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Abstract. In this paper we consider the Hankel determinant H2(3) =
a3a5 − a4

2 defined for the coefficients of a function f which belongs to
the class S of univalent functions or to its subclasses: S∗ of starlike func-
tions, K of convex functions and R of functions whose derivative has
a positive real part. Bounds of |H2(3)| for these classes are found; the
bound for R is sharp. Moreover, the sharp results for starlike functions
and convex functions for which a2 = 0 are obtained. It is also proved that
max{|H2(3)| : f ∈ S} is greater than 1.
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1. Introduction

Let Δ be the unit disk {z ∈ C : |z| < 1} and A be the family of all functions
f analytic in Δ, normalized by the condition f(0) = f ′(0) − 1 = 0. Hence, the
functions in A are of the form

f(z) = z + a2z
2 + a3z

3 + · · · . (1.1)

Pommerenke (see, [19,20]) defined the k-th Hankel determinant for a function
f as

Hk(n) =

∣
∣
∣
∣
∣
∣
∣
∣

an an+1 . . . an+k−1

an+1 an+2 . . . an+k

· · · · · · · · · · · ·
an+k−1 an+k . . . an+2k−2

∣
∣
∣
∣
∣
∣
∣
∣

, (1.2)

where n, k ∈ N.
In recent years many mathematicians have investigated Hankel determi-

nants for various classes of functions contained in A. These studies focus on
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the main subclasses of class S consisting of univalent functions (see, [1,3,8–
10,14–16,21,22,24,25]). A few papers are devoted to some subclasses of Sσ of
bi-univalent functions (see, [4,17]). In fact, the majority of papers discuss the
determinants H2(2) and H3(1). The case H2(1) = a3 − a2

2 is also very well
known. It is the classical Fekete-Szegö functional, which has been considered
since the 1930’s and is still of great interest, especially in a modified version
a3 − μa2

2.
From the explicit form of H3(1) we can see that it involves the second

Hankel determinant H2(k), where k = 1, 2, 3. Indeed,

H3(1) = a3H2(2) + a4I + a5H2(1), (1.3)

or equivalently,

H3(1) = H2(3) + a2J + a3H2(2), (1.4)

where I = a2a3 − a4, J = a3a4 − a2a5. Surprisingly, the determinant

H2(3) = a3a5 − a4
2

has not been discussed yet. In this paper we want to consider H2(3) for S
and some its subclasses: S∗ of starlike functions, K of convex functions and
R of functions whose derivative has a positive real part. The main idea we
put forward in this paper is to express the coefficients of a function f in a
given class by the coefficients of a corresponding function p from the class P
of functions with a positive real part. After that, we can use the known and
some new estimates of coefficient functionals for p ∈ P.

2. Auxiliary Lemmas

To obtain our results we need a few lemmas for functions p in P having the
form

p(z) = 1 + p1z + p2z
2 + · · · . (2.1)

Lemma 1 [6]. If p ∈ P, then the sharp estimate |pn − μpkpn−k| ≤ 2 holds for
n, k = 1, 2, . . ., n > k, μ ∈ [0, 1].

From this lemma we obtain the very well known bound for coefficients
of p ∈ P, i.e |pn| ≤ 2, as well as the inequality |pn − pkpn−k| ≤ 2 proved by
Livingston [13].

Lemma 2 [2]. If p ∈ P, then the sharp estimate |pn+m − pn| ≤ 2
√

2 − Repm

holds for n,m = 1, 2, . . ..

Lemma 3 [5]. The power series for p given in (2.1) converges in Δ to a function
in P if and only if the Toeplitz determinants
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Tn =
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2 p1 p2 . . . pn

p−1 2 p1 . . . pn−1

· · · · · · · · · · · · · · ·
p−n p−n+1 p−n+2 . . . 2

,

∣
∣
∣
∣
∣
∣
∣
∣

(2.2)

where p−n = pn, n = 1, 2, . . . are all non-negative.

Directly from this lemma one can obtain sets of variability of the initial
coefficients of functions in P. In what follows, we need a set Ω of variability
of the pair (|p1|, |p2|), where p1, p2 are the first two coefficients of p ∈ P. Let
Ω = {(x, y) : max{0, x2 − 2} ≤ y ≤ 2}.

Lemma 4. If p ∈ P, then (|p1|, |p2|) ∈ Ω.

Proof. According to Lemma 3, if p(z) = 1+p1z+p2z
2+· · · is in P, then in order

to determine Ω it is enough to consider the first two Toeplitz determinants.
For this reason

∣
∣
∣
∣

2 p1
p1 2

∣
∣
∣
∣
≥ 0

and
∣
∣
∣
∣
∣
∣

2 p1 p2
p1 2 p1
p2 p1 2

∣
∣
∣
∣
∣
∣

≥ 0.

Hence,

|p1| ≤ 2 and 4 + Rep2p1
2 − |p2|2 − 2|p1|2 ≥ 0.

Denoting x = |p1|, y = |p2|, x, y ≥ 0, the above inequalities lead to

x ≤ 2 and 4 + x2y − y2 − 2x2 ≥ 0.

Consequently, 0 ≤ y ≤ 2 for x ∈ [0,
√

2] and x2 −2 ≤ y ≤ 2 for x ∈ [
√

2, 2]. �
What plays a crucial role in estimating expressions involving coefficients

of p ∈ P is the result obtained by Libera and Z�lotkiewicz.

Lemma 5 [12]. Let p1 ∈ [0, 2]. A function p belongs to P if and only if

2p2 = p1
2 + x(4 − p1

2)

and

4p3 = p1
3 + 2p1(4 − p1

2)x − p1(4 − p1
2)x2 + 2(4 − p1

2)(1 − |x|2)z
for some x and z such that |x| ≤ 1, |z| ≤ 1.

Let f be given by (1.1) and let

fϕ(z) = e−iϕf(zeiϕ), ϕ ∈ R. (2.3)

Lemma 6. If A is one of the classes: S, S∗, K, R and Φ(f) = |a3a5 − a4
2|

is a functional defined for f ∈ A given by (1.1), then Φ(f) = Φ(fϕ) for every
ϕ ∈ R.
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This lemma makes it possible to assume that when estimating Φ(f), one
selected coefficient of f is a non-negative real number.

Remark 1. A similar observation can be made for functions of the class P.
Namely, if p ∈ P is given by (2.1), pϕ(z) = p(zeiϕ) and Φ(p) is one of the
expressions |pn − μpkpn−k| or |pn−1pn+1 − pn

2|, n, k = 1, 2, . . ., n > k, μ ∈ R,
then Φ(p) = Φ(pϕ) for every ϕ ∈ R.

From Lemma 5 we immediately obtain two results which are generaliza-
tions of Lemma 1 in the case n = 2, k = 1 and in the case μ = 1, n = 3,
k = 1.

Lemma 7. If p ∈ P, then for μ ∈ R the following sharp estimate holds

|p2 − μp1
2| ≤

{

2 − μ|p1|2, μ ≤ 1/2,

2 − (1 − μ)|p1|2, μ ≥ 1/2.

Lemma 8. If p ∈ P, then |p3 − p1p2| ≤ 1
4

(

8 − 2|p1|2 + |p1|3
)

.

The proofs of both lemmas are not difficult to obtain, so they are omitted.

Remark 2. Considering p(zn), we can obtain related versions of these lemmas
writing pkn instead of pk, k = 1, 2, . . .. For example,

|p4 − μp2
2| ≤

{

2 − μ|p2|2, μ ≤ 1/2,

2 − (1 − μ)|p2|2, μ ≥ 1/2
(2.4)

or
|p6 − p2p4| ≤ 1

4

(

8 − 2|p2|2 + |p2|3
)

. (2.5)

Now, we can prove one more auxiliary lemma.

Lemma 9. If p ∈ P, then |p2p4−p3
2| ≤ 4. The equality holds only for functions

p(z) =
1 + z3

1 − z3
, (2.6)

p(z) =
1 + z2

1 − z2
(2.7)

and their rotations.

Proof. Since
|p2p4 − p3

2| ≤ |p2p4 − p6| + |p6 − p3
2|, (2.8)

we immediately obtain the declared bound of |p2p4 − p3
2|.

The equality
|p2p4 − p3

2| = 4 (2.9)
holds if both expresions |p2p4 −p6| and |p6 −p3

2| are equal to 2. From (2.5) we
can conclude that |p2p4 − p6| = 2 only if p2 = 0 or |p2| = 2. We shall discuss
these two cases.
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I. Let |p2| = 2. According to Lemma 6, we can assume that p2 = 2. From
Lemma 2 for m = 2 we know that all odd coefficients of p are equal and
p2k = 2, k = 1, 2, . . .. In this case, Lemma 3 for n = 2 leads to

∣
∣
∣
∣
∣
∣

2 p1 2
p1 2 p1
2 p1 2

∣
∣
∣
∣
∣
∣

≥ 0 (2.10)

which is equivalent to Imp1 = 0. Consequently, p1 = p3 = · · · = p2k+1 =
· · · = a, a ∈ R for all k = 1, 2, . . .. For this reason, (2.9) can be written as
|4 − a2| = 4, so a = 0. This means that (2.9) holds for the functions p of the
form (2.7) and their rotations.
II. Let p2 = 0. Condition (2.9) is satisfied if |p3| = 2. In this case, given
Lemma 6, we assume that p3 = 2. From Lemma 2 for m = 3 we obtain that
p1 = p4 = · · · = p3k+1 = · · · , p2 = p5 = · · · = p3k+2 = · · · and p3k = 2 for all
k = 1, 2, . . .. Now we apply Lemma 3 with n = 2 and n = 3. We have

∣
∣
∣
∣
∣
∣

2 p1 0
p1 2 p1
0 p1 2

∣
∣
∣
∣
∣
∣

≥ 0 (2.11)

and
∣
∣
∣
∣
∣
∣
∣
∣

2 p1 0 2
p1 2 p1 0
0 p1 2 p1
2 0 p1 2

∣
∣
∣
∣
∣
∣
∣
∣

≥ 0, (2.12)

which are equivalent to

|p1| ≤
√

2 and |p1|4 − 4Rep1
3 − 8|p1|2 ≥ 0. (2.13)

Writing p1 = reiθ, we obtain

r ≤
√

2 and r2(r2 − 4r cos(3θ) − 8) ≥ 0, (2.14)

which is satisfied only if r = 0. This means that p1 is equal to 0 and, conse-
quently, the extremal functions are rotations of that given by (2.6). �

Finally, applying (2.5) in (2.8), we obtain an improvement of the inequal-
ity from Lemma 9.

Lemma 10. If p ∈ P, then |p2p4 − p3
2| ≤ 4 − 1

2 |p2|2 + 1
4 |p2|3.
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3. Determinant H2(3) for S∗, K and R
Let f , g, h be univalent. Then

f ∈ S∗ ⇔ zf ′(z)
f(z)

∈ P, (3.1)

g ∈ K ⇔ 1 +
zg′′(z)
g′(z)

∈ P, (3.2)

h ∈ R ⇔ h′(z) ∈ P. (3.3)

From now on, we assume that f(z) = z + a2z
2 + a3z

3 + · · · , g(z) = z + b2z
2 +

b3z
3 + · · · , h(z) = z + c2z

2 + c3z
3 + · · · and p(z) = 1 + p1z + p2z

2 + · · · are
in S∗, K, R and P , respectively.

From (3.1) we obtain

(n − 1)an =
n−1∑

j=1

ajpn−j . (3.4)

Hence,

a2 = p1,

a3 = 1
2 (p2 + p1

2),

a4 = 1
3

(

p3 + 3
2p1p2 + 1

2p1
3
)

,

a5 = 1
4

(

p4 + 4
3p1p3 + 1

2p2
2 + p1

2p2 + 1
6p1

4
)

. (3.5)

Therefore, if f ∈ S∗, then H2(3) = F (p1, p2, p3, p4), where

F (p1, p2, p3, p4) =
1

144
(−p1

6 − 3p1
4p2 + 8p1

3p3 − 9p1
2p2

2

+18p1
2p4 − 24p1p2p3 + 9p2

3 + 18p2p4 − 16p3
2
)

. (3.6)

According to the Alexander relation, nbn = an. Substituting it into the
definition of H2(3) for a convex function and applying formulae (3.5), we obtain
H2(3) = G(p1, p2, p3, p4), where

G(p1, p2, p3, p4) =
1

2880
(−p1

6 − 2p1
4p2 + 12p1

3p3 − 9p1
2p2

2

+24p1
2p4 − 28p1p2p3 + 12p2

3 + 24p2p4 − 20p3
2
)

. (3.7)

Finally, if f ∈ R, then ncn = pn−1. Directly from (1.2) it follows that
H2(3) = H(p1, p2, p3, p4), where

H(p1, p2, p3, p4) =
1
15

p2p4 − 1
16

p3
2. (3.8)

Taking into account the explicit formulae of H2(3), it is a difficult problem
to find the exact bounds of these expressions. For this reason, we start with a
particular case.

Theorem 1. Let f be given by (1.1) with an additional assumption that a2 = 0.
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1. If f ∈ S∗, then |H2(3)| ≤ 1.
2. If f ∈ K, then |H2(3)| ≤ 1

15 .

Both results are sharp.

Proof. Assume that for f given by (1.1) there is a2 = 0. From (3.5) it follows
that p1 = 0.

If f ∈ S∗, then

|H2(3)| =
1

144

∣
∣9p2

3 + 2p2p4 + 16(p2p4 − p3
2)

∣
∣ . (3.9)

For f ∈ K, we can write

|H2(3)| =
1

720

∣
∣3p2

3 + p2p4 + 5(p2p4 − p3
2)

∣
∣ . (3.10)

It is enough to apply Lemmas 1 and 9 to obtain the bounds 1 and 1/15 for S∗

and K, respectively.
The expression (3.9) is equal to 1 if and only if |p2| = 2, |p4| = 2 and

|p2p4 − p3
2| = 4. It is possible only for rotations of (2.7). This means that the

extremal starlike functions are f(z) = z
1−z2 and its rotations.

The same argument as above is also valid for the equality in the esti-
mation of |H2(3)| for convex functions. This argument leads to the conclusion
that only for rotations of f(z) = 1

2 log 1+z
1−z there is |H2(3)| = 1/15. �

Observe that the extremal functions in Theorem 1 are odd. This results
in the following corollary. The symbol A(2) stands for a subclass of A consisting
of all odd functions.

Corollary 1. Let f be given by (1.1).

1. If f ∈ S∗(2), then |H2(3)| ≤ 1.
2. If f ∈ K(2), then |H2(3)| ≤ 1

15 .

Both results are sharp.

It is worth saying that the result from Theorem 1 for starlike functions
generalizes the result of Jakubowski, who proved in [7] that the inequality
|a3a5| ≤ 1 holds for all odd starlike functions with real coefficients given by
(1.1).

Now we can prove two general theorems.

Theorem 2. Let f be given by (1.1).

1. If f ∈ S∗, then |H2(3)| ≤ 1.573 . . . .
2. If f ∈ K, then |H2(3)| ≤ 0.096 . . . .

Theorem 3. If f ∈ R, then |H2(3)| ≤ 4
15 . The equality holds only for f(z) =

log 1+z
1−z − z = z + 2

3z3 + 2
5z5 + · · · and its rotations.
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Proof of Theorem 2. Let f ∈ S∗. From (3.6) it follows that

F (p1, p2, p3, p4) =
1

144
[

16(p4 − p1p3)
(

p2 − 1
2p1

2
) − 20(p2 − p1

2)
(

p4 − 7
10p2

2
)

+16(p2p4 − p3
2) − 5(p2 + 1

5p1
2)(p2 − p1

2)2

+ 6p1
2
(

p4 − 2
3p2

2
)

+ 6p2(p4 − p1p3) − 2p1p2p3
]

, (3.11)

Similarly, if f ∈ K, then from (3.7),

G(p1, p2, p3, p4) =
1

2880
[

16(p4 − p1p3)
(

p2 − 1
2p1

2
)

+ 8p2(p4 − p1p3)

−20(p2 − p1
2)

(

p4 − 9
20p2

2
)

+ 20(p2p4 − p3
2) + 3p23

+12p1
2
(

p4 − 1
3p2

2
)

+ 2p1
4
(

p2 − 1
2p1

2
)

−4p1(p2 − p1
2)(p3 − p1p2)

]

. (3.12)

In both cases, it is enough to apply the triangle inequality and Lemmas
1 and 7. Denoting p = |p1| and q = |p2|, we have

|F (p1, p2, p3, p4)|
≤ 1

144

[

32
(

2 − 1
2p

2
)

+ 40
(

2 − 3
10q

2
)

+ 16
(

4 − 1
2q

2 + 1
4q

3
)

+4(5q + p2) + 6p2
(

2 − 1
3q

2
)

+ 12q + 4pq
]

=
1

144

[

210 + 32q − 20q2 + 4q3 − 2(1 − pq)2
]

≤ 1

144

(

210 + 32q − 20q2 + 4q3
)

,

which achieves its greatest value in [0, 2] for q = 4/3; hence, the result follows.
Similarly,

|G(p1, p2, p3, p4)|
≤ 1

2880

[

32
(

2 − 1
2p2)

+ 16q + 40
(

2 − 9
20 q2

)

+20
(

4 − 1
2 q2 + 1

4 q3
)

+ 3q3 + 12p2 (

2 − 1
3 q2

)

+ 2p4 (

2 − 1
2p2)

+ 2p(8 − 2p2 + p3)
]

=
1

2880

[

224 + 16p + 8p2 − 4p3 + 6p4 − p6 + 16q − 28q2 + 8q3 − 4p2q2
]

.

Denoting h(p, q) = 224 + 16p + 8p2 − 4p3 + 6p4 − p6 + 16q − 28q2 + 8q3,
we can see that h(p, q) is an increasing function of the variable p ∈ [0, 2]. Due
to Lemma 4,

|G(p1, p2, p3, p4)| ≤ 1
2880

h(p, q) ≤ 1
2880

h(
√

2 + q, q), q ∈ [0, 2].

Observe that it is equivalent to discuss the function h(p, p2 − 2), p ∈ [
√

2, 2]
instead of h(

√
2 + q, q), q ∈ [0, 2]. Considering the derivative of h(p, p2 − 2),

we find that its greatest value in [
√

2, 2] is achieved for p0 = 1.666 . . . , which
is the only positive solution of the equation 4+118p+56p2 − 42p3 − 21p4 = 0.
Consequently, max{h(p, q), (p, q) ∈ Ω} = h(p0, p02 − 2) = 278.503 . . .. This
completes the proof. �
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Proof of Theorem 3. Observe that for f ∈ R we can write

H(p1, p2, p3, p4) = 1
16

(

p2p4 − p3
2
)

+ 1
240p2p4. (3.13)

The desired estimate follows directly from the triangle inequality and Lemmas
1 and 9.

The equality
|H2(3)| = 4

15 (3.14)

holds only if |p2p4 − p3
2| = 4 and |p2| = |p4| = 2. By Lemma 9, it is possible

only for p(z) = 1+z2

1−z2 . As a consequence, we obtain the extremal functions
f ∈ R for which (3.14) holds. �

4. Determinant H2(3) for S
The problem of finding a sharp bound of |H2(3)| for all univalent functions
seems to be extremely difficult. The same can also be said about a sharp bound
of |H2(2)| for f ∈ S.

Let us recall that in [18] the following conjecture was posed:

|H2(n)| = |anan+2 − an+1
2| ≤ 1 (4.1)

for all f ∈ S and n = 2, 3, . . ..
According to the result of Schaeffer and Spencer [23], this conjecture is

false for n ≥ 4 (see also [11]). In [21] it was shown that for univalent func-
tions |H2(2)| can exceed 1. Namely, for the function fε, ε ∈ (0, 1) which is a
composition of the function s(z) satisfying

s

(1 + s)2
=

4ε

(1 + ε)2
· z

(1 + z)2
, (4.2)

and the function

w(s) =
(1 + ε)2

4
· s(1 − εs)

ε − s
, (4.3)

we have

fε(z) = z +
2(1 − ε)(1 + 3ε)

(1 + ε)2
z2 +

(1 − ε)(3 + 15ε + 33ε2 − 19ε3)

(1 + ε)4
z3

+
4(1 − ε)(1 + 7ε + 18ε2 + 54ε3 − 59ε4 + 11ε5)

(1 + ε)6
z4

+
(1 − ε)(5 + 45ε + 185ε2 + 145ε3 + 1855ε4 − 2537ε5 + 899ε6 − 85ε7)

(1 + ε)8
z5 + · · · .

(4.4)

The function fε maps Δ univalently onto the set

C\ (

(−∞,−dε] ∪ {dεe
iθ, θε ≤ |θ| ≤ π}) , (4.5)
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where

dε =
(1 + ε)2

4
and θε = 2arccos ε. (4.6)

Admitting the cases ε = 0 and ε = 1, we obtain a univalent passage between
the identity function (f1 = id) and the Koebe function (f0 = k, k(z) = z

(1−z)2 ).
For the function fε we have H2(2) = 1.175 . . . (see, Theorem 2 in [21])

and

H2(3) = −K(ε),

where

K(ε) =
(1 − ε)4

(1 + ε)12
(1 + 16ε − 4ε2 + 1136ε3

+4678ε4 + 4976ε5 − 2692ε6 − 240ε7 + 321ε8), ε ∈ [0, 1]. (4.7)

It is easily seen that K(ε) ≥ 0 for ε ∈ [0, 1]. Moreover,

K ′(ε) = −256(1 − ε)ε
(1 + ε)13

(

1 − 14ε − 2ε2 + 173ε3 + 301ε4 − 220ε5 − 4ε6 + 21ε7
)

.

For ε0, which is a greater solution of 1 − 14ε − 2ε2 + 173ε3 + 301ε4 − 220ε5 −
4ε6 + 21ε7 = 0 in (0, 1), i.e., for ε0 = 0.205 . . ., we can write

max{K(ε) : ε ∈ [0, 1]} = K(ε0) = 1.012 . . . . (4.8)

We have proven

Theorem 4. If f is given by (1.1), then

max{|H2(3)| : f ∈ S} ≥ 1.012 . . . . (4.9)

Remark 3. Theorem 4 with previously obtained results lead to the conclusion
that the conjecture in (4.1) is false for all n ≥ 2. From (4.5) it follows that fε,
ε ∈ (0, 1) is neither a starlike nor a close-to-convex function.

On the other hand, |H2(n)| = 1 for the Koebe function k(z) = z
(1−z)2 (as

well as for its rotations). We also know that for all f ∈ S∗ we have |H2(1)| ≤ 1
and |H2(2)| ≤ 1. Although we do not know the sharp bound of |H2(3)|, taking
into account Theorem 1, point 1, and Theorem 2, point 1, it is likely that (4.1)
may hold just for functions in the class S∗.
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