N ∈ HN (0, b).

Rewrite Eq. (21) in the form

fν(x) = yν(x) + Dνy(x), 0 < x < b, ν = 1, N,

where

Dνy(x) =
∞∑

n=1

mn,N∑

j=1

(
(1 − δn,1)ψνnj(x)Qnj [y](x) +

∫ x

0

Ψνnj(x, t)Qnj [y](t) dt
)
,

ν = 1, N. (25)

Thus, Theorem 3 is a direct corollary of Theorem 1 and the following assertion.

Lemma 4. The operator D = (Dν)ν=1,N determined by (25) belongs to the
class Eb,N .
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Proof. Since, according to (22), for any γ ∈ (0, b) all monomials Qnj [y](x) on
[0, γ] do not depend on the values of the function y(x) on the interval (γ, b),
condition (i) in Definition 1 is obvious. In order to check conditions (ii) and
(iii), we prove the following proposition. �
Proposition 1. For n ≥ 1, j = 1,mn,N and a > 0 the following estimates hold:

‖Qnj [y]‖a ≤ a
n−1
2

√
(n − 1)!

‖y‖n
ā , (26)

‖Qnj [y] − Qnj [ỹ]‖a ≤ n
a

n−1
2

√
(n − 1)!

(max{‖y‖ā, ‖ỹ‖ā})n−1‖ŷ‖ā. (27)

Proof. Let zν(x) ∈ L2(0, a), ν ≥ 1. Then

‖z1 ∗ · · · ∗ zn‖a ≤ a
n−1
2

√
(n − 1)!

n∏

ν=1

‖zν‖a, n ≥ 1. (28)

Indeed, for n = 1 estimate (28) is obvious. Using Cauchy–Bunyakovsky–
Schwarz inequality and assuming by induction that (28) holds for some n =
n1 ≥ 1, we get

|z1 ∗ · · · ∗ zn1+1(x)| ≤ ‖z1 ∗ · · · ∗ zn1‖x‖zn1+1‖x ≤ x
n1−1

2

√
(n1 − 1)!

n1+1∏

ν=1

‖zν‖a,

0 ≤ x ≤ a.

Taking the L2(0, a)-norm of the both sides in this inequality, we arrive at (28)
for n = n1 + 1. Estimate (28) along with (4), (22) and (23) give (26).

Further, estimate (27) for n = 1 is obvious. Assume that it holds for
some n = n1 ≥ 1. Let us prove it for n = n1 + 1. It is clear that there exist
s ∈ {1, . . . , mn1,N} and ν ∈ {1, . . . , N} such that

(Qn1+1,j [y] − Qn1+1,j [ỹ])(x) = (Qn1s[y] ∗ yν − Qn1s[ỹ] ∗ ỹν)(x)

and, hence,

|(Qn1+1,j [y] − Qn1+1,j [ỹ])(x)| ≤ ‖Qn1s[y]‖x‖ŷν‖x + ‖Qn1s[y]−Qn1s[ỹ]‖x‖ỹν‖x.

By virtue of (26) and (27) for n = n1, we get

|(Qn1+1,j [y] − Qn1+1,j [ỹ])(x)|≤ x
n1−1

2

√
(n1 − 1)!

(
‖y‖n1

x̄ ‖ŷν‖x

+n1(max{‖y‖x̄, ‖ỹ‖x̄})n1−1‖ŷ‖x̄‖ỹν‖x

)
,

which gives

|(Qn1+1,j [y] − Qn1+1,j [ỹ])(x)| ≤ (n1 + 1)
x

n1−1
2

√
(n1 − 1)!

(max{‖y‖ā, ‖ỹ‖ā})n1‖ŷ‖ā,

0 ≤ x ≤ a.

Taking the L2(0, a)-norm of the both sides, we arrive at (27) for n = n1+1. �
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Let us return to the proof of Lemma 4. According to (23)–(25), we have

‖Dνy‖δ ≤
N∑

j=1

‖Ψν1j‖H1(0,δ)‖yj‖δ + 2
∞∑

n=2

mn,N∑

j=1

An‖Qnj [y]‖δ, ν = 1, N.

By virtue of (26) and the inequality mn,N ≤ Nn, we arrive at

‖Dy‖δ̄ ≤ Cδ‖y‖δ̄ + 2AN‖y‖δ̄

∞∑

n=1

(AN‖y‖δ̄

√
δ)n

√
n!

, Cδ = ‖Ψ‖HN (0,δ), (29)

where Ψ(x, t) = (Ψν1j(x, t))ν,j=1,N . Thus, condition (ii) in Definition 1 is ful-
filled. Indeed, it is sufficient to choose δ > 0 so that

CδR + 2ANR

∞∑

n=1

(ANR
√

δ)n

√
n!

≤ r.

Further, according to (23)–(25), we have

‖Dνy − Dν ỹ‖δ ≤
N∑

j=1

‖Ψν1j‖H1(0,δ)‖ŷj‖δ

+2
∞∑

n=2

mn,N∑

j=1

An‖Qnj [y] − Qnj [ỹ]‖δ, ν = 1, N.

Substituting estimate (27) into this inequality, we arrive at

‖Dy − Dỹ‖δ̄ ≤
(
Cδ + 2AN

∞∑

n=1

(n + 1)
(AN max{‖y‖δ̄, ‖ỹ‖δ̄}

√
δ)n

√
n!

)
‖ŷ‖δ̄. (30)

Thus, condition (iii) in Definition 1 is fulfilled, where it is sufficient to choose
δ > 0 so that

Cδ + 2AN

∞∑

n=1

(n + 1)
(ANR

√
δ)n

√
n!

≤ α.

In order to check condition (iv) we prove the following proposition.

Proposition 2. For all n ≥ 2 and j = 1,mn,N the following representation
holds:

Qnj [y](x) = Qnj [y(1)](x)+
N∑

p=1

y(2)p ∗
mn−1,N∑

s=1

β
(p)
njsQn−1,s[y(1)](x), 0 ≤ x ≤ 2δ,

(31)
where y(j)(x) = (y(j)p(x))p=1,N , j = 1, 2, are determined in (8), all β

(p)
njs ≥ 0

and
N∑

p=1

mn−1,N∑

s=1

β
(p)
njs = n. (32)
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Proof. By virtue of (22) and yp(x) = y(1)p(x)+ y(2)p(x), 0 < x < 2δ, p = 1, N,
we get

Qnj [y] =
∑

(j1,j2,...,jn)∈{1,2}n

y(j1)i1 ∗ y(j2)i2 ∗ · · · y(jn)in
,

1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ N. (33)

Since y(2)j ∗ y(2)p(x) = 0 on [0, 2δ] for all j, p = 1, N, formula (33) takes the
form

Qnj [y] = y(1)i1 ∗ y(1)i2 ∗ · · · ∗ y(1)in

+
n∑

k=1

y(1)i1 ∗ · · · ∗ y(1)ik−1 ∗ y(2)ik
∗ y(1)ik+1 ∗ · · · ∗ y(1)in

Combining terms with equal ik’s, we arrive at (31). �

Return to the proof of Lemma 4. Substituting (31) for δ ∈ (0, b/2] into
(25), we get (7) with Kδ,νj(x, t; y(1)), δ < t < x < 2δ, ν, j = 1, N, determined
by the formula

Kδ,νj(x, t; y(1)) = Ψν1j(x, t) +
∞∑

n=2

mn,N∑

k=1

mn−1,N∑

s=1

β
(j)
nks

(
ψνnk(x)Qn−1,s[y(1)](x − t)

+
∫ x

t

Ψνnk(x, τ)Qn−1,s[y(1)](τ − t) dτ

)
.

By virtue of (24), (26), we get

‖Kδ,νj(x, t; y(1))‖H1(δ,2δ) ≤ ‖Ψν1j‖H1(δ,2δ)

+(1 +
√

δ)
∞∑

n=2

Anδ
n−2
2 ‖y(1)‖n−1

δ̄√
(n − 2)!

mn,N∑

k=1

mn−1,N∑

s=1

β
(j)
nks,

which along with (5), (32) and the inequality mn,N ≤ Nn imply

‖Kδ(x, t; y(1))‖HN (δ,2δ) ≤ ‖Ψ‖HN (δ,2δ)

+(1 +
√

δ)(AN)2‖y(1)‖δ̄

∞∑

n=0

(n + 2)
(AN‖y(1)‖δ̄

√
δ)n

√
n!

, (34)

i.e. Kδ(x, t; y(1)) ∈ HN (δ, 2δ) and, hence, condition (iv) in Definition 1 is
proven. �

5. Uniform Full Stability of the Convolutional Equation

In this section, using Theorem 2, we establish the uniform stability of Eq. (21)
with respect to its left-hand side f(x) as well as to the functional sequences
{ψνnj(x)} and {Ψνnj(x, t)} in the right-hand one. For this purpose, along with
Eq. (21) we consider the equation
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f̃ν(x) =
∞∑

n=1

mn,N∑

j=1

(
ψ̃νnj(x)Qnj [ỹ](x)

+
∫ x

0

Ψ̃νnj(x, t)Qnj [ỹ](t) dt
)
, 0 < x < b, ν = 1, N, (35)

where f̃(x) := (f̃ν(x))ν=1,N ∈ HN (0, b), ψ̃νnj(x) ∈ L2(0, b) and
Ψ̃νnj(x, t) ∈ H1(0, b) for all ν, n, j and

‖ψ̃νnj‖b ≤ An, ‖Ψ̃νnj‖H1(0,b) ≤ An, ν = 1, N, j = 1,mn,N , n ≥ 2.
(36)

Moreover, let ψ̃ν1j(x) = δν,j for ν, j = 1, N and denote ψ̂νnj(x) := ψνnj(x) −
ψ̃νnj(x) and Ψ̂νnj(x, t) := Ψνnj(x, t)−Ψ̃νnj(x, t). The following theorem holds.

Theorem 4. Fix A, R > 0, θ ∈ [0, 1) and a function G(x, t) ∈ HN (0, b). Let
‖f‖b̄, ‖f̃‖b̄ ≤ R and, besides (24) and (36), the following estimates hold:

‖G − Ψ‖HN (0,b) ≤ θ, ‖G − Ψ̃‖HN (0,b) ≤ θ, (37)

where Ψ(x, t) = (Ψν1j(x, t))ν,j=1,N and Ψ̃(x, t) = (Ψ̃ν1j(x, t))ν,j=1,N .

Then there exists C > 0, depending only on A, R, θ and G(x, t), such
that

‖ŷ‖b̄ ≤ C‖f̂‖b̄ + C max
ν,j=1,N

‖Ψ̂ν1j‖H1(0,b)

+
∞∑

n=2

Cn

√
n!

max
ν=1,N

j=1,mn,N

(
‖ψ̂νnj‖b + ‖Ψ̂νnj‖H1(0,b)

)
.

Consider the set Dθ
A,G of operators D = (Dν)ν=1,N determined by (25)

and obeying conditions (24) and (37). Before proceeding directly to the proof
of Theorem 4, let us provide the following two auxiliary assertions.

Lemma 5. For all A > 0, θ ∈ [0, 1) and any function G(x, t) ∈ HN (0, b) the
set Dθ

A,G is an uniform subset of E ′
b,N .

Proof. Put

ε :=
1 − θ

2
, R1 :=

2R

ε
, α := 1 − ε + 2AN

∞∑

n=1

(n + 1)
(ANR1

√
δ)n

√
n!

.

Thus, according to (29), (30), (37) and the estimate Cδ = ‖Ψ‖HN (0,δ) ≤
‖G‖HN (0,δ) + θ, for conditions (ii+) and (iii+) in Definition 2 to hold, it is
sufficient to choose δ ∈ (0, b] so that

‖G‖HN (0,δ) ≤ ε, 2AN
∞∑

n=1

(n + 1)
(ANR1

√
δ)n

√
n!

< ε.

Condition (iv+) in Definition 2 is fulfilled by virtue of (34). �
Lemma 6. The set Dθ

A,G uniformly satisfies Condition A.
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Proof. Consider an alternative representation for monomials Qnj [y]. Namely,
there exist νs = νs(n, j) ≥ 0, s = 1, N, such that ν1 + . . . + νN = n and (22)
takes the form

Qnj [y] = y∗ν1
1 ∗ y∗ν2

2 ∗ . . . ∗ y∗νN

N .

We agree that here and below f∗0 ∗ g = g ∗f∗0 = g for any f and g. It is easily
seen that

Qnj [y] − Qnj [ỹ] =
N∑

s=1

ỹ∗ν1
1 ∗ . . . ∗ ỹ

∗νs−1
s−1 ∗ (y∗νs

s − ỹ∗νs
s ) ∗ y

∗νs+1
s+1 ∗ . . . ∗ y∗νN

N ,

where we have

y∗νs
s − ỹ∗νs

s =

⎧
⎨

⎩

0, νs = 0,
ŷs, νs = 1,
qs,νs

∗ ŷs, νs > 1,
qs,νs

=
νs−1∑

p=0

y∗p
s ∗ ỹ∗(νs−1−p)

s .

Thus, for n ≥ 2 we arrive at the representation

Qnj [y] − Qnj [ỹ] =
N∑

s=1

hnj
s ∗ ŷs, hnj

s =

⎧
⎪⎨

⎪⎩

0, νs = 0,
νs∑

p=1

Qn−1,θp
[y, ỹ], νs ≥ 1, (38)

where θp = θp(n, j) ∈ {1, . . . ,mn−1,2N} and Qnj [y, ỹ], n ≥ 1, j = 1,mn,2N ,
are all possible monomials of the form

Qnj [y, ỹ] = y∗α1
1 ∗ · · · ∗ y∗αN

N ∗ ỹ∗α̃1
1 ∗ · · · ∗ ỹ∗α̃N

N , αs ≥ 0, α̃s ≥ 0,

N∑

s=1

(αs + α̃s) = n.

Thus, inequality (26) yields the estimate

‖hnj
s ‖b ≤ νs(n, j)

b
n−2
2

√
(n − 2)!

(max{‖y‖b̄, ‖ỹ‖b̄})n−1. (39)

Further, let D = (Dν)ν=1,N ∈ Dθ
A,G. Then, according to (25), we get

Dνy(x) − Dν ỹ(x)

=
N∑

j=1

∫ x

0

Ψν1j(x, t)ŷj(t) dt +
∞∑

n=2

mn,N∑

j=1

(
ψνnj(x)(Qnj [y] − Qnj [ỹ])(x)

+
∫ x

0

Ψνnj(x, t)(Qnj [y] − Qnj [ỹ])(t) dt
)
, 0 < x < b, ν = 1, N.

Using (38), we arrive at

Dνy(x) − Dν ỹ(x) =
N∑

s=1

∫ x

0

Pνs(x, t; y, ỹ)ŷs(t) dt, 0 < x < b, ν = 1, N,
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where

Pνs(x, t; y, ỹ) = Ψν1s(x, t) +
∞∑

n=2

mn,N∑

j=1

(
ψνnj(x)h

nj
s (x − t) +

∫ x

t

Ψνnj(x, τ)h
nj
s (τ − t) dτ

)
.

Estimates (24) and (39) yield

‖Pνs(x, t; y, ỹ)‖H1(0,b) ≤ ‖Ψν1s‖H1(0,b) + (1 +
√

b)
∞∑

n=2

An

mn,N∑

j=1

‖hnj
s ‖b

≤ ‖Ψν1s‖H1(0,b) + (1 +
√

b)
∞∑

n=2

Anb
n−2
2 (max{‖y‖b̄, ‖ỹ‖b̄})n−1

√
(n − 2)!

mn,N∑

j=1

νs(n, j).

Since ν1(n, j) + · · · + νN (n, j) = n, for the kernel P (x, t; y, ỹ) =
(Pνs(x, t; y, ỹ))ν,s=1,N inequality (12) holds and the function CPD (r) satisfies
the estimate

CPD (r) ≤ ‖G‖HN (0,b) + θ + (1 +
√

b)(AN)2r
∞∑

n=0

(n + 2)
(ANr

√
b)n

√
n!

,

where the right-hand side is independent of concrete D ∈ Dθ
A,G. It remains to

note that D0 = 0. �

Now we are in position to give the proof of Theorem 4.

Proof of Theorem 4. Consider the operators D = (Dν)ν=1,N , D̃ = (D̃ν)ν=1,N ∈
Dθ

A,G, where Dν are determined in (25), while D̃ν are determined by the
formula

D̃νz(x) =
∞∑

n=1

mn,N∑

j=1

(
(1 − δn,1)ψ̃νnj(x)Qnj [z](x)

+
∫ x

0

Ψ̃νnj(x, t)Qnj [z](t) dt
)
, ν = 1, N. (40)

According to Lemmas 3, 5 and 6, there exists r0 = r0(A,R,G, θ) > 0, depend-
ing only on A, R, θ and the function G(x, t), such that y(x), ỹ(x) ∈ Bb,r0 .

Further, by virtue of (40), Eq. (35) can be represented in the form

ξ(x) = ỹ(x) + Dỹ(x), 0 < x < b,

where ξ(x) = (ξν(x))ν=1,N = f̃(x) + Dỹ(x) − D̃ỹ(x). According to Lemma 2,
we have the estimate ‖ξ‖b̄ ≤ R + 2CDθ

A,G
(r0). Using Theorem 2, we arrive at

the estimate

‖ŷ‖b̄ ≤ C1‖f − ξ‖b̄, (41)
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where C1 depends only on A, R, G and θ. On the other hand, according to
(25) and (40), for 0 < x < b and ν = 1, N we have

ξν(x) = f̃ν(x) +
N∑

j=1

∫ x

0

Ψ̂ν1j(x, t)ỹj(t) dt +
∞∑

n=2

mn,N∑

j=1

(
ψ̂νnj(x)Qnj [ỹ](x)

+
∫ x

0

Ψ̂νnj(x, t)Qnj [ỹ](t) dt
)
.

By virtue of (26) along with the estimate ‖ỹ‖b̄ ≤ r0, this yields

‖f − ξ‖b̄ ≤ ‖f̂‖b̄ + Nr0 max
ν,j=1,N

‖Ψ̂ν1j‖H1(0,b)

+
∞∑

n=2

Cn
2√
n!

max
ν=1,N

j=1,mn,N

(
‖ψ̂νnj‖b + ‖Ψ̂νnj‖H1(0,b)

)
,

where C2 depends only on r0 = r0(A,R,G, θ), which along with (41) finishes
the proof. �

6. Summary

Let us briefly summarize the key points of the paper. In Sect. 2 we established
the global solvability of Eq. (6), when the operator D belongs to the class Eb,N

(Theorem 1). In Sect. 3 we proved the uniform stability of Eq. (6) with respect
to the left-hand side, when D ∈ D, while D is an uniform subset of E ′

b,N and
uniformly satisfies Condition A (Theorem 2). In particular, this implies the
uniform stability, when the operator D ∈ E ′

b,N is fixed and satisfies Condition
A (Corollary 1). In Sect. 4, as a corollary of Theorem 1, we proved the global
solvability of the vectorial analog (21) of Eq. (1) (Theorem 3). In Sect. 5, using
Theorem 2, we established the uniform full stability of Eq. (21) (Theorem 4).
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