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Abstract. In the present paper we characterize the solutions of each of
the integral functional equations∫

G

g(xyt)dμ(t) = g(x)g(y) − f(x)f(y), x, y ∈ G,

∫
G

f(xσ(y)t)dμ(t) = f(x)g(y) − f(y)g(x), x, y ∈ G,

where G is a locally compact Hausdorff group, σ : G → G is a continu-
ous homomorphism such that σ ◦ σ = I, and μ is a regular, compactly
supported, complex-valued Borel measure on G.
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1. Set Up, Notation and Terminology

Throughout the paper we work in the following framework and with the fol-
lowing notation and terminology. We use it without explicit mentioning. G is
a topological group with neutral element e, C(G) the algebra of continuous,
complex valued functions on G, and σ : G → G is a continuous homomorphism
such that σ ◦ σ = I, where I denotes the identity map. The set of continuous
homomorphisms a : G → (C,+) will be called the additive maps and denoted
by A(G). Those a ∈ A(G) for which a ◦ σ = −a will be denoted A−(G).

A character χ of G is a homomorphism χ : G → C
∗, where C

∗ denotes
the multiplicative group of non-zero complex numbers. So characters need not
be unitary in the present paper. It is well known that the set of characters on
G is a linearly independent subset of the vector space of all complex-valued
functions on G (see [11, Corollary 3.20]).
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If G is a locally compact Hausdorff group then MC(G) denotes the space
of all regular, compactly supported, complex-valued Borel measures on G. For
μ ∈ MC(G), we use the notation

μ(f) =
∫

G

f(t)dμ(t),

for all f ∈ C(G).

2. Introduction

The trigonometric addition and subtraction formulas have been studied in the
context of functional equations by a number of mathematicians. The mono-
graphs by Aczél [1], by Kannappan [8], by Stetkær [11] and by Székelyhidi [15]
have references and detailed discussions of the classic results.

Chung, Kannappan and Ng [3] solved the functional equation

f(xy) = f(x)g(y) + f(y)g(x) + h(x)h(y), x, y ∈ G.

Poulsen and Stetkær [9] found the complete set of continuous solutions of each
of the functional equations

g(xσ(y)) = g(x)g(y) − f(y)f(x), x, y ∈ G,

f(xσ(y)) = f(x)g(y) ± f(y)g(x), x, y ∈ G,

in which G is an arbitrary topological group.
As a continuation of these investigations we find the continuous solutions

f, g : G → C of each of the following integral versions of the addition and
subtraction formulas for sine and cosine:∫

G

g(xyt)dμ(t) = g(x)g(y) − f(x)f(y), x, y ∈ G, (2.1)
∫

G

f(xσ(y)t)dμ(t) = f(x)g(y) − g(x)f(y), x, y ∈ G, (2.2)

where G is a locally compact Hausdorff group and μ ∈ MC(G). To solve Eq.
(2.1) we reduce it, for a fixed complex constant α, to the functional equation

g(xy) = g(x)g(y) − f(x)f(y) + αf(xy), x, y ∈ G,

where the solutions were given in [12, Theorem 3.1] and to find the solutions
of Eq. (2.2), we reduce it to the functional equation

f(xσ(y)) = f(x)g(y) − f(y)g(y) + αg(xσ(y)), x, y ∈ G.

The solutions of which are given in Proposition 4.1.
Note that if σ = I then Eq. (2.2) has only “trivial” solutions (see Remark

4.3) and that the functional equation∫
G

f(xyt)dμ(t) = f(x)g(y) + g(x)f(y), x, y ∈ G,

has been resolved in [21].
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The papers [10,13,16] have been an inspiration in their treatment of
similar functional equations on groups or semigroups. We refer also to [14,
17,20] for some contextual discussions and to [2,5–7,18,19] for other integral
functional equations.

3. The Solutions of the Integral Cosine Addition Law

The following result concerns solutions of∫
G

g(xyt)dμ(t) = g(x)g(y) − f(x)f(y), x, y ∈ G. (3.1)

Theorem 3.1. Let G be a locally compact Hausdorff group. Assume that the pair
f, g ∈ C(G) is a solution of Eq. (3.1). Then we have the following possibilities:

(1) g is any function on C(G) such that
∫

G
g(xt)dμ(t) = 0 for all x ∈ G and

f = ±g.
(2) There exist constants γ ∈ C, β ∈ C

� and a continuous character χ of G,

with μ(χ) = β2−γ2

β , such that

f = γχ and g = βχ.

(3) There exist constants γ ∈ C, q ∈ C
� and a continuous character χ of G,

with μ(χ) = −γ
1±

√
1+q2

q , such that

g = γq
χ

2
, f = γ

(
1 ±

√
1 + q2

) χ

2
.

(4) There exist constants γ ∈ C, q ∈ C
� and two different continuous charac-

ters χ1 and χ2 of G, with μ(χ1) = −γ(1±
√

1+q2)

q and μ(χ2) =
−γ(−1±

√
1+q2)

q , such that

g = γq
χ1 − χ2

2
and f = γ

(
χ1 + χ2

2
±

√
1 + q2

χ1 − χ2

2

)
.

(5) There exist constants γ ∈ C, β ∈ C
�, q ∈ C\{± γ

β } and two different

continuous characters χ1 and χ2 of G, with μ(χ1) = β − γ2+γq
1+2δ and

μ(χ2) = β −
γ2
β −γq

1−2δ , such that

f = γ
χ1 + χ2

2
+ qβ

χ1 − χ2

2
and g = β

(
χ1 + χ2

2
+ δ

χ1 − χ2

2

)
,

where δ := ±
√

1 + q2 −
(

γ
β

)2

.
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(6) There exist constants γ ∈ C, β ∈ C
�\{γ}, a function a ∈ A(G), and a

continuous character χ of G with μ(χ) = β − γ and μ(aχ) = γ − γ2

β , such
that

f = χ(γ + βa) and g = βχ(1 + a).

(7) There exist constants γ ∈ C, β ∈ C
�\{−γ}, a function a ∈ A(G), and a

continuous character χ of G, with μ(χ) = β + γ and μ(aχ) = γ + γ2

β such
that

f = χ(γ + βa) and g = βχ(1 − a).

Conversely, the formulas above for f and g define solutions of (3.1).

Proof. Let f, g be solutions of the Eq. (3.1). Letting y = e in (3.1) we get that∫
G

g(xt)dμ(t) = βg(x) − γf(x), x ∈ G, (3.2)

where β = g(e) and γ = f(e). So, using (3.2), we can reformulate the form of
Eq. (3.1) as

βg(xy) = g(x)g(y) − f(x)f(y) + γf(xy), x, y ∈ G. (3.3)

Case 1 Suppose that β = 0 then (3.3) gives

− γf(xy) = g(x)g(y) − f(x)f(y), x, y ∈ G. (3.4)

If γ = 0 then Eq. (3.4) becomes

g(x)g(y) = f(x)f(y), x, y ∈ G,

thus g is any function and f = ±g. On putting f = ±g in (3.1) we find that∫
G

g(xt)dμ(t) = 0, so we are in the case (1) of our statement.
If γ �= 0 then from (3.4) we obtain the functional equation

F (xy) = F (x)F (y) − G(x)G(y), x, y ∈ G,

where F = 1
γ f and G = 1

γ g. The solutions of which were given in [12, Theorem
6.3]. We work our way through the 3 possibilities (a)–(c) presented by [12,
Theorem 6.3] to see what the properties (3.2), that g(e) = 0 and f(e) �= 0
entail.

(a) There exist constants γ ∈ C, q ∈ C
� and a continuous character χ of

G such that

g = γq
χ

2
and f = γ(1 ±

√
1 + q2)

χ

2
.

If q = 0 then g = 0 and f = 0 so we are in (1) of our statement. If q �= 0 then

using (3.2) we infer that μ(χ) = −γ
1±

√
1+q2

q . So we are in (3).
(b) There exist constants γ ∈ C,q ∈ C

� and two different continuous
characters χ1 and χ2 of G such that

g = γq
χ1 − χ2

2
and f = γ

(
χ1 + χ2

2
±

√
1 + q2

χ1 − χ2

2

)
.
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According to (3.2) and the linear independence of different characters we will

have μ(χ1) = −γ(1±
√

1+q2)

q and μ(χ2) = −γ(−1±
√

1+q2)

q . Then (4) holds.
(c) There exist a character χ of G, and a non zero additive function a : G → C

such that g = γχa and f = γχ(1 ± a). Using (3.2) we find that γ = 0, this
case is excluded (because γ �= 0).

Case 2 Suppose that β �= 0 then the Eq. (3.3) becomes

G(xy) = G(x)G(y) − F (x)F (y) +
γ

β
F (xy), x, y ∈ G,

where G = 1
β g and F = 1

β f . Applying [12, Theorem 3.1] we infer that there
are only the following cases:

(i) g is any function and f = ±g, by using (3.1) we get
∫

G
g(xt)dμ(t) = 0.

So we are in the case (1) of our statement.
(ii) There exist constants β ∈ C

�, q ∈ C and a continuous character χ of
G such that

f = β

(
q +

γ

β

)
χ

2
and g = β

⎛
⎝1 ±

√
1 + q2 −

(
γ

β

)2
⎞
⎠ χ

2
. (3.5)

Since f(e) = γ, using (3.5), we get that q = γ
β and so

f = γχ and g = βχ.

A small computation based on (3.2) shows that μ(χ) = β2−γ2

β . So we are in
the case (2) of our statement.
(iii) There exist a constant q ∈ C\{± γ

β } and two different continuous charac-
ters χ1 and χ2 of G such that

f = γ
χ1 + χ2

2
+ qβ

χ1 − χ2

2
and

g = β

⎛
⎝χ1 + χ2

2
±

√
1 + q2 −

(
γ

β

)2
χ1 − χ2

2

⎞
⎠ .

Putting δ = ±
√

1
21 + q2 − ( γ

β )2. A small computation based on (3.2) shows
that

β

(
1
2

+ δ

)
μ(χ1)χ1(x) + β

(
1
2

− δ

)
μ(χ2)χ2(x)

=
[
β2

(
1
2

+ δ

)
− γβ

γ + q

2

]
χ1(x) +

[
β2

(
1
2

− δ

)
− γβ

γ − q

2

]
χ2(x).

By the linear independence of different characters we infer that(
1
2

+ δ

)
μ(χ1) = β

(
1
2

+ δ

)
− γ(γ + q)

2
,
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and (
1
2

− δ

)
μ(χ1) = β

(
1
2

− δ

)
− γ(γ + q)

2
.

Since q ∈ C\{± γ
β }, then 1

2 + δ �= 0 �= 1
2 − δ and so we find that

μ(χ1) = β − γ(γ + q)
1 + 2δ

and μ(χ2) = β − γ(γ − q)
1 − 2δ

.

So we are in the case (5) of our statement.
(iv) γ �= 0, and there exist two different characters χ1 and χ2 of G such

that f = γχ1 and g = βχ2. Using (3.2) we get that

βμ(χ2)χ2(x) = β2χ2(x) − γ2χ1(x) for all x ∈ G,

which shows that μ(χ2) = β and γ = 0. So this case is excluded.
(v) There exist a character χ of G and a ∈ A(G)\{0} such that

f = β

(
γ

β
+ a

)
χ and g = β(1 + a)χ.

Using (3.2) we obtain

(β − γ − μ(χ))a(x) =
γ2

β
− β + μ(aχ) + μ(χ),

which implies that μ(χ) = β − γ and μ(aχ) = γ − γ2

β . So we are in the case
(6) of our statement.

(vi) There exist a character χ of G and a function a ∈ A(G)\{0} such
that

f = β

(
γ

β
+ a

)
χ and g = β(1 − a)χ.

Using (3.2) we get that that μ(χ) = β + γ and μ(aχ) = γ + γ2

β . So we are in
the case (7) of our statement.

Conversely, simple computations prove that the formulas above for f and
g define solutions of (3.1). �

In the following corollary we solve the functional equation

g(xyz0) = g(x)g(y) − f(x)f(y), x, y ∈ G, (3.6)

for a fixed complex constant z0.

Corollary 3.2. Let G be a topological group. Assume that the pair f, g ∈ C(G)
is a solution of Eq. (3.6). Then we have the following possibilities:
(1) g ≡ 0 and f ≡ 0.
(2) There exist constants γ ∈ C, β ∈ C

�\{±γ} and a continuous character χ

of G, with χ(z0) = β2−γ2

β , such that

f = γχ and g = βχ.
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(3) There exist constants γ, q ∈ C
� and a continuous character χ of G with

χ(z0) = −γ
1±

√
1+q2

q such that

g = γq
χ

2
and f = γ

(
1 ±

√
1 + q2

) χ

2
.

(4) There exist constants γ,q ∈ C
� and two different continuous characters

χ1 and χ2 of G, with χ1(z0) = −γ(1±
√

1+q2)

q and χ2(z0) = −γ(−1±
√

1+q2)

q

such that

g = γq
χ1 − χ2

2
and f = γ

(
χ1 + χ2

2
±

√
1 + q2

χ1 − χ2

2

)
.

(5) There exist constants γ ∈ C, β ∈ C
�, q ∈ C\{± γ

β } and two different

continuous characters χ1 and χ2 of G, with χ1(z0) = β − γ2+γq
1+2δ and

χ2(z0) = β −
γ2
β −γq

1−2δ , such that

f = γ
χ1 + χ2

2
+ qβ

χ1 − χ2

2
and g = β

(
χ1 + χ2

2
+ δ

χ1 − χ2

2

)
.

where δ := ±
√

1 + q2 − ( γ
β )2.

(6) There exist constants γ ∈ C, β ∈ C\{0, γ}, a function a ∈ A(G), a
continuous character χ of G, with χ(z0) = β − γ and a(z0) = γ

β , such
that

f = χ(γ + βa) and g = βχ(1 + a).

(7) There exist constants γ ∈ C, β ∈ C
�\{−γ}, a function a ∈ A(G), and a

continuous character χ of G, with χ(z0) = β + γ and a(z0) = γ
β , such

that

f = χ(γ + βa) and g = βχ(1 − a).

Conversely, the formulas above for f and g define solutions of (3.6).

Proof. As the proof of Theorem 3.1 with μ = δz0 and the fact that χ(z0) �=
0. �

4. The Solutions of the Integral Sine Subtraction Law with
Involution

The purpose of this section is first to give an explicit description of the con-
tinuous solutions of the functional equation

f(xσ(y)) = f(x)g(y) − g(x)f(y) + αg(xσ(y)), x, y ∈ G, (4.1)
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where f, g : G → C are unknown functions. And secondly to determine the
continuous solutions f, g : G → C of the functional equation (2.2), namely

∫
G

f(xσ(y)t)dμ(t) = f(x)g(y) − g(x)f(y), x, y ∈ G, (4.2)

where μ ∈ MC(G), in terms of characters and additive maps of G.
If α = 0, the solutions of (4.2) were given in [9, Theorem II.2], so in the

following proposition we are only concerned with the case α �= 0.

Proposition 4.1. Let G be a topological group and α ∈ C
�. The solutions f, g ∈

C(G) of the functional equation (4.1) are the following.

(1) f and g are linearly dependant and g any function.
(2)

g =
χ + χ ◦ σ

2
+ c

χ − χ ◦ σ

2
,

f = α
χ + χ ◦ σ

2
+ c1

χ − χ ◦ σ

2
and χ �= χ ◦ σ.

(3)

g = χ(1 + ca), f = αχ(1 + (c + 1)a) and χ = χ ◦ σ.

where χ is a continuous character of G, a ∈ A−(G) and c, c1 are complex
constants.

Proof. We define the function F (x) := 1
αf(x) − g(x). Then the Eq. (4.1) be-

comes

F (xσ(y)) = F (x)g(y) − F (y)g(x), x, y ∈ G.

In view of [9, Theorem II.2] we infer that there are only the following three
cases (1)–(3) listed above.

Conversely, simple computations prove that the formulas above for f and
g define solutions of (4.1). �

In the following theorem we solve the functional equation (4.2).

Theorem 4.2. Let G be a locally compact Hausdorff group. Assume that the pair
f, g ∈ C(G) is a solution of Eq. (4.2). Then we have the following possibilities:

(1) g and f are linearely dependant and f is any function such that
∫

G
f(·t)

dμ(t) = 0.
(2) There exist constants γ, β ∈ C

� and a continuous character χ of G, with
χ �= χ ◦ σ and μ(χ) = 0, such that

f = γχ and g = βχ.
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(3) There exist constants c, c1 ∈ C, β ∈ C
�, γ ∈ C\{±c1} and a continuous

character χ of G, with χ �= χ ◦ σ and μ(χ) = βc1−γβc
γ+c1

and μ(χ ◦ σ) =
−βc1+γβc

γ−c1
, such that

f = γ
χ + χ ◦ σ

2
+ c1

χ − χ ◦ σ

2
and g = β

(
χ + χ ◦ σ

2
+ c

χ − χ ◦ σ

2

)
.

(4) There exist constants c, c1 ∈ C, γ ∈ C\{0,±c}, and a continuous char-
acter χ of G, with χ �= χ ◦ σ, μ(χ) = − γc1

γ+c and μ(χ ◦ σ) = γc1
γ−c , such

that

f = γ

(
χ + χ ◦ σ

2
+ c

χ − χ ◦ σ

2

)
and g = c1

χ − χ ◦ σ

2
.

(5) There exist constants γ, c ∈ C
�, a function a ∈ A−(G)\{0} and a con-

tinuous character χ of G, with χ = χ ◦ σ and μ(aχ) = (μ(χ))2 , such
that

f = γχ(1 − 1
μ(χ)

a) and g = χa.

(6) There exist constants c ∈ C, a function a ∈ A−(G)\{0} and a continuous
character χ of G, with χ = χ ◦ σ and μ(aχ) = 0, such that

f = χa and g = μ(χ)χ(1 + ca).

(7) There exist constants β, γ ∈ C
�, c ∈ C\{−1}, a function a ∈ A−(G)\{0}

and a continuous character χ of G, with χ = χ ◦ σ and μ(χ) = −(c +
1)μ(aχ) = −β

c+1 , such that

f = γχ(1 + (c + 1)a), g = βχ(1 + ca) .

Conversely, the formulas above for f and g define solutions of (4.2).

Proof. Putting y = e in (4.2) we get that∫
G

f(xt)dμ(t) = βf(x) − γg(x), x ∈ G, (4.3)

where γ := f(e) and β := g(e). So, using (4.3), we can reformulate the form
of Eq. (4.1) as

βf(xσ(y)) = f(x)g(y) − f(y)g(x) + γg(xσ(y)), x, y ∈ G. (4.4)

We break the job into two cases: β = 0 and β �= 0.

Case 1 Suppose that β = 0, then from (4.4) we get that

γg(xσ(y)) = g(x)f(y) − g(y)f(x), x, y ∈ G.

First we suppose that γ = 0, then f(x)g(y) = f(y)g(x) for all x, y ∈ G,
thus f and g are proportional and f is any function such that

∫
G

f(·t)dμ(t) = 0.
So we are in the case (1) of our statement.
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If γ �= 0 then Eq. (4.4) becomes

g(xσ(y)) = g(x)F (y) − g(y)F (x), x, y ∈ G, (4.5)

where F := 1
γ f . This functional equation was solved in [9, Theorem II.2]

according to which there exist constants c, c1 ∈ C
�, a function a ∈ A−(G) and

a continuous character χ of G such that:
(i) g = 0 and f any function such that

∫
G

f(·t)dμ(t) = 0. So we are in
the case (1).

(ii) g = c1
χ−χ◦σ

2 , f = γ[χ+χ◦σ
2 + cχ−χ◦σ

2 ], χ �= χ ◦σ. Using (4.3) we get

(γ + c)μ(χ) = −γc1 and (γ − c)μ(χ ◦ σ) = γc1.

Suppose that γ = ±c then c1 = 0 so g = 0 and we are also in the case (1). If
γ �= ±c then μ(χ) = −γc1

γ+c and μ(χ ◦ σ) = γc1
γ−c . So we are in (4).

(iii) g = χa, f = γχ(1 + ca). Using (4.3) we get

1 + cμ(χ) = 0 and μ(χ) + cμ(aχ) = 0,

then c �= 0 and so μ(χ) = −1
c and μ(aχ) = 1

c2 = (μ(χ))2. So we are in (5).

Case 2 Suppose that β �= 0. we can reformulate the form of Eq. (4.4) as

f(xσ(y)) = f(x)G(y) − f(y)G(x) + γG(xσ(y)), x, y ∈ G, (4.6)

where G := 1
β g, the solutions of which, in the subcase γ = 0, are given in

[9, Theorem II.2]. When we analyse them we find, using the notation in [9,
Theorem II.2] with m replaced here by χ, that:

(i) f = 0, g is any function. So we are in (1).
(ii) f = c1

χ−χ◦σ
2 , g = β[χ+χ◦σ

2 +cχ−χ◦σ
2 ], χ �= χ◦σ. A small computation

based on (4.3) shows that

c1μ(χ) = βc1 and c1μ(χ ◦ σ) = βc1.

If c1 = 0 then f = 0. So we are also in the case (1) of our statement and if
c1 �= 0 we get μ(χ) = μ(χ ◦ σ) = β. So we are in the case (3) (because here
γ = 0).

(iii) f = χa, g = βχ(1+ca) and χ = χ◦σ. A computation based on (4.3)
shows that

μ(χ) = β and μ(aχ) = 0,

so we are in (6).
For the subcase γ �= 0, according to Proposition (4.1) the solutions of

(4.6). are the following, where χ is a continuous character, a ∈ A−(G)\{0}
and c, c1 are complex constants.
(a) f = γg and g any function, using (4.2) we get that

∫
G

f(·t)dμ(t) = 0, so
we are in (1).
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(b)

g = β

(
χ + χ ◦ σ

2
+ c

χ − χ ◦ σ

2

)
, f = γ

χ + χ ◦ σ

2
+ c1

χ − χ ◦ σ

2
and χ �= χ ◦ σ.

A small computation based on (4.3) shows that

(γ + c1)μ(χ)χ(x) + (γ − c1)μ(χ ◦ σ)χ ◦ σ(x)
= [β(γ + c1) − γβ(1 + c)] χ(x) + [β(γ − c1) − γβ(1 − c)] χ2(x).

By the linear independence of different characters we infer that

(γ + c1)μ(χ) = β(γ + c1) − γβ(1 + c),

and

(γ − c1)μ(χ ◦ σ) = β(γ − c1) − γβ(1 − c).

If γ = c1 then c = 1 therefore μ(χ) = 0. So we are in the case (2) of our
statement.

If γ = −c1 then c = −1 therefore μ(χ ◦ σ) = 0. So we are also in case (2)
of our statement with χ replaced by χ ◦ σ.

If c1 �= γ �= −c1 then μ(χ) = β − γβ 1+c
γ+c1

= βc1−γβc
γ+c1

and μ(χ ◦ σ) =
β − γβ 1−c

γ−c1
= −βc1+γβc

γ−c1
. So we are in the case (3) of our statement.

(c)

g = βχ(1 + ca), f = γχ(1 + (c + 1)a) and χ = χ ◦ σ.

A small computation based on (4.3) shows that

[(c + 1)μ(χ) + β(c + 1) − βc] a(x)
= −μ(χ) − (c + 1)μ(aχ),

then

(c + 1)μ(χ) = −β(c + 1) + βc, (4.7)

and

μ(χ) = −(c + 1)μ(aχ),

and so c �= −1 because otherwise (4.7) implies βc = −β = 0. Therefore

μ(χ) = −β +
βc

c + 1
= −(c + 1)μ(aχ).

So we are in (7).
Conversely, simple computations prove that the formulas above for f

define solutions of (4.2). �



97 Page 12 of 19 S. Kabbaj et al. Results Math

Remark 4.3. Let G be a locally compact Hausdorff group. If we analyse the
different assertions of Theorem 4.2 in the case where σ = I, we find that the
continuous solutions of the following functional equation∫

G

f(xyt)dμ(t) = f(x)g(y) − f(y)g(x), x, y ∈ G,

are the pair (f, g) such that g and f are linearely dependant and f is any
function on C(G) satisfying

∫
G

f(·t)dμ(t) = 0. Indeed, in the cases (2)–(4) of
Theorem 4.2 we have χ �= χ ◦ σ so they do not occur here, and in the cases
(5)–(7) we have a = 0 and so f = 0 or g = 0.

In the following corollary we solve the functional equation

f(xyz0) = f(x)g(y) − f(y)g(x), x, y ∈ G, (4.8)

for a fixed complex constant z0.

Corollary 4.4. Let G be a topological group. Assume that the pair f, g ∈ C(G)
is a solution of Eq. (4.8). Then we have the following possibilities:
(1) f ≡ 0 and g is arbitrary in C(R).
(2) There exist constants c, c1 ∈ C, β ∈ C

�, γ ∈ C\{±c1} and a continuous
character χ of G, with χ �= χ ◦ σ and χ(z0) = βc1−γβc

γ+c1
and χ ◦ σ(z0) =

−βc1+γβc
γ−c1

, such that

f = γ
χ + χ ◦ σ

2
+ c1

χ − χ ◦ σ

2
and g = β

[
χ + χ ◦ σ

2
+ c

χ − χ ◦ σ

2

]
.

(3) There exist constants c ∈ C, c1 ∈ C
�, γ ∈ C\{0,±c}, and a continuous

character χ of G, with χ �= χ ◦ σ, χ(z0) = − γc1
γ+c and χ ◦ σ(z0) = γc1

γ−c ,

such that

f = γ

[
χ + χ ◦ σ

2
+ c

χ − χ ◦ σ

2

]
and g =

c1
2

(χ − χ ◦ σ).

(4) There exist constants γ, c ∈ C
�, a ∈ A−(G)\{0} and a continuous char-

acter χ of G, with χ = χ ◦ σ and a(z0) = χ(z0), such that

f = γχ

(
1 − 1

χ(z0)
a

)
and g = χa.

(5) There exist a constant c ∈ C, a ∈ A−(G)\{0} and a continuous character
χ of G, with χ = χ ◦ σ and a(z0) = 0, such that

f = χa and g = χ(z0)χ(1 + ca).

(6) There exist constants β, γ ∈ C
�, c ∈ C\{−1}, a ∈ A−(G)\{0} and a

continuous character χ of G, with χ = χ◦σ, a(z0) = −1
c+1 and χ(z0) = −β

c+1

such that

f = γχ(1 + (c + 1)a) and g = βχ(1 + ca).

Conversely, the formulas above for f and g define solutions of (4.1).
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Proof. As the proof of Theorem 4.2 with μ = δz0 and the fact that χ(z0) �=
0. �

5. Examples

Example 5.1. Let G = (R,+), σ(x) = −x for all x ∈ R, z0 ∈ R\{0} be a fixed
element, and let μ = δz0 .

We indicate here the corresponding continuous solutions of Eq. (4.2) [i.e.
(4.8)] by the help of Corollary 4.4.

The continuous characters on R are known to be χ(x) = eλx, x ∈ R,
where λ ranges over C (see for instance [11, Example 3.7(a)]). The condition
χ ◦ σ(z0) = χ(z0), i.e. χ(2z0) = 1, of Theorem 4.2(3) i.e (of course in the
case γ = 0) becomes e2λz0 = 1, which reduces to λ = inπ

z0
, where n ∈ Z. The

relevant characters are thus

χn(x) := ei nπ
2z0

x, x ∈ R, and n ∈ Z.

The continuous additive functions on R are the functions of the form
a(x) = αx, x ∈ R, where the constant α ranges over C (see for instance [11,
Corollary 2.4]). In the point (6) of Corollary 4.4 we have a(z0) = 0 which
reduces to α = 0 i.e. a = 0 and f = 0. So this case does not occur here.

In conclusion, by help of Corollary 4.4 we find that the continuous solu-
tions f, g : R → C of the functional equation (4.2), which is here

f(x − y + z0) = f(x)g(x) − f(y)g(x), x, y ∈ R,

are
(1) f = 0 and g is arbitrary in C(R).
(2)

f(x) = γ cos λx + c1 sinλx and g = β[cos λx + c sin λx], x ∈ R,

for some constants c1 ∈ C
�, c ∈ C, λ, β ∈ C

�, and γ ∈ C\{±c1} such
that

eiλz0 =
βc1 − γβc

γ + c1
=

γ − c1
−βc1 + γβc

.

In particular, if γ = 0 we obtain

f(x) = c1 sin
nπ

z0
x and g(x) = (−1)n

[
cos

nπ

z0
x + c sin

nπ

z0
x

]
, x ∈ R,

for some constants c1 ∈ C
�, c ∈ C and n ∈ Z.

(3)

f(x) = γ[cos λx + c sin λx], x ∈ R and g(x) =
c1
2

sin λx,

for some constants c, c1 ∈ C, λ ∈ C
�, and γ ∈ C\{0,±c} such that

eiλz0 =
−γc1
γ + c

=
γ − c

γc1
.
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(4)

f(x) = γ

(
1 − x

z0

)
and g(x) =

x

z0
, x ∈ R,

for some γ ∈ C
�.

(5)

f(x) = γ

(
1 − x

z0

)
and g(x) = β

(
1 − cx

(c + 1)z0

)
, x ∈ R,

for some γ, β ∈ C
� and c ∈ C\{−1} such that β = c + 1.

Example 5.2. Let z0 be a non-zero real number, we seek the solutions f, g ∈
C(R) of the functional equation (3.1) which is here

g(x + y + z0) = g(x)g(y) − f(x)f(y), x, y ∈ R.

According to Corollary 3.2, we have only the following cases:
(1) g = 0 and f = 0.
(2)

f(x) = γeλx and g(x) = βeλx, x ∈ R,

for some constants β, λ ∈ C
�, γ ∈ C such that eλz0 = β2−γ2

β .
(3)

g(x) = γq
eλx

2
and : f(x) = γ(1 ±

√
1 + q2)

eλx

2
for all x ∈ R.

for some constants q ∈ C
� and λ ∈ C such that eλz0 = −γ

1±
√

1+q2

q .

(4)

g(x) = γq
eλ1x − eλ2x

2
,

and

f(x) = γ

(
eλ1x + eλ2x

2
±

√
1 + q2

eλ1x − eλ2x

2

)
, x ∈ R,

for some constants q ∈ C
� and λ1, λ2 ∈ C such that

λ1 �= λ2, eλ1z0 =
−γ(1 ±

√
1 + q2)

q
and eλ2z0 =

−γ(−1 ±
√

1 + q2)
q

.

(5)

f(x) = γ
eλ1x + eλ2x

2
+ qβ

eλ1x − eλ2x

2
,

and

g(x) = β

(
eλ1x + eλ2x

2
+ δ

eλ1x − eλ2x

2

)
for all x ∈ R,
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for some constants γ ∈ C, β ∈ C
�, q ∈ C\{± γ

β } and two different

complex numbers λ1, λ2 such that eλ1z0 = β − γ2+γq
1+2δ and eλ2z0 = β −

γ2
β −γq

1−2δ , where δ := ±
√

1 + q2 − ( γ
β )2.

(6)

f(x) = eλx

(
γ +

γx

z0

)
and g(x) = eλx

(
β +

γx

z0

)
, x ∈ R,

for some constants λ, γ ∈ C and β ∈ C
�\{γ} such that eλz0 = β − γ.

(7)

f(x) = eλx

(
γ +

γx

z0

)
and g(x) = eλx

(
β − γx

z0

)
, x ∈ R,

for some constants λ, γ ∈ C and β ∈ C
�\{−γ} such that eλz0 = β + γ.

Example 5.3. For an application of our results on a non-abelian group, con-
sider the 3-dimensional Heisenberg group G = H3 described in [11, Example
A.17(a)], and take as the involutive automorphism

σ

⎛
⎝ 1 a c

0 1 b
0 0 1

⎞
⎠ =

⎛
⎝1 b c

0 1 a
0 0 1

⎞
⎠

−1

=

⎛
⎝1 −b −c + ab

0 1 −a
0 0 1

⎞
⎠ for a, b, c ∈ R.

Let Z0 =

⎛
⎝ 1 a0 c0

0 1 b0
0 0 1

⎞
⎠ be a fixed element of H3 such that a0 + b0 �= 0, and let

μ = δZ0 . We write down the continuous solutions of Eq. (4.2).
The continuous characters on H3 are parametrized by (u, v) ∈ C

2 as
follows (see, e.g., [4, Example 5.2]).

χu,v

⎛
⎝1 a c

0 1 b
0 0 1

⎞
⎠ = eua+vb for a, b, c ∈ R.

We compute that χu,v ◦ σ = χ−v,−u, so χu,v ◦ σ = χu,v, if and only if v = −u,
and in that case

χu,−u

⎛
⎝ 1 a c

0 1 b
0 0 1

⎞
⎠ = eu(a−b) for a, b, c ∈ R.

In view of [4, Example 5.2], the continuous additive functions A on H3,
satisfying A ◦ σ = −A, are parametrized by λ ∈ C as follows

Aλ

⎛
⎝ 1 a c

0 1 b
0 0 1

⎞
⎠ = λ(a + b) for a, b, c ∈ R.
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Now we are in the position to describe the solutions f, g ∈ C(H3) of the
functional equation (4.2), which is here

f(Xσ(Y )Z0) = f(X)g(Y ) − f(Y )g(X), X, Y ∈ H3.

By Corollary 4.4, there exist constants α, β ∈ C such that

(1) f = 0 and g is arbitrary in C(H3).
(2)

f

⎛
⎝ 1 a c

0 1 b
0 0 1

⎞
⎠ = γ

eua+vb + e−va−ub

2
+ c1

eua+vb − e−va−ub

2
, a, b, c ∈ R,

g

⎛
⎝ 1 a c

0 1 b
0 0 1

⎞
⎠ = β

[
eua+vb + e−va−ub

2
+ c

eua+vb − e−va−ub

2

]
, a, b, c ∈ R,

for some constants c1 ∈ C
�, c ∈ C, u, v, β ∈ C

�, and γ ∈ C\{±c1} such
that v �= −u, eua0+vb0 = βc1−γβc

γ+c1
and

e−va0−b0 = −βc1+γβc
γ−c1

.
(3)

f

⎛
⎝1 a c

0 1 b
0 0 1

⎞
⎠ = γ

[
eua+vb + e−va−ub

2
+ c

eua+vb − e−va−ub

2

]
, a, b, c ∈ R,

g

⎛
⎝1 a c

0 1 b
0 0 1

⎞
⎠ =

c1
2

[
eua+vb − e−va−ub

2

]
, a, b, c ∈ R,

for some constants c, c1 ∈ C, u, v ∈ C, and γ ∈ C\{0,±c} such that
v �= −u, eua0+vb0 = −γc1

γ+c and e−va0−b0 = γc1
γ−c .

(4)

f

⎛
⎝ 1 a c

0 1 b
0 0 1

⎞
⎠ = γeu(a−b)

[
1 − a + b

a0 + b0

]
, a, b, c ∈ R,

g

⎛
⎝ 1 a c

0 1 b
0 0 1

⎞
⎠ =

a + b

a0 + b0
eu(a+a0−b−b0), a, b, c ∈ R,

for some u ∈ C and γ ∈ C
�.
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(5)

f

⎛
⎝ 1 a c

0 1 b
0 0 1

⎞
⎠ = γeu(a−b)

[
1 − a + b

a0 + b0

]
, a, b, c ∈ R,

g

⎛
⎝ 1 a c

0 1 b
0 0 1

⎞
⎠ = βeu(a−b)(1 + c

eu(a0−b0)

a0 + b0
(a + b))

= βeu(a−b) + c
a + b

a0 + b0
eu(a+a0−b−b0), a, b, c ∈ R,

for some u ∈ C, γ, β ∈ C
� and c ∈ C\{−1}.

Example 5.4. Consider the (ax + b)-group G :=
{(

a b
0 1

)
| a > 0, b ∈ R

}
and

let σ be the involutive automorphism defined by

σ

(
a b
0 1

)
=

(
a −b
0 1

)
for a > 0 and b ∈ R.

Let Z0 be a fixed element on G and let μ = δZ0 . We indicate here the corre-
sponding continuous solutions of Eq. (4.2).

The continuous characters on G are parametrized by λ ∈ C as follows
(see, e.g., [11, Example 3.13]).

χλ

(
a b
0 1

)
= aλ for a > 0 and b ∈ R.

So the condition χλ ◦ σ = χλ is always satisfied.
In view of [11, Example 2.10], the continuous additive functions on G are

parametrized by λ ∈ C as follows

aλ

(
a b
0 1

)
= λ ln a for a > 0 and b ∈ R.

Then aλ ◦ σ = aλ for all λ ∈ C and so A−(G) = {0}.
In conclusion, by help of Corollary 4.4, we find that the continuous solu-

tions f, g ∈ C(G) of the functional equation (4.2), which is here

f(Xσ(Y )Z0) = f(X)g(Y ) − f(Y )g(X), X, Y ∈ G,

are: f = 0 and g is arbitrary in C(G).
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