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1. Introduction

Consider the nonlinear integral equation
@ =Y (b @+ [ Wty @d), 0<z<h
n=1 0

where y(z) is an unknown function and

(@) =y(), v V(@) =5 y(e) = /wy*%)y(x—t)da 1,
0

while f(z) and ¢, (z), ¥,(x,t), n > 1, are some known square-integrable
functions. This equation appears in the inverse spectral theory of integral and
integro-differential operators (see [1-3,5,10,11] and the references therein). In
particular, in [1] (see also [2]) it was proved that, under natural assumptions
on the functional sequences {¢,(z)}, {U,(z,t)} and the equality ¥, (z) = 1,
Eq. (1) has a unique solution y(z) € L2(0,b) for each left-hand side f(x) €
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L5(0,b). In other words, Eq. (1) possesses a global unique solution. We note
that in concrete applications to the inverse spectral theory the coefficient 11 ()
usually equals to b — x, i.e., in addition to the nonlinearity, Eq. (1) is com-
plicated also by the singularity at the end of the interval. In this situation
one can guaranty, generally speaking, only the local square integrability of the
solution, namely, y(z) € L2(0,3) for each 5 € (0,b). However, in concrete
cases (see, e.g., [1-3]) using additional properties of the functions ,,(z) and
U, (z,t), inspired by the specifics of the problem, one can establish that the
solution belongs to an appropriate weighted space, e.g., (b— z)y(x) € L2(0,b).

Furthermore, the works [4,12,13] deal with more general nonlinear equa-
tions, which cannot be represented in the form (1), i.e. as a series with convo-
lution powers of the unknown function. In this ”non-convolutional” case the
global solvability has been also established. Moreover, in [6,7,9] in connec-
tion with inverse spectral problems for integro-differential Dirac systems there
arose a vectorial analog of Eq. (1).

The goal of the present paper is twofold. Firstly, we introduce an abstract
equation generalizing Eq. (1) as well as all the cases having appeared in [1-7,9—
13], including the vectorial and "non-convolutional” ones, and prove its global
solvability and uniform stability with respect to the left-hand side. Secondly,
applying the obtained results to the vectorial analog of Eq. (1), we establish its
global solvability along with the uniform full stability (i.e. the uniform stability
with respect to all components of the equation). We note that the stability of
nonlinear equations of this type has not been previously studied even in simple
situations.

Now let us clarify the key notions. For this purpose we consider the
equation
where P : Ry — MR, is some operator, R, is a metric space with the metric
pr(+, ), k= 1,2. For definiteness, we assume that P is an injection, i.e. Eq.
(2) has at most one solution. Equation (2) is called locally solvable if the image
set PR, is open in Rs. In particular, (2) is called solvable globally if PRy = Ra,
i.e. if P is a surjection. Assuming the local solvability of (2), we say that it
is stable, if for any fixed § € Ry we have p1(y,9) — 0 as p2 f,Py) — 0. A
stronger and more useful version of stability involves an estimate of py(y,9)
via pa(f,Py), e.g., when for any § € R; there exist positive § = §(g, P) and
C = C(§, P) such that for all f € Ry, obeying po(f, f) < 8 with f = Py, the
following estimate holds:

pl(yag) SCPZ(fo)? (3)
where y is the solution of (2). Further, assuming the global solvability of (2),
we call Eq. (2) uniformly stable, if for arbitrary fixed R > 0 and g € Ro, and
for f, f € My estimate (3) holds with C' = C(P, g, R) (i.e. depending only on
P, g and R) as soon as p2(f,9) < R and pa2(f,g) < R. Here § is the solution of
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the equation f = Py, while y is the one of (2). The mentioned stabilities are
ones with respect to the left-hand side of Eq. (2). Full stability applies, when
the solution of (2) is stable also with respect to some perturbations of P.

The paper is organized as follows. In the next section we introduce an
abstract nonlinear equation, generalizing (1), and prove its global solvability
(Theorem 1). In Sect. 3 we establish the uniform stability of this abstract
equation with respect to its left-hand side (Theorem 2). In Sects. 4 and 5 we
use the results obtained in Sects. 2 and 3 for proving the global solvability
(Theorem 3) and the uniform full stability (Theorem 4) of the vectorial analog
of Eq. (1).

2. The Abstract Nonlinear Equation

Fix N > 1 and consider the space Hy(a,b) := (La(a, b)) of vector-functions
y(®) = (Yo (7)), -7, @ < ¥ < b, with the norm

1Yl e (a,) = maX |[Yo || Ly (a,b)- (4)
—1,N

Denote Ay p == {(z,t) : @ < t < & < b} and consider also the space Hy(a,b) :=
(LQ(AQJ;))NQ of matrix-functions K(z,t) = (Ky;(z,1)), ;1w a <t <z <b,
with the norm

Z 1Kl a0 (5)

K 1 () = max

v=1,N

||KVJ||L2(Aab) = \// dx/ | Ky, t)|? dt.

We also put |-l = [l ato: [1-la = [ (0.0 amd Buy = {y € Hy(0.0)
lylla <r}.

In this section we establish the global solvability of the nonlinear equation

f(@) =y(x) + Dy(x), 0<z<b (6)

in the space Hy(0,b), where D is a nonlinear operator of the special class
introduced in the following definition.

Definition 1. We say that the operator D = (D,),_7 : Hn(0,0) — Hy(0,0)
belongs to the class &, y, if the following four conditions are fulfilled:
(i) For each vector-function y(z) € Hy(0,b) and for each number v € (0,b)
the image vector-function Dy(z) on the interval (0,+) does not depend
on values of y(x) on (v,b);
(ii) For all R > 0 and r > 0 there exists ¢ € (0,b] such that D : Bs g — Bs.»;
(iii) For all R > 0 and a > 0 there exists § € (0,b] such that

1Dy — Dylls < ally — 9lls
for all functions y(z), g(x) € Bs,g;
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(iv) For all 6 € (0,b/2] and y(x) € Hn(0,25) the following representation
holds:

N x

Doy(x) = Duy(1)(x) + Z / Ks iz, ty01))y2); () dt, 0<x<25 v=1N,
— Js
J

(7)
yy) = (Kswi(@,t901)), otv € Hn(6,20), yg(z) =
€ H (0,20),

( ) :I: (07 5)7 07 :17 6 (0’ 5)7
0, we(s2) Y@= {ym, re @20, 8

and the matrix-function Ks(z,t;y(1)) does not depend on y(9) ().

Moreover, we say that D € & v, if D € & n and for all § € (0,b/2]
the H (4, 26)-norm of the kernel K(;(a: t;y(1)) determined in (iv) is a bounded
(nonlinear) functional on y ), i.e.

Cp,s(r) = Sup 1652, 6 9)ll2n (5,26) < 00, 72 0. (9)
ylls<r

where Ks(z,
(W) (@), =1

~—

yay(z) =

Remark 1. In conditions (ii)—(iv) of Definition 1 one and the same symbol
D denotes the natural extensions of the operator D to the spaces Hy (0, 3),
B € (0,b), which, by virtue of condition (i), are determined uniquely.

Remark 2. It is easy to check that for each operator D € &, y in conditions (ii)
and (iii) of Definition 1 one can take any sufficiently small § > 0. In other
words, these conditions can be represented in the following equivalent form:

(ii") For all R, 7 > 0 there exists d € (0,b] such that D : Bs, g — Bs, - for all
b € (0,(5]
(iii") For all R > 0 and « > 0 there exists § € (0, ] such that
1Dy = Dylis, < ally - 4ll5,
for each 07 € (0, ] and for all functions y(z),y(z) € Bs, r
Indeed, let y(z), g(z) € By, g for a certain d; € (0,4]. Put

o (x), z € (0,61), . ~ Jg(x), z€(0,01),
ye(x) = {g ze(o,0), U= {g v (6,.5)

Then, obviously, y.(x), J.(x) € Bs,gr. According to (ii), we have Dy.(x) € Bs,,
On the other hand, by virtue of (i), we get

IDyl5,= 1Pyells, < Pyells < 7,
i.e. (ii’) is proven. Further, according to (iii), we have
Dy = Diells < allye = Gells = elly — ll5;
On the other hand, by virtue of (i) we get
1Dy = Dyli5,= Pye — Dells, < Pye — Diells < ally —ll5,

and we arrive at (iii’).
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The following theorem gives the global solvability of Eq. (6), when D is
an operator of the class & v.

Theorem 1. Let f(z) € Hy(0,b) and D € &, n. Then Eq. (6) has a unique
solution y(z) € Hy(0,Db).

Proof. By virtue of condition (i) in Definition 1, one can solve Eq. (6) by steps,
i.e. first find its solution on (0, ) for some v € (0,b) and then seek it on (v, b).

Consider the operator ®y(z) := f(x) — Dy(z). Choose § > 0 so that
IIfll5 < 1 and conditions (ii), (iii) in Definition 1 are met for R = 2, r = 1 and
some a € (0,1). Under these settings the operator ® maps Bs o into Bj o and
is a contracting mapping in Bs 2. Then, by virtue of the contracting mappings
principle, Eq. (6) has a unique solution on the interval (0,¢) that belongs to
the ball Bso.

Further, let for some 6 € (0,b/2] a solution of Eq. (6) has been already
found on the interval (0, d). Then we look for a solution on (0,2§) in the form
y(z) = ya)(@) + ye)(x), where yuy(z) = (Y1), (2)),—1,x = 0 on (4,26) and
Y2) () = (Y2 (7)),—1% = 0 on (0,5). Thus, according to condition (iv) in
Definition 1, Eq. (6) for z € (6, 20) takes the form

N x
§(2) =y (2) + Z/ﬁ Ksuj(2, tyay)ye); ) dt, §<z<25 v=1,N,
j=1

(10)
where (§(7)),_t% = Pyq)(z) € Hn(6,20) and (Ks.j(z,t591))), j-T5 €
Hn(6,20) are known functions, which are independent of y2)(z). Equation
(10) has a unique solution yy(z) € Hy(d,25). Thus, we established that
a solution of Eq. (6) on the interval (0,0) can be uniquely extended to the
interval (0,2d). Continuing this process, in a finite number of steps we find a
solution y(z) € Hy(0,b) of Eq. (6) on the entire interval (0, b).
Let us show that this solution y(z) is unique. Indeed, let

9(x) = (9u(2)),—t € Hn(0,b) be another solution. Then, according to the
first our choice of §, for some d; € (0,6) the both solutions y(x) and g(x) on
(0,d1) belong to the ball Bs, o and, hence, by virtue of Remark 2 and the con-
tracting mappings principle, y(z) = g(z) a.e. on (0,6;). In view of uniqueness
of the continuation of solution to (d1,b), they will coincide a.e. on (0,b). O

Remark 3. One can see that Theorem 1 would hold also if in conditions (ii) and
(iii) of Definition 1 one required only any fixed R and r such that R > r > 0
and any fixed a € (0,1). However, requiring arbitrary R allows one to prove
the uniform stability of equation (2) (for D € & y satisfying Condition A, see
Sect. 3). Moreover, the arbitrariness of r and « allows the class & n to be
closed with respect to the linear operations (see also [13]).
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3. Uniform Stability of the Abstract Equation

In this section we prove the uniform stability of Eq. (6) with respect to its
left-hand side, when the operator D belongs to & y and satisfies the following
additional condition.

Condition A. For each pair of functions (y,9) € (Hn(0,b))? there exists a
matrix-function P(-, -;v,9) = (Py;(+, -;9,9)), j-7~x € Hn(0,b) such that
the following relation holds:

N 2
Dyy(z) — D,j(z) = Z/O Pi(x,t;y,9)0;(t)dt, 0<z<b, v=T1,N,
=1

(11)
where §;(z) = y;(x) — g;(x), j = 1, N, and the Hx (0, b)-norm of this function
P(z,t;y,79) is a bounded (nonlinear) functional on the pair (y, ), i.e

Cpp(r) = sup 1P, 89, 9l 0,0) < 00, 72> 0. (12)
maxc{ [yl 75} <r

For the future needs, we provide the stability in the case, when the op-
erator D is not fixed but belongs to some fixed set ©. For this purpose we
introduce the following two definitions.

Definition 2. We say that © is an uniform subset of & v, if ® C & y and
additionally the following three conditions are fulfilled:
(iiy) For all R > 0 there exist Ry > R and ¢ € (0,b] such that D : Bsp, —
Bs r,—r for any D € D;
(iiy) For all R > 0 there exist o € (0,1) and ¢ € (0,b] such that

Dy — Dyll5 < ally — 9lls

for any operator D € © and for all functions y(z), §(z) € Bs r;
(ivy) For D € © the functions Cp 5(r) determined in (9) are uniformly ma-
jorated by some nondecreasing function, i.e.

Cos(r) = gtelg Cps(r)<oco, r>0, Je€ (O, g} (13)

Definition 3. Let © be a set of operators D, satisfying Condition A. We say
that the set ® wuniformly satisfies Condition A, if

Cpy (1) := Ts)lelg Cpy(r) < oo, r>0, (14)

and the set {D0: D € D} is bounded.

The following theorem gives the uniform stability of Eq. (6) with respect
to the left-hand side, when the operator D belongs to a fixed uniform subset
D of 5,27 ~» uniformly satisfying Condition A.
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Theorem 2. Fiz R > 0 and let || f||3, | fll; < R. Let also © be an uniform
subset of 51;,1\1’ uniformly satisfying Condition A.
Then there exists a constant C = C(R,®) such that for all D € D the
estimate .
191l < ClIflls (15)

) — f(z) and §(z) = y(z) — §(x), while y(z) is the

x
g(x) is the one of the equation

holds, where f(z) = f(
solution of Eq. (6) and
f(x) =g(z) + Dy(x), 0<z<b. (16)

Before proceeding directly to the proof, let us provide the following three

auxiliary assertions.

Lemma 1. Let K(z,t) = (Ky;(2,t)), ,—t%
Volterra linear integral operator K = (K, )
by the formula

€ Hn ( b) be the kernel of the

Hy(a,b) — Hy(a,b) acting

1,N.

N x
= Z/ K, j(z, t)y;(t)dt, a<z<b v=1,
j=17a
Then for the resolvent kernel R(x,t) = (Ry;(,1)), ;—13, i-e. for the
kernel of the integral operator R = (R,),_1v = (I+K)™'—1, where I is the
identity operator and

N x
22/ R,i(z,t)y;(t)dt, a<z<b v=1N

the estimate
1Rl oy < F (1K Irion) (17)

holds with some nondecreasing function F(-) : [0,00) — [0,00) independent of
K(x,t).

Proof. is analogous to the scalar case N = 1 (see [14]). For convenience of
the reader, we briefly provide the arguments for arbitrary N. Obviously, the
resolvent kernel R(z,t) satisfies the linear integral equation

N x
Ryj(x,t) = =K, j(z,t) = Y /t K, o(2,7)Rsj(1,t) dr,
s=1

a<t<z<b wv,j5=1/N.
The method of successive approximations gives R,;(z,t) = Z ) R, (z,t),
[— n—=
v,j =1, N, where

N x
Rl(,lj) (z,t) = =K, ;(2,1), RL(,TJL-H)(x,t) = —Z/ K,,S(.Z‘,T)Riz-l) (7,t) dr,
t

a<t<xz<b.
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Having put

x

N
Ay (z) = Z/ K, s(x,7)]2dr, v=1,N,

N
B;(t) := Z/ |Kyj(r,t)|2dr, j=1,N

) )

Fo(x,t) = 1, Fk+1 Z, t / A2 Fk T, t)d k > 0,

by induction we get

FF Tt n
B t) < 20 k20, (R @0 < A2 B0 Fa (o),
v,j=1,N, n>2.

Since F(z,t) §N||K||HN ap) fora<t<wz<band

/ L) de = S 1Ko Boion < 1Koy ¥ = TN

s=1

b
/ B?(t)dt:Du@nml(a,b), I

s=1
we arrive at

. (1K Tt () V)" S
15 oy € ==K i o) D [l
: s=1

v,j=1,N, n>2.
This yields

N
1Rl a0) < 1K il @) + 1K e (@) D 1K sjll, (o

s=1

(1K r4x a0y V)™
B L O
n=0 W

and, hence,

(I e (a,0) VN)™ 2
[Rl7x (ab) < 1K 70y (ap) + Z ol

n=0 \/77 ,
which finishes the proof.
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According to the proof of Lemma 1, in (17) one can take

n+2

o0
Lemma 2. Any nonlinear operator D, satisfying Condition A, is bounded, i.e.

Cp(r):= sup |Dyllz <oo, r>0. (18)
lyllz<r

Moreover, if a set ® uniformly satisfies Condition A, then

Co(r):= 1&;,161% Cp(r) <oo, r>0. (19)

Proof. By virtue of (11), we get

D,y(z) = D,0(x —I—Z/ iz, ty, 0)y;(t)dt, 0<ax<b, v=1N.

Using the Cauchy—Bunyakovsky—Schwarz inequality along with (4), (5)
and (12), we arrive at

IDylls < DOl + (1P, 8 5, 0)ll2ex 0.0 19ll5 < 1Ol + lyllsCen ([lyll5),

which implies (18) with Cp(r) < ||DO||; +7Cp, (). Further, by virtue of (14),
the latter estimate gives (19), where Cp (1) < suppeg || DOl +rCpy (r). O

Lemma 3. Fiz R > 0 and let ||f|; < R. Let also © be an uniform subset of
ngN, uniformly satisfying Condition A.

Then there exists a constant ro = ro(R,D), depending only on R and D,
such that the solution of Eq. (6) belongs to the ball By, ., for allD € D.

Proof. According to conditions (ii;) and (iiiy) in Definition 2, there exist
Ry >R, a€(0,1) and ¢ € (0,b] such that D : Bs p, — Bs.r,—r and

||ID’27,D2||5 Sa”'z*g”& Z,éGB(S_’Rl,

for all D € ®. As in Remark 2, it is easy to show that here one can take the
minimal § > 0 from conditions (ii; ) and (iii; ). Thus, the contracting mappings
principle yields y(z) € Bs g, -

Further, supposing y(z) € Bs,, for some § € (0,b/2], let us prove that
y(z) € Bas ., for some 7o > 0 independent of f(z) and D. Indeed, solving Eq.
(10) with respect to y(2)(®) = (Y(2)» (7)), -7 on (J,20) we get

Yew(r) =& (x +Z/ Rs iz, t;yq))E () dt, 0 <x <20, v=1,N,
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where Rs(z,tya)) = (Rswi(,t901))), ot € Hn(5,20) is the resolvent
kernel for the kernel Ks(z,t;y1)) = (Ksu5(2,t91))), j—1x determined by
(7). Thus, we have

Y2l 2y (5,26) < (1 + ||R(s($7t;y(1))||HN(5,25)) €1l Ew (5,269 5 (20)

where {(z) := (§,(2)),—1% = f(¥) — Dy()(x). By virtue of Lemmas 1, 2 and
(9), (13), we get
1 Rs (2, 5y 1)) 11w 5.26) < F(||K5(x7t;y(1))||HN(5,25)) < F(Cps(r1))
< F(Co,5(r1)),
1Dyl 6,260 < 1Py llzs < Cp(r1) < Co(r1),
which along with (20) give

iy 526 < (14 F(Co,5(m)) ) (R+ Ca (1)) =: 72 — 71,

Hence, |lyllz5 < llyaylls + 1y |7y 5,25y < 72 with ro depending only on R, rq
and ©.

Repeating the previous step finitely many times, we establish ||y|l; < 7o
with the constant ry independent of concrete f(x) € By g and D € D. ]

Now we are in position to give the proof of Theorem 2.

Proof of Theorem 2. Subtracting Eq. (16) from (6) and using Condition .4, we
get

fu(x) = fgv(x) + Duy(l‘) - Dug(x) = gu(x)

N x
+Z/ P,j(z,t;,9)9;(t)dt, 0 <z <b, v=T1,N,
j=1"0

which along with Lemma 1 give

lglls < (1 + F(IP@ 6y Dl o) )1 f 15

Using (12), (14) and Lemma 3, we arrive at (15) with the constant C' =
(14 F(Cpg(19))) depending only on R and D. O

Obviously, any finite subset © C 55’ y is automatically uniform. Moreover,
if all operators in a finite set @ satisfy Condition A, then © automatically
satisfies Condition .4 uniformly. Thus, the following corollary from Theorem 2
holds.

Corollary 1. Fiz R > 0 and let || f|z, | fll; < R. Let also the operator D belong
to & n and satisfy Condition A. Then there exists C = C(R,D) > 0 such that
estimate (15) holds.
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4. Global Solvability of the Convolutional Equation in the
Vectorial Case

In this section we apply the results of Sect. 2 to the vectorial analog of Eq. (1),
having appeared in the inverse spectral theory for integro-differential Dirac
systems (see [6,7,9]):

9=33 Z (bens@Qulsl(@) + | W@ 0Qu 0O 1),
0O<z<bv=1N, (21)

where m,, v is the number of all possible convolutional monomials @,;[y] of
the form

Quilyl(T) = yi, ¥ Yi ¥ xyi, (v), 1<ip <idg<---<ip <N (22)

In particular, m; y = N and we agree that

Qu;lyl(z) =y;(z), Yuj(x) =0uy, J=1,N, (23)
where 9§, ; is the Kronecker delta. Assume that 1,,;(z) € L2(0,b) and
U,i(z,t) € H1(0,b) for all v, n, j and

||w1/nij < A", ”\I’WUH'HMO,Z)) <A", v=1,N, Jj= 17mn,Na n 2,
(24)
for some fixed A > 0 independent of v, n and j.
The following theorem gives the global solvability of Eq. (21) in Hy (0, b).

Theorem 3. For each vector-function f(x) = (f,(v)),_tx € Hn(0,b) Eq. (21)
has a unique solution y(z) = (y,(z)),—1x € Hn(0,0).

Rewrite Eq. (21) in the form

fl/('r) = yy(l') +Dyy(I), O <zr< ba V= 15N7

where
Dyl :; 1(15n,1)1/)unj(93)an[y]($)+ | wonste0@ulo ).
g (25)

Thus, Theorem 3 is a direct corollary of Theorem 1 and the following assertion.

Lemma 4. The operator D = (D,),_1v determined by (25) belongs to the
class & n.
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Proof. Since, according to (22), for any v € (0,b) all monomials Q,,;[y](z) on
[0,7] do not depend on the values of the function y(z) on the interval (v,b),
condition (i) in Definition 1 is obvious. In order to check conditions (ii) and
(iii), we prove the following proposition. O

Proposition 1. Forn > 1, j =1, m, v and a > 0 the following estimates hold:

n—1

1Qu; [yl < ﬂ||y|\ (26)
1Qu; 9] — Qusli]la < nﬁ(max{nyna, lgla)™ Halla (27)

Proof. Let z,(x) € L2(0,a), v > 1. Then

nl

*Z’n”a — \/T H || V||a7

Indeed, for n = 1 estimate (28) is 0bv10us. Using Cauchy—Bunyakovsky—
Schwarz inequality and assuming by induction that (28) holds for some n =
ny > 1, we get

21 % - n>1. (28)

ni+1

‘zl*...

* Zny 1 ()] <lz ko ox 2z (ol zng 4 lle < \/— H Iz las
0<zx<a.

Taking the Lo (0, a)-norm of the both sides in this inequality, we arrive at (28)

for n = ny + 1. Estimate (28) along with (4), (22) and (23) give (26).
Further, estimate (27) for n = 1 is obvious. Assume that it holds for

some n = ny > 1. Let us prove it for n = ny + 1. It is clear that there exist
se{l,...,my, n}and v € {1,..., N} such that

(Quy+1,5[Y] — Qny+1,5[9) (%) = (Qnys[y] * Yo — Quys[T] * Tu) ()

and, hence,

|(Qn1+1,J[ ] Qn1+1,J[ D( )| < ||Qn18[ H‘:L’Hgl/”z + HQms[y]_Qms[gmw”?jvnm
By virtue of (26) and (27) for n = ny, we get

(@urs15l0] = Qs @] < iy (101151

+na(max{ ylla, 712D 13llallgo ),

which gives

ny—1

Q41,5 [9] = Qa1 ) (@)] < (1 + 1)ﬁ<max{nyna, 1702 )7 13las

0<z<a.
Taking the Lo (0, a)-norm of the both sides, we arrive at (27) forn = ny+1. O
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Let us return to the proof of Lemma 4. According to (23)—(25), we have

oo Mn,N

Duylls < Z 1ol 00 llyslls +2) Y A™Quslylls, v=T,N.

j=1 n=2 j=1

By virtue of (26) and the inequality m,, y < N", we arrive at

(ANyllsVo)"
Dylls < C s+ 2AN||yl|s E -
|| ylls 5||y||5 ||y||5 ol

n=1

where W(z,t) = (V,1;(2,1)), ;—7 Thus, condition (ii) in Definition 1 is ful-
filled. Indeed, it is sufficient to choose & > 0 so that

(AN RV5)™
7\/7? <

Further, according to (23)—(25), we have

Cs = [[¥|lny00), (29)

CsR+2ANR Z

n=1

N
IDwy = Duiills <D I1W0jll7 0,8 1 15
j=1
oo Mn,N

+23° S AMIQus o] - Quslills,v = T, N.

n=2 j=1

Substituting estimate (27) into this inequality, we arrive at

AN ol [V g

Thus, condition (iii) in Definition 1 is fulfilled, where it is sufficient to choose
0 > 0 so that

Iy~ Djlls < (Cs5+24N Y (n+1)

30)

(ANRVS)"
=@

In order to check condition (iv) we prove the following proposition.

Cs +2ANZ(n+ 1

n=1

Proposition 2. For all n > 2 and j = 1,m, n the following representation
holds:

Mn—1,N
Qi [1)(x) = Qujly( +Zy(2)p S B8P Quoraly)(@), 0 <@ <25,
s=1

(31)
where y;) () = (y(j)p(x>>p:m, j = 1,2, are determined in (8), all ﬁ(p) >0

njs
and
N mp—_1,N

Sy 8% =n (32)
p=1 s=1
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Proof. By virtue of (22) and y,(x) = ya1)p(®) + y2)p(z), 0 <2 < 2§, p=1, N,
we get

Qnjlyl = > YGryin * Yadia * * YGnYin
(J1:9250-0n) €{1,2}"
1<iy <ipg<---<ip <N. (33)

Since y(2); * Y(2)p(xz) = 0 on [0,20] for all j,p = 1, N, formula (33) takes the
form

Qny[ ] = Ya ) *YWyiz ¥ *Y)iy,
+ Z Ywyir * Y W)in—1 *FY(2)ie XY D)ingr ¥ FYW)in

Combining terms with equal i}’s, we arrive at (31). O

Return to the proof of Lemma 4. Substituting (31) for 6 € (0,b/2] into
(25), we get (7) with Ks,;(z,t;y1)), 0 <t <z <20, v,j =1, N, determined
by the formula

Mp, N M1,

K(S,Vj(xat;y(l)) = 1/1] x, t Z Z Z ﬁ,(lj}c)s (wunk(x)Qn—l,s[y(l)](m - t)

+ / \I/l/nk(x7 T)Qn—l,s[y(l)KT - t) dT) .
¢
By virtue of (24), (26), we get

156,05 (7, 5 y 1) )l o, 25) < Worjlln, 5,26)

A 5 > n—1 Mn,N Mn—1,N
1_’_\/“2 ”y(l)”

ﬁny
n=2 \% -2)! I; ; *

which along with (5), (32) and the inequality my, v < N™ imply

K5 (2, t5 ya) 17w (5,26) < ¥ x (5,25)

= (AN|ly)llsvo)"
H(1+ VO AN [y lls Y- (n+2)———,  (34)
n=0 \/77
ie. Ks(w,t;9y1)) € Hn(6,20) and, hence, condition (iv) in Definition 1 is
proven. O

5. Uniform Full Stability of the Convolutional Equation

In this section, using Theorem 2, we establish the uniform stability of Eq. (21)
with respect to its left-hand side f(z) as well as to the functional sequences
{tunj(x)} and {¥,,;(2,t)} in the right-hand one. For this purpose, along with
Eq. (21) we consider the equation
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Foa) =323~ (umi)Quslil )
+/0 \If,,nj(:v,t)an[g](t)dt), 0<z<b, v=1,N, (35)
where f(z) = (fu(2)),_tx € Hn(0,b), Yynj(x) € L(0,b) and

U, (x,t) € H1(0,b) for all v, n, j and
||¢VngHb S An7 ||\I~]anH'Hl(0,b) S An7 v = 15N7 J = 17m’n,N7 n Z 2.
(36)
Moreover, let ¢,1;(z) = 6, ; for v,j = 1, N and denote ¥, p;(x) := Yy (z) —
Vumj(x) and U, (2, t) == U, (2, 1) = U,,,;(,t). The following theorem holds.
Theorem 4. Fiz A, R > 0, § € [0,1) and a function G(x,t) € Hn(0,b). Let
| fllz: 11fllz < R and, besides (24) and (36), the following estimates hold:
G = llryop) <0, G = Playon <0, (37)

where ¥ (z,t) = (V,q,(x, t))l,j T~ and \I/(a: t) = (\i/l,lj(x t)),
Then there exists C' > 0, dependmg only on A, R, 0 an

J=LN"
d G(z,t), such
that

I9lls < ClIflls +C e 190151124, 0.

v,)=

+Z\F max (||¢yny||b+||‘I’unJ||H1(0b))

j= 1m TN

Consider the set D%  of operators D = (D,),_jy determined by (25)
and obeying conditions (24) and (37). Before proceeding directly to the proof
of Theorem 4, let us provide the following two auxiliary assertions.

Lemma 5. For all A > 0, 6 € [0,1) and any function G(z,t) € Hy(0,b) the
set Di,c is an uniform subset of & .

Proof. Put

1-6 2R >
= —, Rj:=— =1- 2AN 1
€ , 1 oo« e+ E (n+1)

(ANRV&)"
5 vy

n=1 m
Thus, according to (29), (30), (37) and the estimate Cs5 = [|¥||3 (0,5 <

|Gll#x 0,6y + 0, for conditions (ii;) and (iii;) in Definition 2 to hold, it is
sufficient to choose d € (0,b] so that

N (ANR\6)™
G <e, 2ANS (n4+ 1)V o
1Gll7n(0.0) Z;( ) T
Condition (ivy) in Definition 2 is fulfilled by virtue of (34). O

Lemma 6. The set ’DZ’G uniformly satisfies Condition A.
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Proof. Consider an alternative representation for monomials @Q,;[y|. Namely,
there exist vs = vg(n,j) >0, s = 1, N, such that 11 + ...+ vy =n and (22)
takes the form

Qujlyl =y #ya"2 k™.

We agree that here and below f*¥ g = g f*O = g for any f and g. It is easily
seen that

Qnjly] — Qn;l7] Z TH -k 17:%1 D (yg = gs) * y:lﬁﬂ *ox gy,

where we have
0, vs=0, vs—1
s SRV 5 _ _ ~x(vg—1—
y;w y:” =4 Vs, Vs=1, ds,v, = Z y:p *y:(u p).
Gs,vs ¥ Ys, Vs > 17 =

Thus, for n > 2 we arrive at the representation

0, vs=0,
an[ Qn] Zh J * ys, hl” = ZQn—l,Qp [y7zﬂ7 Ve 2 17 (38)
p=1

where 91) = 9}7(”7]) S {17 E amn—172N} and Qn][yag]a n Z 1a .] = 17mn,2N7
are all possible monomials of the form

Qnjly, 01 = Y™ oy ¥ w Gk G, e 20, a2 0,

N

Z(as + &) = n.

s=1

Thus, inequality (26) yields the estimate
b
1B o < vs(n, ) ———== (max{|lylp, l7]l;})" - (39)

(n—2)!

Further, let D = (D,),_1x € ’Di,G. Then, according to (25), we get

D,y(z) — Dyy(x)
oo Mn N

N
=Z/ Wy, 03 1)t 3 S (Vg (2) @] — Qusli) ()

n=2 j=1

/Om Uy (2, 8)(Qnjly] — Qn;[9])(t) dt), 0O<ax<b v=1N.

+

Using (38), we arrive at

N 2
Dyy(z) — Dyj(x) = Z/ Po(z,t;y,9)3s(t)dt, 0<xz<b, v=1N,
0



Vol. 73 (2018) On Global Solvability and Uniform Stability Page 17 of 19 117

where

Mn, N

Pos(z,t;y,9) = Ypis(zx, t) Z Z (¢Vn](x M(m o+ /fﬂ \I/an(x,ﬂ')hgj(f 1) dT).
1=2 j=1 t

Estimates (24) and (39) yield

M, N

”Pus(ﬂfyt;ya g)”H1(0,b) < HleVlSHHl(Qb) + (1 + \/l;) Z A™ Z th]Hb
— =
[e%e] Anbanz max{||y|l;, g 1\n—1 Mn.N ’
< uisllraom + (L4 VE) D ( (ijgy|ﬁ> ST
n=2 .

j=1

Since wvi(n,j) + -+ + vn(n,j) = mn, for the kernel P(z,t;y,§y) =
(Pos(z,t;9,9)), «—7v inequality (12) holds and the function Cp, (r) satisfies
the estimate

Crp(r) < [|Gllrn(op) +6+ (1 + Vb)(AN)*r Z(n + 2)(ANT\/%/B)R’
"0 n:

where the right-hand side is independent of concrete D & 33?4,@ It remains to
note that D0 = 0. O

Now we are in position to give the proof of Theorem 4.

Proof of Theorem 4. Consider the operators D = (D, ),_7 7, D= (151,)1,:17\, €

’Dgyg, where D, are determined in (25), while D, are determined by the
formula

oo Mn,N

Z ( (1= 8p1) B () Qg 2] ()

n=1 j=

+A‘hm®ﬁQmM®ﬁ) y=TN. (40)

According to Lemmas 3, 5 and 6, there exists ro = ro(4, R, G,0) > 0, depend-
ing only on A, R, 6 and the function G(z,t), such that y(x), §(z) € Bpr,-
Further, by virtue of (40), Eq. (35) can be represented in the form

(z) =g(z)+Dy(z), 0<x<b,

where £(z) = (§(2)), =1 ¥
b

we have the estimate ||§||

= f(z) + Dy(x) — Dy(z). According to Lemma 2,
< R+2Ch G(ro). Using Theorem 2, we arrive at
the estimate

191l < Cullf = €lls, (41)
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where C depends only on A, R, G and 0. On the other hand, according to
(25) and (40), for 0 < < b and v = 1, N we have

N x oo Mn,N
&@) = @)+ 2 [ @it Y S (s (2)Qs )
j=1 n=2 j=1

0
By virtue of (26) along with the estimate ||7||; < 7o, this yields
I1f = <€lls < [1flls + Nro nax_ 190151124, 0.

n

0o 02 A )
+n§ Nl (mejllb + ||\I/ijH1(07b)>7

J=T,my N

where Cy depends only on rg = r¢(A, R, G,0), which along with (41) finishes
the proof. 0

6. Summary

Let us briefly summarize the key points of the paper. In Sect. 2 we established
the global solvability of Eq. (6), when the operator D belongs to the class &, n
(Theorem 1). In Sect. 3 we proved the uniform stability of Eq. (6) with respect
to the left-hand side, when D € ®, while © is an uniform subset of 5,27 N and
uniformly satisfies Condition A (Theorem 2). In particular, this implies the
uniform stability, when the operator D € El;’ n is fixed and satisfies Condition
A (Corollary 1). In Sect. 4, as a corollary of Theorem 1, we proved the global
solvability of the vectorial analog (21) of Eq. (1) (Theorem 3). In Sect. 5, using
Theorem 2, we established the uniform full stability of Eq. (21) (Theorem 4).

Acknowledgements

This work was supported in part by the Ministry of Education and Science of
Russian Federation (Grant 1.1660.2017/4.6) and by the Russian Foundation
for Basic Research (Grants 16-01-00015 and 17-51-53180).

References

[1] Buterin, S.A.: The inverse problem of recovering the Volterra convolution oper-
ator from the incomplete spectrum of its rank-one perturbation. Inverse Probl.
22, 2223-2236 (2006)

[2] Buterin, S.A.: Inverse spectral reconstruction problem for the convolution oper-
ator perturbed by a one-dimensional operator. Matem. Zametki 80 (2006) no.
5, 668—682 (Russian); English transl. in Math. Notes 80 no. 5, 631-644 (2006)



Vol. 73 (2018) On Global Solvability and Uniform Stability Page 19 of 19 117

[3] Buterin, S.A.: On an inverse spectral problem for a convolution integro-
differential operator. Res. Math. 50(3—4), 73—-181 (2007)

[4] Buterin, S.A.: On the reconstruction of a convolution perturbation of the Sturm-—
Liouville operator from the spectrum, Differ. Uravn. 46: 146-149 (Russian). Eng-
lish transl. in Differ. Eqgs. 46(2010), 150-154 (2010)

[5] Buterin, S.A., Choque Rivero, A.E.: On inverse problem for a convolution
integro-differential operator with Robin boundary conditions. Appl. Math. Lett.
48, 150-155 (2015)

[6] Bondarenko, N., Buterin, S.: On recovering the Dirac operator with an integral
delay from the spectrum. Res. Math. 71(3), 1521-1529 (2017)

[7] Bondarenko, N.P.: Inverse problem for the Dirac system with an integral delay
of the convolution-type. In: Matematika. Mekhanika, vol. 19, Saratov Univ.,
Saratov, pp. 9-12 (2017)

[8] Bondarenko, N., Buterin, S.: An inverse spectral problem for integro-differential
Dirac operators with general convolution kernels. Appl. Anal. (2018). https://
doi.org/10.1080,/00036811.2018.1508653

[9] Bondarenko, N.P.: An inverse problem for the integro-differential Dirac system
with partial information given on the convolution kernel. J. Inverse Ill-Posed
Probl. (2018). https://doi.org/10.1515/jiip-2017-0058

[10] Bondarenko, N.P.: An inverse problem for an integro-differential operator on a
star-shaped graph. Math. Methods Appl. Sci. 41(4), 1697-1702 (2018)

[11] Ignatyev, M.: On an inverse spectral problem for the convolution integro-
differential operator of fractional order. Results Math. (2018). https://doi.org/
10.1007/s00025-018-0800-2

[12] Ignatiev, M.: On an inverse spectral problem for one integro-differential operator
of fractional order. J. Inverse Ill-posed Probl. (2018). https://doi.org/10.1515/
jiip-2017-0121

[13] Buterin, S.A.: Inverse spectral problem for Sturm-Liouville integro-differential
operators with discontinuity conditions. J. Math. Sci. (To appear)

[14] Tricomi, F.G.: Integral Equations. Interscience Publishers, New York (1957)

Sergey Buterin and Margarita Malyugina
Saratov State University

Saratov

Russia

e-mail: ButerinSA@info.sgu.ru

Margarita Malyugina
e-mail: Margarita.MalyuginaQtele2.ru

Received: July 23, 2018.
Accepted: August 11, 2018.


https://doi.org/10.1080/00036811.2018.1508653
https://doi.org/10.1080/00036811.2018.1508653
https://doi.org/10.1515/jiip-2017-0058
https://doi.org/10.1007/s00025-018-0800-2
https://doi.org/10.1007/s00025-018-0800-2
https://doi.org/10.1515/jiip-2017-0121
https://doi.org/10.1515/jiip-2017-0121

	On Global Solvability and Uniform Stability of One Nonlinear Integral Equation
	Abstract
	1. Introduction
	2. The Abstract Nonlinear Equation
	3. Uniform Stability of the Abstract Equation
	4. Global Solvability of the Convolutional Equation in the Vectorial Case
	5. Uniform Full Stability of the Convolutional Equation
	6. Summary
	Acknowledgements
	References




