Results Math (2018) 73:97 © 2018 Springer International Publishing AG, part of Springer Nature 1422-6383/18/030001-19 published online June 27, 2018 https://doi.org/10.1007/s00025-018-0858-x

Results in Mathematics

The Integral Cosine Addition and Sine Subtraction Laws

Samir Kabbaj, Mohamed Tial, and Driss Zeglami

Abstract. In the present paper we characterize the solutions of each of the integral functional equations

$$\begin{split} &\int_{G}g(xyt)d\mu(t)=g(x)g(y)-f(x)f(y), \quad x,y\in G, \\ &\int_{G}f(x\sigma(y)t)d\mu(t)=f(x)g(y)-f(y)g(x), \quad x,y\in G, \end{split}$$

where G is a locally compact Hausdorff group, $\sigma : G \to G$ is a continuous homomorphism such that $\sigma \circ \sigma = I$, and μ is a regular, compactly supported, complex-valued Borel measure on G.

Mathematics Subject Classification. 39B32, 39B52.

 ${\bf Keywords.}$ Functional equation, sine and cosine addition laws, involution, character.

1. Set Up, Notation and Terminology

Throughout the paper we work in the following framework and with the following notation and terminology. We use it without explicit mentioning. G is a topological group with neutral element e, C(G) the algebra of continuous, complex valued functions on G, and $\sigma : G \to G$ is a continuous homomorphism such that $\sigma \circ \sigma = I$, where I denotes the identity map. The set of continuous homomorphisms $a : G \to (\mathbb{C}, +)$ will be called the additive maps and denoted by $\mathcal{A}(G)$. Those $a \in \mathcal{A}(G)$ for which $a \circ \sigma = -a$ will be denoted $\mathcal{A}^-(G)$.

A character χ of G is a homomorphism $\chi : G \to \mathbb{C}^*$, where \mathbb{C}^* denotes the multiplicative group of non-zero complex numbers. So characters need not be unitary in the present paper. It is well known that the set of characters on G is a linearly independent subset of the vector space of all complex-valued functions on G (see [11, Corollary 3.20]). If G is a locally compact Hausdorff group then $M_C(G)$ denotes the space of all regular, compactly supported, complex-valued Borel measures on G. For $\mu \in M_C(G)$, we use the notation

$$\mu(f) = \int_G f(t) d\mu(t),$$

for all $f \in C(G)$.

2. Introduction

The trigonometric addition and subtraction formulas have been studied in the context of functional equations by a number of mathematicians. The monographs by Aczél [1], by Kannappan [8], by Stetkær [11] and by Székelyhidi [15] have references and detailed discussions of the classic results.

Chung, Kannappan and Ng [3] solved the functional equation

$$f(xy) = f(x)g(y) + f(y)g(x) + h(x)h(y), \quad x, y \in G.$$

Poulsen and Stetkær [9] found the complete set of continuous solutions of each of the functional equations

$$g(x\sigma(y)) = g(x)g(y) - f(y)f(x), \quad x, y \in G,$$

$$f(x\sigma(y)) = f(x)g(y) \pm f(y)g(x), \quad x, y \in G,$$

in which G is an arbitrary topological group.

As a continuation of these investigations we find the continuous solutions $f, g : G \to \mathbb{C}$ of each of the following integral versions of the addition and subtraction formulas for sine and cosine:

$$\int_{G} g(xyt)d\mu(t) = g(x)g(y) - f(x)f(y), \quad x, y \in G,$$
(2.1)

$$\int_{G} f(x\sigma(y)t)d\mu(t) = f(x)g(y) - g(x)f(y), \quad x, y \in G,$$
(2.2)

where G is a locally compact Hausdorff group and $\mu \in M_C(G)$. To solve Eq. (2.1) we reduce it, for a fixed complex constant α , to the functional equation

$$g(xy) = g(x)g(y) - f(x)f(y) + \alpha f(xy), \quad x, y \in G,$$

where the solutions were given in [12, Theorem 3.1] and to find the solutions of Eq. (2.2), we reduce it to the functional equation

$$f(x\sigma(y)) = f(x)g(y) - f(y)g(y) + \alpha g(x\sigma(y)), \quad x, y \in G.$$

The solutions of which are given in Proposition 4.1.

Note that if $\sigma = I$ then Eq. (2.2) has only "trivial" solutions (see Remark 4.3) and that the functional equation

$$\int_{G} f(xyt)d\mu(t) = f(x)g(y) + g(x)f(y), \quad x, y \in G,$$

has been resolved in [21].

The papers [10, 13, 16] have been an inspiration in their treatment of similar functional equations on groups or semigroups. We refer also to [14, 17, 20] for some contextual discussions and to [2, 5-7, 18, 19] for other integral functional equations.

3. The Solutions of the Integral Cosine Addition Law

The following result concerns solutions of

$$\int_{G} g(xyt)d\mu(t) = g(x)g(y) - f(x)f(y), \quad x, y \in G.$$
(3.1)

Theorem 3.1. Let G be a locally compact Hausdorff group. Assume that the pair $f, g \in C(G)$ is a solution of Eq. (3.1). Then we have the following possibilities:

- (1) g is any function on C(G) such that $\int_G g(xt)d\mu(t) = 0$ for all $x \in G$ and $f = \pm g$.
- (2) There exist constants $\gamma \in \mathbb{C}$, $\beta \in \mathbb{C}^*$ and a continuous character χ of G, with $\mu(\chi) = \frac{\beta^2 \gamma^2}{\beta}$, such that

$$f = \gamma \chi$$
 and $g = \beta \chi$.

(3) There exist constants $\gamma \in \mathbb{C}$, $q \in \mathbb{C}^*$ and a continuous character χ of G, with $\mu(\chi) = -\gamma \frac{1 \pm \sqrt{1+q^2}}{q}$, such that

$$g = \gamma q \frac{\chi}{2}, \quad f = \gamma \left(1 \pm \sqrt{1+q^2}\right) \frac{\chi}{2}.$$

(4) There exist constants $\gamma \in \mathbb{C}$, $q \in \mathbb{C}^*$ and two different continuous characters χ_1 and χ_2 of G, with $\mu(\chi_1) = \frac{-\gamma(1\pm\sqrt{1+q^2})}{q}$ and $\mu(\chi_2) = \frac{-\gamma(-1\pm\sqrt{1+q^2})}{q}$, such that

$$g = \gamma q \frac{\chi_1 - \chi_2}{2} \quad and \quad f = \gamma \left(\frac{\chi_1 + \chi_2}{2} \pm \sqrt{1 + q^2} \frac{\chi_1 - \chi_2}{2} \right).$$

(5) There exist constants $\gamma \in \mathbb{C}, \beta \in \mathbb{C}^*, q \in \mathbb{C} \setminus \{\pm \frac{\gamma}{\beta}\}$ and two different continuous characters χ_1 and χ_2 of G, with $\mu(\chi_1) = \beta - \frac{\gamma^2 + \gamma q}{1 + 2\delta}$ and $\mu(\chi_2) = \beta - \frac{\frac{\gamma^2}{\beta} - \gamma q}{1 - 2\delta}$, such that

$$\begin{split} f &= \gamma \frac{\chi_1 + \chi_2}{2} + q\beta \frac{\chi_1 - \chi_2}{2} \quad and \quad g = \beta \left(\frac{\chi_1 + \chi_2}{2} + \delta \frac{\chi_1 - \chi_2}{2} \right), \\ where \ \delta &:= \pm \sqrt{1 + q^2 - \left(\frac{\gamma}{\beta}\right)^2}. \end{split}$$

$$f = \chi(\gamma + \beta a)$$
 and $g = \beta \chi(1 + a).$

(7) There exist constants $\gamma \in \mathbb{C}$, $\beta \in \mathbb{C}^* \setminus \{-\gamma\}$, a function $a \in \mathcal{A}(G)$, and a continuous character χ of G, with $\mu(\chi) = \beta + \gamma$ and $\mu(a\chi) = \gamma + \frac{\gamma^2}{\beta}$ such that

$$f = \chi(\gamma + \beta a)$$
 and $g = \beta \chi(1 - a).$

Conversely, the formulas above for f and g define solutions of (3.1).

Proof. Let f, g be solutions of the Eq. (3.1). Letting y = e in (3.1) we get that

$$\int_{G} g(xt)d\mu(t) = \beta g(x) - \gamma f(x), \quad x \in G,$$
(3.2)

where $\beta = g(e)$ and $\gamma = f(e)$. So, using (3.2), we can reformulate the form of Eq. (3.1) as

$$\beta g(xy) = g(x)g(y) - f(x)f(y) + \gamma f(xy), \quad x, y \in G.$$
(3.3)

Case 1 Suppose that $\beta = 0$ then (3.3) gives

$$-\gamma f(xy) = g(x)g(y) - f(x)f(y), \quad x, y \in G.$$
 (3.4)

If $\gamma = 0$ then Eq. (3.4) becomes

$$g(x)g(y) = f(x)f(y), \quad x, y \in G,$$

thus g is any function and $f = \pm g$. On putting $f = \pm g$ in (3.1) we find that $\int_G g(xt)d\mu(t) = 0$, so we are in the case (1) of our statement.

If $\gamma \neq 0$ then from (3.4) we obtain the functional equation

$$F(xy) = F(x)F(y) - G(x)G(y), \quad x, y \in G,$$

where $F = \frac{1}{\gamma}f$ and $G = \frac{1}{\gamma}g$. The solutions of which were given in [12, Theorem 6.3]. We work our way through the 3 possibilities (a)–(c) presented by [12, Theorem 6.3] to see what the properties (3.2), that g(e) = 0 and $f(e) \neq 0$ entail.

(a) There exist constants $\gamma\in\mathbb{C},\,q\in\mathbb{C}^{\star}$ and a continuous character χ of G such that

$$g = \gamma q \frac{\chi}{2}$$
 and $f = \gamma (1 \pm \sqrt{1+q^2}) \frac{\chi}{2}$

If q = 0 then g = 0 and f = 0 so we are in (1) of our statement. If $q \neq 0$ then using (3.2) we infer that $\mu(\chi) = -\gamma \frac{1 \pm \sqrt{1+q^2}}{q}$. So we are in (3).

(b) There exist constants $\gamma \in \mathbb{C}, q \in \mathbb{C}^*$ and two different continuous characters χ_1 and χ_2 of G such that

$$g = \gamma q \frac{\chi_1 - \chi_2}{2}$$
 and $f = \gamma \left(\frac{\chi_1 + \chi_2}{2} \pm \sqrt{1 + q^2} \frac{\chi_1 - \chi_2}{2}\right).$

Case 2 Suppose that $\beta \neq 0$ then the Eq. (3.3) becomes

$$G(xy) = G(x)G(y) - F(x)F(y) + \frac{\gamma}{\beta}F(xy), \quad x, y \in G,$$

where $G = \frac{1}{\beta}g$ and $F = \frac{1}{\beta}f$. Applying [12, Theorem 3.1] we infer that there are only the following cases:

(i) g is any function and $f = \pm g$, by using (3.1) we get $\int_G g(xt)d\mu(t) = 0$. So we are in the case (1) of our statement.

(ii) There exist constants $\beta\in\mathbb{C}^{\star},\,q\in\mathbb{C}$ and a continuous character χ of G such that

$$f = \beta \left(q + \frac{\gamma}{\beta}\right) \frac{\chi}{2} \quad \text{and} \quad g = \beta \left(1 \pm \sqrt{1 + q^2 - \left(\frac{\gamma}{\beta}\right)^2}\right) \frac{\chi}{2}.$$
 (3.5)

Since $f(e) = \gamma$, using (3.5), we get that $q = \frac{\gamma}{\beta}$ and so

$$f = \gamma \chi$$
 and $g = \beta \chi$.

A small computation based on (3.2) shows that $\mu(\chi) = \frac{\beta^2 - \gamma^2}{\beta}$. So we are in the case (2) of our statement.

(iii) There exist a constant $q \in \mathbb{C} \setminus \{\pm_{\beta}^{\underline{\gamma}}\}\$ and two different continuous characters χ_1 and χ_2 of G such that

$$f = \gamma \frac{\chi_1 + \chi_2}{2} + q\beta \frac{\chi_1 - \chi_2}{2} \quad \text{and}$$
$$g = \beta \left(\frac{\chi_1 + \chi_2}{2} \pm \sqrt{1 + q^2 - \left(\frac{\gamma}{\beta}\right)^2} \frac{\chi_1 - \chi_2}{2} \right).$$

Putting $\delta = \pm \sqrt{\frac{1}{2}1 + q^2 - (\frac{\gamma}{\beta})^2}$. A small computation based on (3.2) shows that

$$\beta\left(\frac{1}{2}+\delta\right)\mu(\chi_1)\chi_1(x)+\beta\left(\frac{1}{2}-\delta\right)\mu(\chi_2)\chi_2(x)$$
$$=\left[\beta^2\left(\frac{1}{2}+\delta\right)-\gamma\beta\frac{\gamma+q}{2}\right]\chi_1(x)+\left[\beta^2\left(\frac{1}{2}-\delta\right)-\gamma\beta\frac{\gamma-q}{2}\right]\chi_2(x).$$

By the linear independence of different characters we infer that

$$\left(\frac{1}{2}+\delta\right)\mu(\chi_1)=\beta\left(\frac{1}{2}+\delta\right)-\frac{\gamma(\gamma+q)}{2},$$

and

$$\left(\frac{1}{2}-\delta\right)\mu(\chi_1)=\beta\left(\frac{1}{2}-\delta\right)-\frac{\gamma(\gamma+q)}{2}.$$

Since $q \in \mathbb{C} \setminus \{\pm \frac{\gamma}{\beta}\}$, then $\frac{1}{2} + \delta \neq 0 \neq \frac{1}{2} - \delta$ and so we find that

$$\mu(\chi_1) = \beta - \frac{\gamma(\gamma + q)}{1 + 2\delta}$$
 and $\mu(\chi_2) = \beta - \frac{\gamma(\gamma - q)}{1 - 2\delta}$.

So we are in the case (5) of our statement.

(iv) $\gamma \neq 0$, and there exist two different characters χ_1 and χ_2 of G such that $f = \gamma \chi_1$ and $g = \beta \chi_2$. Using (3.2) we get that

$$\beta\mu(\chi_2)\chi_2(x) = \beta^2\chi_2(x) - \gamma^2\chi_1(x) \quad \text{for all } x \in G,$$

which shows that $\mu(\chi_2) = \beta$ and $\gamma = 0$. So this case is excluded.

(v) There exist a character χ of G and $a \in \mathcal{A}(G) \setminus \{0\}$ such that

$$f = \beta \left(\frac{\gamma}{\beta} + a\right) \chi$$
 and $g = \beta (1 + a) \chi$.

Using (3.2) we obtain

$$(\beta - \gamma - \mu(\chi))a(x) = \frac{\gamma^2}{\beta} - \beta + \mu(a\chi) + \mu(\chi),$$

which implies that $\mu(\chi) = \beta - \gamma$ and $\mu(a\chi) = \gamma - \frac{\gamma^2}{\beta}$. So we are in the case (6) of our statement.

(vi) There exist a character χ of G and a function $a \in \mathcal{A}(G) \backslash \{0\}$ such that

$$f = \beta \left(\frac{\gamma}{\beta} + a\right) \chi$$
 and $g = \beta (1 - a) \chi$.

Using (3.2) we get that that $\mu(\chi) = \beta + \gamma$ and $\mu(a\chi) = \gamma + \frac{\gamma^2}{\beta}$. So we are in the case (7) of our statement.

Conversely, simple computations prove that the formulas above for f and g define solutions of (3.1).

In the following corollary we solve the functional equation

$$g(xyz_0) = g(x)g(y) - f(x)f(y), \quad x, y \in G,$$
(3.6)

for a fixed complex constant z_0 .

Corollary 3.2. Let G be a topological group. Assume that the pair $f, g \in C(G)$ is a solution of Eq. (3.6). Then we have the following possibilities:

- (1) $g \equiv 0$ and $f \equiv 0$.
- (2) There exist constants $\gamma \in \mathbb{C}$, $\beta \in \mathbb{C}^* \setminus \{\pm \gamma\}$ and a continuous character χ of G, with $\chi(z_0) = \frac{\beta^2 \gamma^2}{\beta}$, such that

$$f = \gamma \chi$$
 and $g = \beta \chi$.

(3) There exist constants $\gamma, q \in \mathbb{C}^*$ and a continuous character χ of G with $\chi(z_0) = -\gamma \frac{1 \pm \sqrt{1+q^2}}{q}$ such that $g = \gamma q \frac{\chi}{2}$ and $f = \gamma \left(1 \pm \sqrt{1+q^2}\right) \frac{\chi}{2}$.

(4) There exist constants
$$\gamma, q \in \mathbb{C}^*$$
 and two different continuous characters χ_1 and χ_2 of G , with $\chi_1(z_0) = \frac{-\gamma(1\pm\sqrt{1+q^2})}{q}$ and $\chi_2(z_0) = \frac{-\gamma(-1\pm\sqrt{1+q^2})}{q}$ such that

$$g = \gamma q \frac{\chi_1 - \chi_2}{2}$$
 and $f = \gamma \left(\frac{\chi_1 + \chi_2}{2} \pm \sqrt{1 + q^2} \frac{\chi_1 - \chi_2}{2}\right).$

(5) There exist constants $\gamma \in \mathbb{C}$, $\beta \in \mathbb{C}^*$, $q \in \mathbb{C} \setminus \{\pm \frac{\gamma}{\beta}\}$ and two different continuous characters χ_1 and χ_2 of G, with $\chi_1(z_0) = \beta - \frac{\gamma^2 + \gamma q}{1 + 2\delta}$ and $\chi_2(z_0) = \beta - \frac{\frac{\gamma^2}{\beta} - \gamma q}{1 - 2\delta}$, such that

$$f = \gamma \frac{\chi_1 + \chi_2}{2} + q\beta \frac{\chi_1 - \chi_2}{2} \quad and \quad g = \beta \left(\frac{\chi_1 + \chi_2}{2} + \delta \frac{\chi_1 - \chi_2}{2} \right),$$

where $\delta := \pm \sqrt{1 + q^2 - (\frac{\gamma}{2})^2}$

where $\delta := \pm \sqrt{1 + q^2 - (\frac{\gamma}{\beta})^2}$.

(6) There exist constants $\gamma \in \mathbb{C}$, $\beta \in \mathbb{C} \setminus \{0, \gamma\}$, a function $a \in \mathcal{A}(G)$, a continuous character χ of G, with $\chi(z_0) = \beta - \gamma$ and $a(z_0) = \frac{\gamma}{\beta}$, such that

$$f = \chi(\gamma + \beta a)$$
 and $g = \beta \chi(1 + a).$

(7) There exist constants $\gamma \in \mathbb{C}$, $\beta \in \mathbb{C}^* \setminus \{-\gamma\}$, a function $a \in \mathcal{A}(G)$, and a continuous character χ of G, with $\chi(z_0) = \beta + \gamma$ and $a(z_0) = \frac{\gamma}{\beta}$, such that

$$f = \chi(\gamma + \beta a)$$
 and $g = \beta \chi(1 - a)$.

Conversely, the formulas above for f and g define solutions of (3.6).

Proof. As the proof of Theorem 3.1 with $\mu = \delta_{z_0}$ and the fact that $\chi(z_0) \neq 0$.

4. The Solutions of the Integral Sine Subtraction Law with Involution

The purpose of this section is first to give an explicit description of the continuous solutions of the functional equation

$$f(x\sigma(y)) = f(x)g(y) - g(x)f(y) + \alpha g(x\sigma(y)), \quad x, y \in G,$$

$$(4.1)$$

where $f, g: G \to \mathbb{C}$ are unknown functions. And secondly to determine the continuous solutions $f, g: G \to \mathbb{C}$ of the functional equation (2.2), namely

$$\int_{G} f(x\sigma(y)t)d\mu(t) = f(x)g(y) - g(x)f(y), \quad x, y \in G,$$
(4.2)

where $\mu \in M_C(G)$, in terms of characters and additive maps of G.

If $\alpha = 0$, the solutions of (4.2) were given in [9, Theorem II.2], so in the following proposition we are only concerned with the case $\alpha \neq 0$.

Proposition 4.1. Let G be a topological group and $\alpha \in \mathbb{C}^*$. The solutions $f, g \in C(G)$ of the functional equation (4.1) are the following.

(1) f and g are linearly dependent and g any function.(2)

$$g = \frac{\chi + \chi \circ \sigma}{2} + c \frac{\chi - \chi \circ \sigma}{2},$$

$$f = \alpha \frac{\chi + \chi \circ \sigma}{2} + c_1 \frac{\chi - \chi \circ \sigma}{2} \quad and \quad \chi \neq \chi \circ \sigma.$$

(3)

$$g = \chi(1 + ca), \quad f = \alpha \chi(1 + (c+1)a) \quad and \quad \chi = \chi \circ \sigma.$$

where χ is a continuous character of G, $a \in \mathcal{A}^{-}(G)$ and c, c_1 are complex constants.

Proof. We define the function $F(x) := \frac{1}{\alpha}f(x) - g(x)$. Then the Eq. (4.1) becomes

$$F(x\sigma(y)) = F(x)g(y) - F(y)g(x), \ x, y \in G.$$

In view of [9, Theorem II.2] we infer that there are only the following three cases (1)-(3) listed above.

Conversely, simple computations prove that the formulas above for f and g define solutions of (4.1).

In the following theorem we solve the functional equation (4.2).

Theorem 4.2. Let G be a locally compact Hausdorff group. Assume that the pair $f, g \in C(G)$ is a solution of Eq. (4.2). Then we have the following possibilities:

- (1) g and f are linearly dependent and f is any function such that $\int_G f(\cdot t) d\mu(t) = 0$.
- (2) There exist constants $\gamma, \beta \in \mathbb{C}^*$ and a continuous character χ of G, with $\chi \neq \chi \circ \sigma$ and $\mu(\chi) = 0$, such that

$$f = \gamma \chi$$
 and $g = \beta \chi$.

(3) There exist constants $c, c_1 \in \mathbb{C}$, $\beta \in \mathbb{C}^*$, $\gamma \in \mathbb{C} \setminus \{\pm c_1\}$ and a continuous character χ of G, with $\chi \neq \chi \circ \sigma$ and $\mu(\chi) = \frac{\beta c_1 - \gamma \beta c}{\gamma + c_1}$ and $\mu(\chi \circ \sigma) = \frac{-\beta c_1 + \gamma \beta c}{\gamma - c_1}$, such that

$$f = \gamma \frac{\chi + \chi \circ \sigma}{2} + c_1 \frac{\chi - \chi \circ \sigma}{2} \quad and \quad g = \beta \left(\frac{\chi + \chi \circ \sigma}{2} + c \frac{\chi - \chi \circ \sigma}{2} \right).$$

(4) There exist constants $c, c_1 \in \mathbb{C}, \ \gamma \in \mathbb{C} \setminus \{0, \pm c\}$, and a continuous character χ of G, with $\chi \neq \chi \circ \sigma$, $\mu(\chi) = -\frac{\gamma c_1}{\gamma + c}$ and $\mu(\chi \circ \sigma) = \frac{\gamma c_1}{\gamma - c}$, such that

$$f = \gamma \left(\frac{\chi + \chi \circ \sigma}{2} + c \frac{\chi - \chi \circ \sigma}{2} \right)$$
 and $g = c_1 \frac{\chi - \chi \circ \sigma}{2}$.

(5) There exist constants $\gamma, c \in \mathbb{C}^*$, a function $a \in \mathcal{A}^-(G) \setminus \{0\}$ and a continuous character χ of G, with $\chi = \chi \circ \sigma$ and $\mu(a\chi) = (\mu(\chi))^2$, such that

$$f = \gamma \chi (1 - \frac{1}{\mu(\chi)}a)$$
 and $g = \chi a$

(6) There exist constants $c \in \mathbb{C}$, a function $a \in \mathcal{A}^{-}(G) \setminus \{0\}$ and a continuous character χ of G, with $\chi = \chi \circ \sigma$ and $\mu(a\chi) = 0$, such that

$$f = \chi a$$
 and $g = \mu(\chi)\chi(1 + ca).$

(7) There exist constants $\beta, \gamma \in \mathbb{C}^*$, $c \in \mathbb{C} \setminus \{-1\}$, a function $a \in \mathcal{A}^-(G) \setminus \{0\}$ and a continuous character χ of G, with $\chi = \chi \circ \sigma$ and $\mu(\chi) = -(c + 1)\mu(a\chi) = \frac{-\beta}{c+1}$, such that

$$f = \gamma \chi (1 + (c+1)a), \quad g = \beta \chi (1 + ca).$$

Conversely, the formulas above for f and g define solutions of (4.2).

Proof. Putting y = e in (4.2) we get that

$$\int_{G} f(xt)d\mu(t) = \beta f(x) - \gamma g(x), \quad x \in G,$$
(4.3)

where $\gamma := f(e)$ and $\beta := g(e)$. So, using (4.3), we can reformulate the form of Eq. (4.1) as

$$\beta f(x\sigma(y)) = f(x)g(y) - f(y)g(x) + \gamma g(x\sigma(y)), \quad x, y \in G.$$
(4.4)

We break the job into two cases: $\beta = 0$ and $\beta \neq 0$.

Case 1 Suppose that $\beta = 0$, then from (4.4) we get that

$$\gamma g(x\sigma(y)) = g(x)f(y) - g(y)f(x), \quad x, y \in G.$$

First we suppose that $\gamma = 0$, then f(x)g(y) = f(y)g(x) for all $x, y \in G$, thus f and g are proportional and f is any function such that $\int_G f(\cdot t)d\mu(t) = 0$. So we are in the case (1) of our statement. If $\gamma \neq 0$ then Eq. (4.4) becomes

$$g(x\sigma(y)) = g(x)F(y) - g(y)F(x), \quad x, y \in G,$$
(4.5)

where $F := \frac{1}{\gamma} f$. This functional equation was solved in [9, Theorem II.2] according to which there exist constants $c, c_1 \in \mathbb{C}^*$, a function $a \in \mathcal{A}^-(G)$ and a continuous character χ of G such that:

(i) g = 0 and f any function such that $\int_G f(\cdot t) d\mu(t) = 0$. So we are in the case (1).

(ii)
$$g = c_1 \frac{\chi - \chi \circ \sigma}{2}, \ f = \gamma [\frac{\chi + \chi \circ \sigma}{2} + c \frac{\chi - \chi \circ \sigma}{2}], \ \chi \neq \chi \circ \sigma.$$
 Using (4.3) we get
 $(\gamma + c)\mu(\chi) = -\gamma c_1$ and $(\gamma - c)\mu(\chi \circ \sigma) = \gamma c_1.$

Suppose that $\gamma = \pm c$ then $c_1 = 0$ so g = 0 and we are also in the case (1). If $\gamma \neq \pm c$ then $\mu(\chi) = \frac{-\gamma c_1}{\gamma + c}$ and $\mu(\chi \circ \sigma) = \frac{\gamma c_1}{\gamma - c}$. So we are in (4).

(iii) $g = \chi a$, $f = \gamma \chi (1 + ca)$. Using (4.3) we get

$$1 + c\mu(\chi) = 0 \quad \text{and} \quad \mu(\chi) + c\mu(a\chi) = 0,$$

then $c \neq 0$ and so $\mu(\chi) = \frac{-1}{c}$ and $\mu(a\chi) = \frac{1}{c^2} = (\mu(\chi))^2$. So we are in (5).

Case 2 Suppose that $\beta \neq 0$. we can reformulate the form of Eq. (4.4) as

$$f(x\sigma(y)) = f(x)G(y) - f(y)G(x) + \gamma G(x\sigma(y)), \quad x, y \in G,$$
(4.6)

where $G := \frac{1}{\beta}g$, the solutions of which, in the subcase $\gamma = 0$, are given in [9, Theorem II.2]. When we analyse them we find, using the notation in [9, Theorem II.2] with *m* replaced here by χ , that:

(i) f = 0, g is any function. So we are in (1).

(ii) $f = c_1 \frac{\chi - \chi \circ \sigma}{2}, \ g = \beta [\frac{\chi + \chi \circ \sigma}{2} + c \frac{\chi - \chi \circ \sigma}{2}], \ \chi \neq \chi \circ \sigma$. A small computation based on (4.3) shows that

$$c_1\mu(\chi) = \beta c_1$$
 and $c_1\mu(\chi \circ \sigma) = \beta c_1$.

If $c_1 = 0$ then f = 0. So we are also in the case (1) of our statement and if $c_1 \neq 0$ we get $\mu(\chi) = \mu(\chi \circ \sigma) = \beta$. So we are in the case (3) (because here $\gamma = 0$).

(iii) $f = \chi a, g = \beta \chi (1 + ca)$ and $\chi = \chi \circ \sigma$. A computation based on (4.3) shows that

$$\mu(\chi) = \beta$$
 and $\mu(a\chi) = 0$,

so we are in (6).

For the subcase $\gamma \neq 0$, according to Proposition (4.1) the solutions of (4.6). are the following, where χ is a continuous character, $a \in \mathcal{A}^-(G) \setminus \{0\}$ and c, c_1 are complex constants.

(a) $f = \gamma g$ and g any function, using (4.2) we get that $\int_G f(\cdot t) d\mu(t) = 0$, so we are in (1).

(b)

$$g = \beta \left(\frac{\chi + \chi \circ \sigma}{2} + c \frac{\chi - \chi \circ \sigma}{2} \right), \quad f = \gamma \frac{\chi + \chi \circ \sigma}{2} + c_1 \frac{\chi - \chi \circ \sigma}{2}$$

and $\chi \neq \chi \circ \sigma.$

A small computation based on (4.3) shows that

$$\begin{aligned} &(\gamma+c_1)\mu(\chi)\chi(x)+(\gamma-c_1)\mu(\chi\circ\sigma)\chi\circ\sigma(x)\\ &=\left[\beta(\gamma+c_1)-\gamma\beta(1+c)\right]\chi(x)+\left[\beta(\gamma-c_1)-\gamma\beta(1-c)\right]\chi_2(x).\end{aligned}$$

By the linear independence of different characters we infer that

$$(\gamma + c_1)\mu(\chi) = \beta(\gamma + c_1) - \gamma\beta(1 + c),$$

and

$$(\gamma - c_1)\mu(\chi \circ \sigma) = \beta(\gamma - c_1) - \gamma\beta(1 - c).$$

If $\gamma = c_1$ then c = 1 therefore $\mu(\chi) = 0$. So we are in the case (2) of our statement.

If $\gamma = -c_1$ then c = -1 therefore $\mu(\chi \circ \sigma) = 0$. So we are also in case (2) of our statement with χ replaced by $\chi \circ \sigma$.

If $c_1 \neq \gamma \neq -c_1$ then $\mu(\chi) = \beta - \gamma \beta \frac{1+c}{\gamma+c_1} = \frac{\beta c_1 - \gamma \beta c}{\gamma+c_1}$ and $\mu(\chi \circ \sigma) = \beta - \gamma \beta \frac{1-c}{\gamma-c_1} = \frac{-\beta c_1 + \gamma \beta c}{\gamma-c_1}$. So we are in the case (3) of our statement. (c)

$$g = \beta \chi(1 + ca), \ f = \gamma \chi(1 + (c+1)a)$$
 and $\chi = \chi \circ \sigma.$

A small computation based on (4.3) shows that

$$[(c+1)\mu(\chi) + \beta(c+1) - \beta c] a(x) = -\mu(\chi) - (c+1)\mu(a\chi),$$

then

$$(c+1)\mu(\chi) = -\beta(c+1) + \beta c,$$
 (4.7)

and

$$\mu(\chi) = -(c+1)\mu(a\chi),$$

and so $c \neq -1$ because otherwise (4.7) implies $\beta c = -\beta = 0$. Therefore

$$\mu(\chi) = -\beta + \frac{\beta c}{c+1} = -(c+1)\mu(a\chi).$$

So we are in (7).

Conversely, simple computations prove that the formulas above for f define solutions of (4.2).

Remark 4.3. Let G be a locally compact Hausdorff group. If we analyse the different assertions of Theorem 4.2 in the case where $\sigma = I$, we find that the continuous solutions of the following functional equation

$$\int_G f(xyt)d\mu(t) = f(x)g(y) - f(y)g(x), \quad x, y \in G,$$

are the pair (f,g) such that g and f are linearely dependent and f is any function on C(G) satisfying $\int_G f(\cdot t)d\mu(t) = 0$. Indeed, in the cases (2)–(4) of Theorem 4.2 we have $\chi \neq \chi \circ \sigma$ so they do not occur here, and in the cases (5)–(7) we have a = 0 and so f = 0 or g = 0.

In the following corollary we solve the functional equation

$$f(xyz_0) = f(x)g(y) - f(y)g(x), \quad x, y \in G,$$
(4.8)

for a fixed complex constant z_0 .

Corollary 4.4. Let G be a topological group. Assume that the pair $f, g \in C(G)$ is a solution of Eq. (4.8). Then we have the following possibilities:

- (1) $f \equiv 0$ and g is arbitrary in $C(\mathbb{R})$.
- (2) There exist constants $c, c_1 \in \mathbb{C}$, $\beta \in \mathbb{C}^*$, $\gamma \in \mathbb{C} \setminus \{\pm c_1\}$ and a continuous character χ of G, with $\chi \neq \chi \circ \sigma$ and $\chi(z_0) = \frac{\beta c_1 \gamma \beta c}{\gamma + c_1}$ and $\chi \circ \sigma(z_0) = \frac{-\beta c_1 + \gamma \beta c}{\gamma c_1}$, such that

$$f = \gamma \frac{\chi + \chi \circ \sigma}{2} + c_1 \frac{\chi - \chi \circ \sigma}{2} \quad and \quad g = \beta \left[\frac{\chi + \chi \circ \sigma}{2} + c \frac{\chi - \chi \circ \sigma}{2} \right]$$

(3) There exist constants $c \in \mathbb{C}, c_1 \in \mathbb{C}^*, \gamma \in \mathbb{C} \setminus \{0, \pm c\}$, and a continuous character χ of G, with $\chi \neq \chi \circ \sigma, \chi(z_0) = -\frac{\gamma c_1}{\gamma + c}$ and $\chi \circ \sigma(z_0) = \frac{\gamma c_1}{\gamma - c}$, such that

$$f = \gamma \left[\frac{\chi + \chi \circ \sigma}{2} + c \frac{\chi - \chi \circ \sigma}{2} \right]$$
 and $g = \frac{c_1}{2} (\chi - \chi \circ \sigma).$

(4) There exist constants $\gamma, c \in \mathbb{C}^*$, $a \in \mathcal{A}^-(G) \setminus \{0\}$ and a continuous character χ of G, with $\chi = \chi \circ \sigma$ and $a(z_0) = \chi(z_0)$, such that

$$f = \gamma \chi \left(1 - \frac{1}{\chi(z_0)} a \right)$$
 and $g = \chi a$

(5) There exist a constant $c \in \mathbb{C}$, $a \in \mathcal{A}^{-}(G) \setminus \{0\}$ and a continuous character χ of G, with $\chi = \chi \circ \sigma$ and $a(z_0) = 0$, such that

$$f = \chi a$$
 and $g = \chi(z_0)\chi(1+ca).$

(6) There exist constants $\beta, \gamma \in \mathbb{C}^*$, $c \in \mathbb{C} \setminus \{-1\}$, $a \in \mathcal{A}^-(G) \setminus \{0\}$ and a continuous character χ of G, with $\chi = \chi \circ \sigma$, $a(z_0) = \frac{-1}{c+1}$ and $\chi(z_0) = \frac{-\beta}{c+1}$ such that

 $f = \gamma \chi (1 + (c+1)a)$ and $g = \beta \chi (1 + ca).$

Conversely, the formulas above for f and g define solutions of (4.1).

Proof. As the proof of Theorem 4.2 with $\mu = \delta_{z_0}$ and the fact that $\chi(z_0) \neq 0$.

5. Examples

Example 5.1. Let $G = (\mathbb{R}, +)$, $\sigma(x) = -x$ for all $x \in \mathbb{R}$, $z_0 \in \mathbb{R} \setminus \{0\}$ be a fixed element, and let $\mu = \delta_{z_0}$.

We indicate here the corresponding continuous solutions of Eq. (4.2) [i.e. (4.8)] by the help of Corollary 4.4.

The continuous characters on \mathbb{R} are known to be $\chi(x) = e^{\lambda x}$, $x \in \mathbb{R}$, where λ ranges over \mathbb{C} (see for instance [11, Example 3.7(a)]). The condition $\chi \circ \sigma(z_0) = \chi(z_0)$, i.e. $\chi(2z_0) = 1$, of Theorem 4.2(3) i.e (of course in the case $\gamma = 0$) becomes $e^{2\lambda z_0} = 1$, which reduces to $\lambda = i \frac{n\pi}{z_0}$, where $n \in \mathbb{Z}$. The relevant characters are thus

$$\chi_n(x) := e^{i\frac{n\pi}{2z_0}x}, \quad x \in \mathbb{R}, \text{ and } n \in \mathbb{Z}.$$

The continuous additive functions on \mathbb{R} are the functions of the form $a(x) = \alpha x, x \in \mathbb{R}$, where the constant α ranges over \mathbb{C} (see for instance [11, Corollary 2.4]). In the point (6) of Corollary 4.4 we have $a(z_0) = 0$ which reduces to $\alpha = 0$ i.e. a = 0 and f = 0. So this case does not occur here.

In conclusion, by help of Corollary 4.4 we find that the continuous solutions $f, g: \mathbb{R} \to \mathbb{C}$ of the functional equation (4.2), which is here

$$f(x - y + z_0) = f(x)g(x) - f(y)g(x), \quad x, y \in \mathbb{R},$$

are

(1) f = 0 and g is arbitrary in $C(\mathbb{R})$. (2)

 $f(x) = \gamma \cos \lambda x + c_1 \sin \lambda x$ and $g = \beta [\cos \lambda x + c \sin \lambda x], \quad x \in \mathbb{R},$

for some constants $c_1 \in \mathbb{C}^*$, $c \in \mathbb{C}$, $\lambda, \beta \in \mathbb{C}^*$, and $\gamma \in \mathbb{C} \setminus \{\pm c_1\}$ such that

$$e^{i\lambda z_0} = \frac{\beta c_1 - \gamma\beta c}{\gamma + c_1} = \frac{\gamma - c_1}{-\beta c_1 + \gamma\beta c}$$

In particular, if $\gamma = 0$ we obtain

$$f(x) = c_1 \sin \frac{n\pi}{z_0} x \quad \text{and} \quad g(x) = (-1)^n \left[\cos \frac{n\pi}{z_0} x + c \sin \frac{n\pi}{z_0} x \right], \quad x \in \mathbb{R},$$

for some constants $c_1 \in \mathbb{C}^*$, $c \in \mathbb{C}$ and $n \in \mathbb{Z}$.

(3)

 $f(x) = \gamma [\cos \lambda x + c \sin \lambda x], \quad x \in \mathbb{R} \quad \text{and} \quad g(x) = \frac{c_1}{2} \sin \lambda x,$ for some constants $c, c_1 \in \mathbb{C}, \ \lambda \in \mathbb{C}^*$, and $\gamma \in \mathbb{C} \setminus \{0, \pm c\}$ such that

$$e^{i\lambda z_0} = \frac{-\gamma c_1}{\gamma + c} = \frac{\gamma - c}{\gamma c_1}.$$

(4)

$$f(x) = \gamma \left(1 - \frac{x}{z_0}\right)$$
 and $g(x) = \frac{x}{z_0}, x \in \mathbb{R}$,
some $\gamma \in \mathbb{C}^*$.

for some
$$\gamma \in \mathbb{C}$$
 (5)

$$\begin{split} f(x) &= \gamma \left(1 - \frac{x}{z_0} \right) \quad \text{and} \quad g(x) = \beta \left(1 - \frac{cx}{(c+1)z_0} \right), \quad x \in \mathbb{R}, \\ \text{for some } \gamma, \beta \in \mathbb{C}^{\star} \text{ and } c \in \mathbb{C} \backslash \{-1\} \text{ such that } \beta = c+1. \end{split}$$

Example 5.2. Let z_0 be a non-zero real number, we seek the solutions $f, g \in C(\mathbb{R})$ of the functional equation (3.1) which is here

$$g(x+y+z_0) = g(x)g(y) - f(x)f(y), \quad x, y \in \mathbb{R}.$$

According to Corollary 3.2, we have only the following cases:

(1) g = 0 and f = 0. (2)

$$f(x) = \gamma e^{\lambda x}$$
 and $g(x) = \beta e^{\lambda x}, x \in \mathbb{R},$

for some constants $\beta, \lambda \in \mathbb{C}^*, \gamma \in \mathbb{C}$ such that $e^{\lambda z_0} = \frac{\beta^2 - \gamma^2}{\beta}$. (3)

$$g(x) = \gamma q \frac{e^{\lambda x}}{2}$$
 and $: f(x) = \gamma (1 \pm \sqrt{1+q^2}) \frac{e^{\lambda x}}{2}$ for all $x \in \mathbb{R}$.

for some constants $q \in \mathbb{C}^*$ and $\lambda \in \mathbb{C}$ such that $e^{\lambda z_0} = -\gamma \frac{1 \pm \sqrt{1+q^2}}{q}$. (4)

$$g(x) = \gamma q \frac{e^{\lambda_1 x} - e^{\lambda_2 x}}{2},$$

and

$$f(x) = \gamma \left(\frac{e^{\lambda_1 x} + e^{\lambda_2 x}}{2} \pm \sqrt{1 + q^2} \frac{e^{\lambda_1 x} - e^{\lambda_2 x}}{2}\right), \quad x \in \mathbb{R},$$

for some constants $q \in \mathbb{C}^{\star}$ and $\lambda_1, \lambda_2 \in \mathbb{C}$ such that

$$\lambda_1 \neq \lambda_2, \ e^{\lambda_1 z_0} = \frac{-\gamma(1 \pm \sqrt{1+q^2})}{q} \quad \text{and} \quad e^{\lambda_2 z_0} = \frac{-\gamma(-1 \pm \sqrt{1+q^2})}{q}$$

(5)

$$f(x) = \gamma \frac{e^{\lambda_1 x} + e^{\lambda_2 x}}{2} + q\beta \frac{e^{\lambda_1 x} - e^{\lambda_2 x}}{2},$$

and

$$g(x) = \beta \left(\frac{e^{\lambda_1 x} + e^{\lambda_2 x}}{2} + \delta \frac{e^{\lambda_1 x} - e^{\lambda_2 x}}{2} \right) \quad \text{ for all } x \in \mathbb{R},$$

for some constants $\gamma \in \mathbb{C}$, $\beta \in \mathbb{C}^*$, $q \in \mathbb{C} \setminus \{\pm \frac{\gamma}{\beta}\}$ and two different complex numbers λ_1 , λ_2 such that $e^{\lambda_1 z_0} = \beta - \frac{\gamma^2 + \gamma q}{1 + 2\delta}$ and $e^{\lambda_2 z_0} = \beta - \frac{\frac{\gamma^2}{\beta} - \gamma q}{1 - 2\delta}$, where $\delta := \pm \sqrt{1 + q^2 - (\frac{\gamma}{\beta})^2}$. (6)

$$f(x) = e^{\lambda x} \left(\gamma + \frac{\gamma x}{z_0}\right)$$
 and $g(x) = e^{\lambda x} \left(\beta + \frac{\gamma x}{z_0}\right)$, $x \in \mathbb{R}$,

for some constants $\lambda, \gamma \in \mathbb{C}$ and $\beta \in \mathbb{C}^* \setminus \{\gamma\}$ such that $e^{\lambda z_0} = \beta - \gamma$. (7)

$$f(x) = e^{\lambda x} \left(\gamma + \frac{\gamma x}{z_0} \right)$$
 and $g(x) = e^{\lambda x} \left(\beta - \frac{\gamma x}{z_0} \right)$, $x \in \mathbb{R}$,

for some constants $\lambda, \gamma \in \mathbb{C}$ and $\beta \in \mathbb{C}^* \setminus \{-\gamma\}$ such that $e^{\lambda z_0} = \beta + \gamma$.

Example 5.3. For an application of our results on a non-abelian group, consider the 3-dimensional Heisenberg group $G = H_3$ described in [11, Example A.17(*a*)], and take as the involutive automorphism

$$\sigma \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b & c \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -b & -c + ab \\ 0 & 1 & -a \\ 0 & 0 & 1 \end{pmatrix} \text{ for } a, b, c \in \mathbb{R}.$$

$$a_0 = \begin{pmatrix} 1 & a_0 & c_0 \\ 0 & 1 & b_0 \end{pmatrix} \text{ be a fixed element of } H_3 \text{ such that } a_0 + b_0 \neq 0,$$

Let $Z_0 = \begin{pmatrix} 1 & a_0 & c_0 \\ 0 & 1 & b_0 \\ 0 & 0 & 1 \end{pmatrix}$ be a fixed element of H_3 such that $a_0 + b_0 \neq 0$, and let

 $\mu = \delta_{Z_0}$. We write down the continuous solutions of Eq. (4.2).

The continuous characters on H_3 are parametrized by $(u, v) \in \mathbb{C}^2$ as follows (see, e.g., [4, Example 5.2]).

$$\chi_{u,v} \begin{pmatrix} 1 \ a \ c \\ 0 \ 1 \ b \\ 0 \ 0 \ 1 \end{pmatrix} = e^{ua+vb} \quad \text{for} \ a, b, c \in \mathbb{R}.$$

We compute that $\chi_{u,v} \circ \sigma = \chi_{-v,-u}$, so $\chi_{u,v} \circ \sigma = \chi_{u,v}$, if and only if v = -u, and in that case

$$\chi_{u,-u} \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} = e^{u(a-b)} \quad \text{for} \quad a, b, c \in \mathbb{R}.$$

In view of [4, Example 5.2], the continuous additive functions A on H_3 , satisfying $A \circ \sigma = -A$, are parametrized by $\lambda \in \mathbb{C}$ as follows

$$A_{\lambda} \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} = \lambda(a+b) \quad \text{for } a, b, c \in \mathbb{R}.$$

Now we are in the position to describe the solutions $f, g \in C(H_3)$ of the functional equation (4.2), which is here

$$f(X\sigma(Y)Z_0) = f(X)g(Y) - f(Y)g(X), \quad X, Y \in H_3.$$

By Corollary 4.4, there exist constants $\alpha, \beta \in \mathbb{C}$ such that

(1) f = 0 and g is arbitrary in $C(H_3)$. (2)

$$\begin{split} f\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} &= \gamma \frac{e^{ua+vb} + e^{-va-ub}}{2} + c_1 \frac{e^{ua+vb} - e^{-va-ub}}{2}, \quad a, b, c \in \mathbb{R}, \\ g\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} &= \beta \left[\frac{e^{ua+vb} + e^{-va-ub}}{2} + c \frac{e^{ua+vb} - e^{-va-ub}}{2} \right], \quad a, b, c \in \mathbb{R}, \end{split}$$

for some constants $c_1 \in \mathbb{C}^*$, $c \in \mathbb{C}$, $u, v, \beta \in \mathbb{C}^*$, and $\gamma \in \mathbb{C} \setminus \{\pm c_1\}$ such that $v \neq -u$, $e^{ua_0 + vb_0} = \frac{\beta c_1 - \gamma \beta c}{\gamma + c_1}$ and $e^{-va_0 - b_0} = \frac{-\beta c_1 + \gamma \beta c}{\gamma - c_1}$. (3)

$$\begin{split} f\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} &= \gamma \left[\frac{e^{ua+vb} + e^{-va-ub}}{2} + c \frac{e^{ua+vb} - e^{-va-ub}}{2} \right], \quad a, b, c \in \mathbb{R}, \\ g\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} &= \frac{c_1}{2} \left[\frac{e^{ua+vb} - e^{-va-ub}}{2} \right], \quad a, b, c \in \mathbb{R}, \end{split}$$

for some constants $c, c_1 \in \mathbb{C}$, $u, v \in \mathbb{C}$, and $\gamma \in \mathbb{C} \setminus \{0, \pm c\}$ such that $v \neq -u, e^{ua_0 + vb_0} = \frac{-\gamma c_1}{\gamma + c}$ and $e^{-va_0 - b_0} = \frac{\gamma c_1}{\gamma - c}$. (4)

$$f\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} = \gamma e^{u(a-b)} \left[1 - \frac{a+b}{a_0+b_0} \right], \quad a, b, c \in \mathbb{R},$$
$$g\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} = \frac{a+b}{a_0+b_0} e^{u(a+a_0-b-b_0)}, \quad a, b, c \in \mathbb{R},$$

for some $u \in \mathbb{C}$ and $\gamma \in \mathbb{C}^*$.

(5)

$$\begin{aligned} f\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} &= \gamma e^{u(a-b)} \left[1 - \frac{a+b}{a_0+b_0} \right], & a, b, c \in \mathbb{R}, \\ g\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} &= \beta e^{u(a-b)} (1 + c \frac{e^{u(a_0-b_0)}}{a_0+b_0} (a+b)) \\ &= \beta e^{u(a-b)} + c \frac{a+b}{a_0+b_0} e^{u(a+a_0-b-b_0)}, & a, b, c \in \mathbb{R}, \end{aligned}$$

for some $u \in \mathbb{C}$, $\gamma, \beta \in \mathbb{C}^*$ and $c \in \mathbb{C} \setminus \{-1\}$.

Example 5.4. Consider the (ax + b)-group $G := \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a > 0, b \in \mathbb{R} \right\}$ and let σ be the involutive automorphism defined by

$$\sigma \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & -b \\ 0 & 1 \end{pmatrix}$$
 for $a > 0$ and $b \in \mathbb{R}$.

Let Z_0 be a fixed element on G and let $\mu = \delta_{Z_0}$. We indicate here the corresponding continuous solutions of Eq. (4.2).

The continuous characters on G are parametrized by $\lambda \in \mathbb{C}$ as follows (see, e.g., [11, Example 3.13]).

$$\chi_{\lambda} \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = a^{\lambda} \quad \text{for } a > 0 \quad \text{and} \quad b \in \mathbb{R}.$$

So the condition $\chi_{\lambda} \circ \sigma = \chi_{\lambda}$ is always satisfied.

In view of [11, Example 2.10], the continuous additive functions on G are parametrized by $\lambda \in \mathbb{C}$ as follows

$$a_{\lambda} \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} = \lambda \ln a \quad \text{for } a > 0 \quad \text{and} \quad b \in \mathbb{R}.$$

Then $a_{\lambda} \circ \sigma = a_{\lambda}$ for all $\lambda \in \mathbb{C}$ and so $\mathcal{A}^{-}(G) = \{0\}$.

In conclusion, by help of Corollary 4.4, we find that the continuous solutions $f, g \in C(G)$ of the functional equation (4.2), which is here

$$f(X\sigma(Y)Z_0) = f(X)g(Y) - f(Y)g(X), \quad X, Y \in G,$$

are: f = 0 and g is arbitrary in C(G).

References

- Aczél, J.: Lectures on Functional Equations and Their Applications. Mathematics in Science and Engineering, vol. 19. Academic Press, New York (1966)
- [2] Akkouchi, M., Bakali, A., Khalil, I.: A class of functional equations on a locally compact group. J. Lond. Math. Soc. 57(2), 694–705 (1998)

- [3] Chung, J.K., Kannappan, P., Ng, C.T.: A generalization of the cosine-sine functional equation on groups. Linear Algebra Appl. 66, 259–277 (1985)
- [4] Ebanks, B.R., Stetkær, H.: d'Alembert's other functional equation on monoids with an involution. Aequat. Math. 89, 187–206 (2015)
- [5] Elqorachi, E., Redouani, A.: Trigonometric formulas and μ-spherical functions. Aequat. Math. 72, 60–77 (2006)
- [6] Fadli, B., Zeglami, D., Kabbaj, S.: Generalized Van Vleck's equation on locally compact groups. Proyecc. J. Math. 36(4), 545–566 (2017)
- [7] Gajda, Z.: A generalization of d'Alembert's functional equation. Funkc. Ekvacioj 33, 69–77 (1990)
- [8] Kannappan, P.: Functional Equations and Inequalities with Applications. Springer, New York (2009)
- [9] Poulsen, T.A., Stetkær, H.: On the trigonometric subtraction and addition formulas. Aequat. Math. 59(1-2), 84–92 (2000)
- [10] Stetkær, H.: Trigonometric functional equations of rectangular type. Aequat. Math. 56(3), 251–270 (1998)
- [11] Stetkær, H.: Functional Equations on Groups. World Scientific Publishing Company, Singapore (2013)
- [12] Stetkær, H.: The cosine addition law with an additional term. Aequat. Math. 90(6), 1147–1168 (2016)
- Stetkær, H.: Kannappan's functional equation on semigroups with involution. Semigroup Forum 94(1), 17–30 (2017)
- [14] Stetkær, H.: Van Vleck's functional equation for the sine. Aequat. Math. 90(1), 25–34 (2016)
- [15] Székelyhidi, L.: Convolution Type Functional Equations on Topological Abelian Groups. World Scientific Publishing Company, Singapore (1991)
- [16] Van Vleck, E.B.: A functional equation for the sine. Ann. Math. Second Ser. 11(4), 161–165 (1910)
- [17] Zeglami, D., Kabbaj, S., Charifi, A., Roukbi, A.: μ-Trigonometric functional equations and Hyers-Ulam stability problem in hypergroups, functional equations in mathematical analysis. In: Springer Optimization and Its Applications, vol. 52, p. 6 (2012). https://doi.org/10.1007/978-1-4614-0055-4
- [18] Zeglami, D., Fadli, B., Kabbaj, S.: Harmonic analysis and generalized functional equations for the cosine. Adv. Pure Appl. Math. 7(1), 41–49 (2016)
- [19] Zeglami, D., Fadli, B.: Integral functional equations on locally compact groups with involution. Aequat. Math. 90, 967–982 (2016)
- [20] Zeglami, D.: Some functional equations related to number theory. Acta Math. Hungar. 149(2), 490–508 (2016)
- [21] Zeglami, D., Tial, M., Kabbaj, S.: The integral sine addition law, Proyecc. J. Math. (Submitted)

Vol. 73 (2018)

Driss Zeglami Department of Mathematics, E.N.S.A.M Moulay ISMAIL University B.P. 15290 Al Mansour Meknes Morocco e-mail: zeglamidriss@yahoo.fr

Samir Kabbaj and Mohamed Tial Department of Mathematics, Faculty of Sciences IBN Tofail University B.P. 14000 Kenitra Morocco e-mail: samkabbaj@yahoo.fr; tialmohamed@gmail.com

Received: January 6, 2018. Accepted: June 5, 2018.