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Abstract. In the present paper we characterize the solutions of each of
the integral functional equations

/ g(ayt)du(t) = 9(x)g(w) — F@) [ (W), @y €G,

G
g flzo(y)t)du(t) = f(z)g(y) — f(W)g(z), =,y € G,

where G is a locally compact Hausdorff group, o : G — G is a continu-
ous homomorphism such that ¢ oo = I, and u is a regular, compactly
supported, complex-valued Borel measure on G.
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1. Set Up, Notation and Terminology

Throughout the paper we work in the following framework and with the fol-
lowing notation and terminology. We use it without explicit mentioning. G is
a topological group with neutral element e, C(G) the algebra of continuous,
complex valued functions on G, and ¢ : G — G is a continuous homomorphism
such that 0 o 0 = I, where I denotes the identity map. The set of continuous
homomorphisms a : G — (C, +) will be called the additive maps and denoted
by A(G). Those a € A(G) for which a o 0 = —a will be denoted A~ (G).

A character x of G is a homomorphism x : G — C*, where C* denotes
the multiplicative group of non-zero complex numbers. So characters need not
be unitary in the present paper. It is well known that the set of characters on
G is a linearly independent subset of the vector space of all complex-valued
functions on G (see [11, Corollary 3.20]).
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If G is a locally compact Hausdorff group then Mq(G) denotes the space
of all regular, compactly supported, complex-valued Borel measures on G. For
1 € Mc(G), we use the notation

u(f) = /G FE)du(t),
for all f € C(G).

2. Introduction

The trigonometric addition and subtraction formulas have been studied in the
context of functional equations by a number of mathematicians. The mono-
graphs by Aczél [1], by Kannappan [8], by Stetkaer [11] and by Székelyhidi [15]
have references and detailed discussions of the classic results.

Chung, Kannappan and Ng [3] solved the functional equation

flzy) = f(2)g(y) + f(y)g(x) + h(@)h(y), .y € G,
Poulsen and Stetkeer [9] found the complete set of continuous solutions of each
of the functional equations

g(xa(y)) = g(x)g(y) — f(y)f(x), =y€G,
flza(y)) = f(@)g(y) + f(y)g(z), =,y€q,

in which G is an arbitrary topological group.

As a continuation of these investigations we find the continuous solutions
f,9 : G — C of each of the following integral versions of the addition and
subtraction formulas for sine and cosine:

/G g(eyt)du(t) = g(@)g(y) — F@)f(y), z.y€G, (21)
; flxa(y)t)du(t) = f(x)g(y) — g(x) f(y), =,y€q, (2.2)

where G is a locally compact Hausdorff group and u € Mc(G). To solve Eq.

(2.1) we reduce it, for a fixed complex constant «, to the functional equation
9(zy) = g(x)g(y) — f(2)f(y) + af(xy), w,y€C,

where the solutions were given in [12, Theorem 3.1} and to find the solutions

of Eq. (2.2), we reduce it to the functional equation

flxa(y)) = f(x)g(y) — f(W)g(y) + ag(za(y)), =,ye€q.

The solutions of which are given in Proposition 4.1.
Note that if o = I then Eq. (2.2) has only “trivial” solutions (see Remark
4.3) and that the functional equation

/G Flayt)du(t) = f(2)g(y) + 9(@)f(y), z.y € G,

has been resolved in [21].
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The papers [10,13,16] have been an inspiration in their treatment of
similar functional equations on groups or semigroups. We refer also to [14,
17,20] for some contextual discussions and to [2,5-7,18,19] for other integral
functional equations.

3. The Solutions of the Integral Cosine Addition Law

The following result concerns solutions of
| stevtiintt) = sl@la) ~ f@)1w). @ €G. (31)

Theorem 3.1. Let G be a locally compact Hausdorff group. Assume that the pair
f.g € C(G) is a solution of Eq. (3.1). Then we have the following possibilities:

(1) g is any function on C(G) such that [, g(xt)du(t) = 0 for all x € G and
f==g.
(2) There exist constants v € C, 8 € C* and a continuous character x of G,

with p(x) = ﬁ25727 such that

f=ax and g=px.

(3) There exist constants v € C, ¢ € C* and a continuous character x of G,

LSVALL & such that

with p(x) = —y—40—:,

b% X
9="4%; fzv(li 1+q2)§~

(4) There ezist constants v € C, ¢ € C* and two different continuous charac-

ters x1 and x2 of G, with u(x1) M

_"f(% \/H“ZQ)7 such that

and p(x2) =

— + —
g:fqu12X2 and f’y<X12X2j:mX12X2>.

(5) There exist constants v € C,0 € C*, ¢q € (C\{:I:%} and two different

continuous characters x1 and x2 of G, with u(x1) = 8 — 712:276‘1 and

22

(1(x2) = B — 2=, such that

+ — + -
f:’YX12X2+(JﬁX12X2 and g_ﬁ(><12><2+5x12><2>7

where 0 :=+4/1+4 ¢ — (%)2
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(6) There exist constants v € C, § € C\{y}, a function a € A(G), and a

continuous character x of G with u(x) = —~ and ulax) =v — %j’ such
that

f=x(v+pBa) and g=px(1+a).
(7) There exist constants v € C, € C*\{—~}, a function a € A(G), and a

continuous character x of G, with u(x) = 8+~ and ulax) =~v+ % such
that

f=x(y+pBa) and g=pPx(1-a)
Conversely, the formulas above for f and g define solutions of (3.1).

Proof. Let f, g be solutions of the Eq. (3.1). Letting y = e in (3.1) we get that

/G g(at)du(t) = Bg(z) — 1 f(z), z€G, (32)

where 8 = g(e) and v = f(e). So, using (3.2), we can reformulate the form of
Eq. (3.1) as

Bg(zy) = g(x)g(y) — f(@)f(y) +vf(zy), =z,y€G. (3:3)
Case 1 Suppose that 8 = 0 then (3.3) gives
—f(zy) = g9(¥)g(y) — f(@)f(y), zy€eq. (3.4)

If ¥ = 0 then Eq. (3.4) becomes

9(2)g(y) = f(x)f(y), =y€eq,
thus ¢ is any function and f = +¢. On putting f = +¢ in (3.1) we find that
Jo g(xt)dpu(t) = 0, so we are in the case (1) of our statement.
If 4 # 0 then from (3.4) we obtain the functional equation
Fay) = F(x)F(y) - G(2)G(y), =y€q,

where F' = % fand G = % g. The solutions of which were given in [12, Theorem
6.3]. We work our way through the 3 possibilities (a)—(c) presented by [12,
Theorem 6.3] to see what the properties (3.2), that g(e) = 0 and f(e) # 0
entail.

(a) There exist constants v € C, ¢ € C* and a continuous character y of
G such that

X X
9="9% and f:'y(lzt\/l+q2)§.
If ¢ =0 then ¢ =0 and f = 0 so we are in (1) of our statement. If ¢ # 0 then

using (3.2) we infer that p(x) = —7&7 ”ql+q2. So we are in (3).
(b) There exist constants v € C,g € C* and two different continuous
characters y; and x2 of G such that

— + —
g:WX12Xz and f=7<X12X2i\/WX12X2>.
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According to (3.2) and the linear independence of different characters we will
have u(x1) = _7(% VITe) ond pxz) = _ﬂ# VIT4) hen (4) holds.

(c) There exist a character x of G, and a non zero additive function a : G — C
such that ¢ = yxa and f = yx(1 £ a). Using (3.2) we find that v = 0, this
case is excluded (because vy # 0).

Case 2 Suppose that § # 0 then the Eq. (3.3) becomes

g
Glay) = G@)Gly) - F@)Fy) + gFy), yed,
where G = %g and F = %f Applying [12, Theorem 3.1] we infer that there
are only the following cases:
(i) g is any function and f = +g, by using (3.1) we get [, g(2t)du(t) = 0.
So we are in the case (1) of our statement.

(ii) There exist constants 8 € C*, ¢ € C and a continuous character x of
G such that

2
f—ﬂ<q+g>’2‘ and g=08|1+ 1+q2(;) g (3.5)

Since f(e) =7, using (3.5), we get that ¢ = 3 and so

f=ox and g=px.

A small computation based on (3.2) shows that u(x) = g’-’;ﬂ. So we are in
the case (2) of our statement.
(iii) There exist a constant ¢ € C\{£3} and two different continuous charac-
ters x1 and x2 of G such that

- —
feAX X g X2 and

2 2

X1+ X2 2l 2X1—X2
W o (6) 2

Putting § = +,/314¢? — (%)% A small computation based on (3.2) shows
that

8 (; + 5> n(xa)xa(@) + 8 (; - 5) n(x2)x2(x)
=2 (5+0) = 5w+ [ (5 -9) - 075 et

By the linear independence of different characters we infer that

(Feapur=s(i) 2552
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(;—5>u(xl)=ﬁ<;—5) —w~

Since q € (C\{:I:%}, then 1 +6 # 0 # 3 — & and so we find that

and

(v —q)

. v+
p(x1) = — ——5 T

1+25

So we are in the case (5) of our statement.
(iv) v # 0, and there exist two different characters x; and x2 of G such
that f =yx1 and g = Bx2. Using (3.2) we get that

Bu(x2)x2(z) = Bx2(z) —v*xa(z) forall z €@,

which shows that u(x2) = 3 and v = 0. So this case is excluded.
(v) There exist a character y of G and a € A(G)\{0} such that

fﬂ<g+a>x and ¢g=p(14a)x.

Using (3.2) we obtain

and  p(x2) =8 —

72

(B =7 —npx))a(z) = 5 B+ plax) + p(x),

which implies that u(x) = 8 —« and p(ayx) = v — %2 So we are in the case

(6) of our statement.
(vi) There exist a character x of G and a function a € A(G)\{0} such
that

f=ﬁ<;+a>x and ¢g=p(1-a)x.

Using (3.2) we get that that u(x) = 5+~ and p(ay) = v+ 775 So we are in
the case (7) of our statement.

Conversely, simple computations prove that the formulas above for f and
g define solutions of (3.1). O

In the following corollary we solve the functional equation

for a fixed complex constant zg.

Corollary 3.2. Let G be a topological group. Assume that the pair f,g € C(G)
is a solution of Eq. (3.6). Then we have the following possibilities:

(1) g=0and f=0.

(2) There exist constants v € C, f € C*\{£~} and a continuous character x

of G, with x(zo) = 52;’2, such that

f=ax and g=px.
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(3) There exist constants v, ¢ € C* and a continuous character x of G with

x(20) = —VL qurqz such that
X X
9=7ay and fzv(li 1+q2)§,
ere exist consiantis vy,q S an wo aifferent conttnuous characters
4) Th st tant C* and two di t conti haract
. —v(1£4/1+4q2 v (—1++/14a2
x1 and X2 of G, with x1(z) = —LUEVIHTE) ;/H) and xa(z0) = w

such that
. + .
ngX12X2 and f:7<X12X2imX12X2>.

(5) There exist constants v € C, 3 € C*, q € (C\{:I:%} and two different

continuous characters x1 and x2 of G, with x1(z0) = 8 — 712:275'1 and

ﬁ_’Yq
X2(20) = B — =55, such that

+ - + -
f:7X12X2+q5X12X2 and g:ﬁ(X12X2+5X12X2>'

where § := /1 +¢* — (3)*.

(6) There exist constants v € C, § € C\{0,7}, a function a € A(G), a
continuous character x of G, with x(20) = 8 — v and a(z0) = 3, such
that

f=x(y+Ba) and g=px(1+a).

(7) There exist constants v € C, f € C*\{—~v}, a function a € A(G), and a
continuous character x of G, with x(z0) = 8+ and a(zy) = %, such
that

f=x(y+pBa) and g=px(1-a).
Conversely, the formulas above for f and g define solutions of (3.6).

Proof. As the proof of Theorem 3.1 with u = 0., and the fact that x(z0) #
0. O

4. The Solutions of the Integral Sine Subtraction Law with
Involution

The purpose of this section is first to give an explicit description of the con-
tinuous solutions of the functional equation

f(xa(y)) = f(x)g(y) —9(2)f(y) + ag(za(y), =,y€G, (4.1)
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where f,g : G — C are unknown functions. And secondly to determine the
continuous solutions f, g : G — C of the functional equation (2.2), namely

/G fao)t)du(t) = F(2)gw) - 9@ @), =y € G, (4.2)

where u € Mc(G), in terms of characters and additive maps of G.
If o = 0, the solutions of (4.2) were given in [9, Theorem II.2], so in the
following proposition we are only concerned with the case o # 0.

Proposition 4.1. Let G be a topological group and o € C*. The solutions f,g €
C(G) of the functional equation (4.1) are the following.
(1) f and g are linearly dependant and g any function.

(2)

7x+xoa X—X0o0O

S
f:aX+;<OU+01X_;<OO and X F# xoo.

g=x(14ca), f=ax(l+(c+1)a) and x=xoo.

where x is a continuous character of G, a € A~ (G) and ¢, cq are complex
constants.

Proof. We define the function F(z) := X f(z) — g(z). Then the Eq. (4.1) be-
comes

F(zo(y)) = F(x)g(y) — F(y)g(z), 2,y € G.

In view of [9, Theorem II.2] we infer that there are only the following three
cases (1)—(3) listed above.

Conversely, simple computations prove that the formulas above for f and
g define solutions of (4.1). O

In the following theorem we solve the functional equation (4.2).

Theorem 4.2. Let G be a locally compact Hausdorff group. Assume that the pair
f.g € C(G) is a solution of Eq. (4.2). Then we have the following possibilities:

(1) g and f are linearely dependant and f is any function such that [, f(-t)
du(t) = 0.

(2) There exist constants v, 3 € C* and a continuous character x of G, with
X # x oo and pu(x) =0, such that

f=ox and g=pBx.



Vol. 73 (2018) Integral Trigonometric Equations Page 9 of 19 97

(3) There exist constants ¢,c; € C, f € C*, v € C\{£c1} and a continuous
character x of G, with x # x oo and p(x) = 22225 and p(x o o) =

y+e1
W, such that

f=n TaT 2 T

X+;<ocr X—Xxo0o and gﬂ(x+xoa+ Xxocr).

(4) There exist constants c¢,c; € C, v € C\{0,=%c}, and a continuous char-

— _1a — Ja

acter x of G, with x # x oo, u(x) = T and wu(x o o) T, such
that

f:7<X+Xoa+CX_XOU> and g:qw.

2 2 2

(5) There exist constants v,c € C*, a function a € A~ (G)\{0} and a con-
tinuous character x of G, with x = x oo and u(ay) = (u(x))2, such
that

f=yx(1- a) and  g=Xxa.

b

1(x)

(6) There exist constants ¢ € C, a function a € A~ (G)\{0} and a continuous
character x of G, with x = x oo and u(ay) =0, such that

f=xa and g=p(x)x(1+ ca).

(7) There exist constants 3,y € C*, ¢ € C\{—1}, a function a € A~ (G)\{0}
and a continuous character x of G, with x = x oo and u(x) = —(c+
Dplax) = ﬁﬁl, such that

f=vw@+(c+1a), ¢g=pPx(l+ca).
Conversely, the formulas above for f and g define solutions of (4.2).

Proof. Putting y = e in (4.2) we get that

| fatidntt) = 51@) — 9@, e (43)
where v := f(e) and § := g(e). So, using (4.3), we can reformulate the form
of Eq. (4.1) as

Bf(xa(y)) = f(2)g(y) — f(y)g(x) +9(za(y)), zyeCG. (44
We break the job into two cases: § =0 and 3 # 0.
Case 1 Suppose that § = 0, then from (4.4) we get that
v9(za(y)) = g(x)f(y) —9y)f(x), z,yeC.

First we suppose that v = 0, then f(x)g(y) = f(y)g(x) for all z,y € G,
thus f and g are proportional and f is any function such that [, f(-t)du(t) = 0.
So we are in the case (1) of our statement.
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If v # 0 then Eq. (4.4) becomes

g(wo(y)) = g(x)F(y) —g(y)F(z), =z,y€QG, (4.5)

where F' := % f. This functional equation was solved in [9, Theorem II.2]
according to which there exist constants ¢, ¢; € C*, a function a € A~ (G) and
a continuous character x of G such that:

(i) g = 0 and f any function such that [ f(-t)du(t) = 0. So we are in
the case (1).

(i) g = 1 X000, f = y[XHOT 4 Xox09) L o Using (4.3) we get

(v + C)u(x) =-—yar and  (y—c)u(xoo)=rcr.

Suppose that v = 4¢ then ¢; = 0 so g = 0 and we are also in the case (1). If
v # *c then p(x) = 215 and p(x o o) = J=5. So we are in (4).

(iii) g = xa, f =yx(1 + ca). Using (4.3) we get

L+cp(x) =0 and  p(x)+ cplax) =0,

then ¢ # 0 and so pu(x) = =2 and p(ayx) = & = (u(x))?. So we are in (5).

C

Case 2 Suppose that § # 0. we can reformulate the form of Eq. (4.4) as
flza(y)) = f(@)G(y) — f(Y)G(x) +1G(zo(y), =zyeG,  (4.6)

where G := %g, the solutions of which, in the subcase v = 0, are given in
[9, Theorem I1.2]. When we analyse them we find, using the notation in [9,
Theorem I1.2] with m replaced here by x, that:

(i) f =0, g is any function. So we are in (1).

(il) f = 1 XX7, g = B[XEXT 4 X=Xy £ Yoo. A small computation
based on (4.3) shows that

cap(x) =pPcr  and  cp(xoo) = fe.

If ¢4 = 0 then f = 0. So we are also in the case (1) of our statement and if
c1 # 0 we get u(x) = p(x oo) = B. So we are in the case (3) (because here
~v=0).

(iii) f = xa, g = Bx(1+ca) and x = xoo. A computation based on (4.3)
shows that

p(x)=p and  plax) =0,

so we are in (6).

For the subcase v # 0, according to Proposition (4.1) the solutions of
(4.6). are the following, where x is a continuous character, a € A~ (G)\{0}
and ¢, c; are complex constants.

(a) f =g and g any function, using (4.2) we get that [ f(-t)du(t) =0, so
we are in (1).
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(0)
+xoo —xYOoOo +xoo —Xo0o
g=0 XTX +CX X ’ f:,yX X +01X X
2 2 2 2
and x # xoo.

A small computation based on (4.3) shows that
(v + e)p()x(@) + (v — er)u(x o o)x 0 o(z)
=By + 1) =B+ )l x(@) + [B(y — 1) =761 = )] x2 ().

By the linear independence of different characters we infer that

(v +e)ulx) = By +c1) —vB(1 +¢),

and

(v —ce)u(xoo) =By —c1) —vp(1 —¢).

If v = ¢; then ¢ = 1 therefore pu(x) = 0. So we are in the case (2) of our
statement.

If v = —¢; then ¢ = —1 therefore u(x o o) = 0. So we are also in case (2)
of our statement with y replaced by x o o.

It ¢ # v # —e1 then p(x) = f — yfEE = B98¢ and y(x 0 0) =

8- 'yﬂﬁ = % So we are in the case (3) of our statement.

(c)
9=0x(1+ca), f=9x(1+(c+1a) and x=xo0
A small computation based on (4.3) shows that
[(c+Dp(x) + Ble+1) — B a(x)
= —p(x) — (e + Dplax),
then
(c+ Du(x) = =Blc+1) + B, (4.7)
and
u(x) = =(c+ Dpfax),
and so ¢ # —1 because otherwise (4.7) implies B¢ = —f = 0. Therefore

Be
c+1

p(x) = -6+ = —(c+ plax).

So we are in (7).

Conversely, simple computations prove that the formulas above for f
define solutions of (4.2). O
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Remark 4.3. Let G be a locally compact Hausdorff group. If we analyse the
different assertions of Theorem 4.2 in the case where o = I, we find that the
continuous solutions of the following functional equation

/G Flayt)du(t) = F(2)g(y) — fwg(), .y e G,

are the pair (f,g) such that g and f are linearely dependant and f is any
function on C(G) satisfying [ f(-t)du(t) = 0. Indeed, in the cases (2)-(4) of
Theorem 4.2 we have x # x o 0 so they do not occur here, and in the cases
(5)—(7) we have a=0and so f =0 or g =0.

In the following corollary we solve the functional equation

flzyzo) = f(x)g9(y) — f(W)9(z), =z,y€G, (4.8)
for a fixed complex constant zg.

Corollary 4.4. Let G be a topological group. Assume that the pair f,g € C(Q)
is a solution of Eq. (4.8). Then we have the following possibilities:
(1) f=0 and g is arbitrary in C(R).
(2) There exist constants ¢c,c; € C, g € C*, v € C\{£e1} and a continuous
character x of G, with x # x oo and x(z0) = BaaBe gnd y o o(z) =

Yy+e1
W, such that

+voo — Yoo +voo — YOO
foaX x0T XX amd g p|XTX0T L XX
2 2 2 2
(3) There exist constants ¢ € C,c; € C*, v € C\{0, £c}, and a continuous
character x of G, with x # x o 0, x(20) = —;Yfrlc and x o o(zp) = ,’y’flc,
such that
+Xxo0o —Xo0o c
f:'y[x ; + X ;( ] and gz;l(x—xoa).

(4) There exist constants v,c € C*, a € A~ (G)\{0} and a continuous char-
acter x of G, with x = x oo and a(zy) = x(z0), such that

f:vx(l—l a) and g = xa.
x(20)

(5) There exist a constant c € C, a € A~ (G)\{0} and a continuous character
x of G, with x = x oo and a(z9) = 0, such that

f=xa and g=x(z0)x(1+ ca).

(6) There exist constants 3,7 € C*, ¢ € C\{-1}, a € A~ (G)\{0} and a

continuous character x of G, with x = xoo, a(zy) = 8111 and x(z9) = (;ﬁl

such that

f=wx(1+(c+1)a) and g=px(1+ ca)
Conversely, the formulas above for f and g define solutions of (4.1).
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Proof. As the proof of Theorem 4.2 with u = d,, and the fact that x(z0) #
0. O

5. Examples

Ezample 5.1. Let G = (R, +), o(z) = —x for all z € R, 2y € R\{0} be a fixed
element, and let p = d,,.

We indicate here the corresponding continuous solutions of Eq. (4.2) [i.e.
(4.8)] by the help of Corollary 4.4.

The continuous characters on R are known to be y(z) = e, z € R,
where A ranges over C (see for instance [11, Example 3.7(a)]). The condition
x o 0(20) = x(20), i.e. x(229) = 1, of Theorem 4.2(3) i.e (of course in the
case 7 = 0) becomes €20 = 1, which reduces to A\ = iTZL—:, where n € Z. The
relevant characters are thus

Xn(z) =€  zeR, and neZ

The continuous additive functions on R are the functions of the form
a(x) = ax, x € R, where the constant « ranges over C (see for instance [11,
Corollary 2.4]). In the point (6) of Corollary 4.4 we have a(zyp) = 0 which
reduces to @« = 0 i.e. a = 0 and f = 0. So this case does not occur here.

In conclusion, by help of Corollary 4.4 we find that the continuous solu-
tions f,g: R — C of the functional equation (4.2), which is here

fl@—y+2)=fl2)g(x) = fly)g(z), xz,y€eR,
are
(1) f =0 and g is arbitrary in C(R).
(2)
f(z) =~cos Az + ¢y sin Az and g = Bcos Az + csin \x], x € R,
for some constants ¢; € C*, ¢ € C, A, € C*, and v € C\{+£c;} such

that
P e I
Y+a —fer +Be
In particular, if v = 0 we obtain
f(x) =cysin "My and g(x) = (—=1)" |cos "Mt + esin Ly , z€eR,
20 20 20

for some constants ¢; € C*, c € C and n € Z.
(3)
f(z) =~v[cos Az + csinAz], xz€R and g(x)= %1 sin Az,

for some constants ¢,c¢; € C, A € C*, and v € C\{0, =¢} such that
oirzo — —a _y—c¢
Yy+e o ya
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(4)
x T
f(a:)—*y(l—@) and g(m)Z%, x € R,
for some v € C*.
(5)
T cx
f(x)z’y(l—@) and g(a:):ﬁ(l—(c_’_l)z()), x € R,

for some v, 8 € C* and ¢ € C\{—1} such that 8 =c+ 1.

Example 5.2. Let 2y be a non-zero real number, we seek the solutions f,g €
C(R) of the functional equation (3.1) which is here

9z +y+20) =g(x)gly) - f(2)f(y), =zyekR
According to Corollary 3.2, we have only the following cases:
(1) g=0and f=0.
(2)

flx) = ve M and g(z) = Be, xR,

2
for some constants 3, A € C*, v € C such that e**° = ﬁr“%

(3)
6)‘1‘ 6)@
g(z) = e and : f(z) =~v(1£/1+ q2)7 for all =z € R.

for some constants ¢ € C* and X\ € C such that e** = —vw.
(4)
e)\lx . e)\QCE
9(x) =v4—75—,
and
Az Aoz AT _ Aoz
flx)=~ ﬁi 1+q2i , xR,
2 2
for some constants ¢ € C* and A, Ay € C such that
—v(1++/1+¢? —v(=1+ /14 ¢>
A # Ay, M0 = il +4) and e = ! +4a )
q q
(5)
)\1$ Azz )\13? )\292
e +e e —e
and

e)\lfli + e/\git e/\ll' —e

Az.’L’
g(:v)zB( 5 +90 5 ) for all z € R,
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for some constants v € C, g € C*, ¢ € C\{+3} and two different

2
complex numbers Aj, Ao such that eM? = g — 2122 gapd ere%o = 5 —

) 14248
T Shere § = 4 1+¢2—(2)?
1—26 7 = q 8"

flx)=e (v+ W) and  g(z) =M <6+ W) , z€ER,
%0

(6)

<0

for some constants A,y € C and 3 € C*\{v} such that e**0 = 3 — 1.
(7)
f(z) =e (*y + W) and  g(z) = e <ﬂ - 'yx) , z€eR,
20
for some constants A,y € C and 3 € C*\{—v} such that e} = 3 + .
Ezxample 5.3. For an application of our results on a non-abelian group, con-

sider the 3-dimensional Heisenberg group G = Hj described in [11, Example
A.17(a)], and take as the involutive automorphism

-1

lac 1bc 1—-b—c+ab
cl01lb|=101a =101 —a for a,b,c € R.
001 001 00 1
1a000
Let Zo= | 0 1 by | be a fixed element of H3 such that ag + by # 0, and let
001

= 06z,. We write down the continuous solutions of Eq. (4.2).
The continuous characters on Hj are parametrized by (u,v) € C? as
follows (see, e.g., [4, Example 5.2]).

lac
Xuw [ 010 =" for a,b,ceR.
001

We compute that Xy, 00 = X—v,—u, SO Xu,0 © T = Xu,v, if and only if v = —u,
and in that case
lac
Xu,—u | 010 | =e
001

wa=b) for a,b,c e R.

In view of [4, Example 5.2], the continuous additive functions A on Hj,
satisfying A o 0 = — A, are parametrized by A € C as follows

lac
Ax|01b | =Xa+b) for a,bceR.
001
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Now we are in the position to describe the solutions f,g € C(Hs) of the
functional equation (4.2), which is here

f(Xa(Y)Zo) = f(X)g(Y) — f(Y)g(X), X,Y € Hj.

By Corollary 4.4, there exist constants «, 3 € C such that

(1) f=0and g is arbitrary in C(Hj).
(2)

lac wa-+vb —va—ub ua+vb _ —va—ub

fl101b :76 te Jrcle c ,  a,byceR,
001 2 2
lac wa-+vb —va—ub ua+vb _ —va—ub

glO01b | =p ¢ te —I—ce ¢ ,  a,byceR,
001 2 2

for some constants ¢; € C*, ¢ € C, u,v,5 € C*, and v € C\{=£ec;} such
that v # —u, eteotvbo — Ba=ybe 4pq

Y+cr
efvaofbo _ —Bat+yBe
(3) y—c1 T
lac wa+vb —va—ub uwa+vb _ ,—va—ub
f101b :7{6 +2€ +ce 26 , a,b,ceR,
001
lac uwa+vb _ ,—va—ub
glotiw :Cl[e € . abcER,
001) 2 2

for some constants ¢,¢c; € C, u,v € C, and v € C\{0,+c} such that
_ uag+vbyg _ —7C1 —vap—by _ €1
v # —uy, eUITV = —: and e~v% * ==
(4)

lac

flotre | = 'ye“(“_b) [1 — a—f—b} ,  a,byceR,
001 ag + b
lac

g|lO01b | = me“(“+“°_b_b°), a,b,ceR,

001 ap + b

for some v € C and v € C*.
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()

lac

, b
flOo1b zveu(a_b) {1_a+} ,  a,b,ceR,
001 ag + by
lac eu(ao—bo)
gl 010 ] =pe V(14— (a+1))
001 ao + by

= Beta=b) 4 c%e“(a+“°_b_b°), a,b,ceR,
ag 0

for some u € C, v,5 € C* and ¢ € C\{—1}.

Ezample 5.4. Consider the (azx + b)-group G := {(8 l{) la>0,be R} and

let o be the involutive automorphism defined by

ab a —b
0(01>(01> fora>0 and belR.

Let Zy be a fixed element on G and let y = §z,. We indicate here the corre-
sponding continuous solutions of Eq. (4.2).

The continuous characters on G are parametrized by A € C as follows
(see, e.g., [11, Example 3.13]).

XA(S?)ZG’\ for a>0 and beR.

So the condition ) o o = x, is always satisfied.
In view of [11, Example 2.10], the continuous additive functions on G are
parametrized by A € C as follows

01

Then ay oo = ay for all A € C and so A~ (G) = {0}.
In conclusion, by help of Corollary 4.4, we find that the continuous solu-
tions f,g € C(G) of the functional equation (4.2), which is here

[(Xo(Y)Zo) = f(X)g(Y) - f(Y)g9(X), XY E€QG,
are: f =0 and g is arbitrary in C(G).

a,\<ab>)\lna fora>0 and beER.
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