

On Hankel Determinant *H* **²**(**3**) **for Univalent Functions**

P[a](http://orcid.org/0000-0002-7279-9582)weł Zaprawa

Abstract. In this paper we consider the Hankel determinant $H_2(3)$ = $a_3a_5 - a_4^2$ defined for the coefficients of a function *f* which belongs to the class S of univalent functions or to its subclasses: S^* of starlike functions, K of convex functions and R of functions whose derivative has a positive real part. Bounds of $|H_2(3)|$ for these classes are found; the bound for R is sharp. Moreover, the sharp results for starlike functions and convex functions for which $a_2 = 0$ are obtained. It is also proved that $\max\{|H_2(3)|: f \in \mathcal{S}\}\$ is greater than 1.

Mathematics Subject Classification. 30C50.

Keywords. Univalent functions, starlike functions, convex functions, Hankel determinant.

1. Introduction

Let Δ be the unit disk $\{z \in \mathbb{C} : |z| < 1\}$ and $\mathcal A$ be the family of all functions f analytic in Δ , normalized by the condition $f(0) = f'(0) - 1 = 0$. Hence, the functions in A are of the form

$$
f(z) = z + a_2 z^2 + a_3 z^3 + \cdots
$$
 (1.1)

Pommerenke (see, $(19, 20)$) defined the k-th Hankel determinant for a function f as

$$
H_k(n) = \begin{vmatrix} a_n & a_{n+1} & \dots & a_{n+k-1} \\ a_{n+1} & a_{n+2} & \dots & a_{n+k} \\ \dots & \dots & \dots & \dots \\ a_{n+k-1} & a_{n+k} & \dots & a_{n+2k-2} \end{vmatrix},
$$
 (1.2)

where $n, k \in \mathbb{N}$.

In recent years many mathematicians have investigated Hankel determinants for various classes of functions contained in A. These studies focus on

B Birkhäuser

the main subclasses of class S consisting of univalent functions (see, $[1,3,8-]$ $[1,3,8-]$ $[1,3,8-]$ $[1,3,8-]$ $[1,3,8-]$ [10](#page-10-5),[14](#page-10-6)[–16,](#page-10-7)[21,](#page-11-1)[22](#page-11-2)[,24,](#page-11-3)[25\]](#page-11-4)). A few papers are devoted to some subclasses of S_{σ} of bi-univalent functions (see, $[4,17]$ $[4,17]$). In fact, the majority of papers discuss the determinants $H_2(2)$ and $H_3(1)$. The case $H_2(1) = a_3 - a_2^2$ is also very well known. It is the classical Fekete-Szegö functional, which has been considered since the 1930's and is still of great interest, especially in a modified version $a_3 - \mu a_2^2$.

From the explicit form of $H_3(1)$ we can see that it involves the second Hankel determinant $H_2(k)$, where $k = 1, 2, 3$. Indeed,

$$
H_3(1) = a_3 H_2(2) + a_4 I + a_5 H_2(1),
$$
\n(1.3)

or equivalently,

$$
H_3(1) = H_2(3) + a_2 J + a_3 H_2(2),
$$
\n(1.4)

where $I = a_2a_3 - a_4$, $J = a_3a_4 - a_2a_5$. Surprisingly, the determinant

$$
H_2(3) = a_3 a_5 - a_4^2
$$

has not been discussed yet. In this paper we want to consider $H_2(3)$ for S and some its subclasses: S^* of starlike functions, K of convex functions and $\mathcal R$ of functions whose derivative has a positive real part. The main idea we put forward in this paper is to express the coefficients of a function f in a given class by the coefficients of a corresponding function p from the class $\mathcal P$ of functions with a positive real part. After that, we can use the known and some new estimates of coefficient functionals for $p \in \mathcal{P}$.

2. Auxiliary Lemmas

To obtain our results we need a few lemmas for functions p in $\mathcal P$ having the form

$$
p(z) = 1 + p_1 z + p_2 z^2 + \cdots
$$
 (2.1)

Lemma 1 [\[6](#page-10-10)]*. If* $p \in \mathcal{P}$ *, then the sharp estimate* $|p_n - \mu p_k p_{n-k}| \leq 2$ *holds for* $n, k = 1, 2, \ldots, n > k, \mu \in [0, 1].$

From this lemma we obtain the very well known bound for coefficients of $p \in \mathcal{P}$, i.e $|p_n| \leq 2$, as well as the inequality $|p_n - p_k p_{n-k}| \leq 2$ proved by Livingston [\[13](#page-10-11)].

Lemma 2 [\[2\]](#page-10-12)*.* If $p \in \mathcal{P}$ *, then the sharp estimate* $|p_{n+m} - p_n| \leq 2\sqrt{2 - Rep_m}$ *holds for* $n, m = 1, 2, ...$

Lemma 3 [\[5](#page-10-13)]. The power series for p given in [\(2.1\)](#page-1-0) converges in Δ to a function *in* P *if and only if the Toeplitz determinants*

$$
T_n = \begin{vmatrix} 2 & p_1 & p_2 & \dots & p_n \\ p_{-1} & 2 & p_1 & \dots & p_{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ p_{-n} & p_{-n+1} & p_{-n+2} & \dots & 2 \end{vmatrix}
$$
 (2.2)

where $p_{-n} = \overline{p}_n$, $n = 1, 2, \ldots$ *are all non-negative.*

Directly from this lemma one can obtain sets of variability of the initial coefficients of functions in \mathcal{P} . In what follows, we need a set Ω of variability of the pair $(|p_1|, |p_2|)$, where p_1, p_2 are the first two coefficients of $p \in \mathcal{P}$. Let $\Omega = \{(x, y) : \max\{0, x^2 - 2\} \le y \le 2\}.$

Lemma 4. *If* $p \in \mathcal{P}$ *, then* $(|p_1|, |p_2|) \in \Omega$ *.*

Proof. According to Lemma [3,](#page-1-1) if $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ is in P, then in order to determine Ω it is enough to consider the first two Toeplitz determinants. For this reason

$$
\begin{vmatrix} 2 & p_1 \\ \overline{p}_1 & 2 \end{vmatrix} \ge 0
$$

and

$$
\begin{vmatrix} 2 & p_1 & p_2 \\ \overline{p}_1 & 2 & p_1 \\ \overline{p}_2 & \overline{p}_1 & 2 \end{vmatrix} \ge 0.
$$

Hence,

$$
|p_1| \le 2
$$
 and $4 + Rep_2\overline{p}_1{}^2 - |p_2|^2 - 2|p_1|^2 \ge 0$.

Denoting $x = |p_1|, y = |p_2|, x, y \ge 0$, the above inequalities lead to

$$
x \le 2
$$
 and $4 + x^2y - y^2 - 2x^2 \ge 0$.

Consequently, $0 \le y \le 2$ for $x \in [0, \sqrt{2}]$ and $x^2 - 2 \le y \le 2$ for $x \in [\sqrt{2}, 2]$. \Box

What plays a crucial role in estimating expressions involving coefficients of $p \in \mathcal{P}$ is the result obtained by Libera and Złotkiewicz.

Lemma 5 [\[12](#page-10-14)]*. Let* $p_1 \in [0, 2]$ *. A function* p *belongs to* P *if and only if*

$$
2p_2 = p_1^2 + x(4 - p_1^2)
$$

and

$$
4p_3 = p_1^3 + 2p_1(4 - p_1^2)x - p_1(4 - p_1^2)x^2 + 2(4 - p_1^2)(1 - |x|^2)z
$$

for some x and z *such that* $|x| \leq 1, |z| \leq 1$.

Let f be given by (1.1) and let

$$
f_{\varphi}(z) = e^{-i\varphi} f(ze^{i\varphi}), \varphi \in \mathbb{R}.
$$
 (2.3)

Lemma 6. *If* A *is one of the classes:* S *,* S^* *,* K *,* R *and* $\Phi(f) = |a_3a_5 - a_4^2|$
is a functional defined for $f \in A$ *since by* $(1,1)$, then $\Phi(f) = \Phi(f)$ for symmetric *is a functional defined for* $f \in A$ *given by* [\(1.1\)](#page-0-0)*, then* $\Phi(f) = \Phi(f_{\varphi})$ *for every* $\varphi \in \mathbb{R}$.

This lemma makes it possible to assume that when estimating $\Phi(f)$, one selected coefficient of f is a non-negative real number.

Remark 1*.* A similar observation can be made for functions of the class P. Namely, if $p \in \mathcal{P}$ is given by [\(2.1\)](#page-1-0), $p_{\varphi}(z) = p(ze^{i\varphi})$ and $\Phi(p)$ is one of the expressions $|p_n - \mu p_k p_{n-k}|$ or $|p_{n-1}p_{n+1} - p_n^2|$, $n, k = 1, 2, ..., n > k, \mu \in \mathbb{R}$, then $\Phi(p) = \Phi(p_{\varphi})$ for every $\varphi \in \mathbb{R}$.

From Lemma [5](#page-2-0) we immediately obtain two results which are generaliza-tions of Lemma [1](#page-1-2) in the case $n = 2$, $k = 1$ and in the case $\mu = 1$, $n = 3$, $k=1$.

Lemma 7. *If* $p \in \mathcal{P}$, then for $\mu \in \mathbb{R}$ the following sharp estimate holds

$$
|p_2 - \mu p_1^2| \le \begin{cases} 2 - \mu |p_1|^2, & \mu \le 1/2, \\ 2 - (1 - \mu)|p_1|^2, & \mu \ge 1/2. \end{cases}
$$

Lemma 8. *If* $p \in \mathcal{P}$ *, then* $|p_3 - p_1p_2| \leq \frac{1}{4}(8 - 2|p_1|^2 + |p_1|^3)$ *.*

The proofs of both lemmas are not difficult to obtain, so they are omitted.

Remark 2. Considering $p(z^n)$, we can obtain related versions of these lemmas writing p_{kn} instead of p_k , $k = 1, 2, \ldots$ For example,

$$
|p_4 - \mu p_2^2| \le \begin{cases} 2 - \mu |p_2|^2, & \mu \le 1/2, \\ 2 - (1 - \mu)|p_2|^2, & \mu \ge 1/2 \end{cases}
$$
 (2.4)

or

$$
|p_6 - p_2 p_4| \le \frac{1}{4} \left(8 - 2|p_2|^2 + |p_2|^3 \right). \tag{2.5}
$$

Now, we can prove one more auxiliary lemma.

Lemma 9. *If* $p \in \mathcal{P}$, then $|p_2p_4-p_3^2| \leq 4$. The equality holds only for functions

$$
p(z) = \frac{1+z^3}{1-z^3},\tag{2.6}
$$

$$
p(z) = \frac{1+z^2}{1-z^2} \tag{2.7}
$$

and their rotations.

Proof. Since

$$
|p_2p_4 - p_3^2| \le |p_2p_4 - p_6| + |p_6 - p_3^2|,\tag{2.8}
$$

we immediately obtain the declared bound of $|p_2p_4 - p_3|^2$.

The equality

$$
|p_2p_4 - p_3^2| = 4 \tag{2.9}
$$

holds if both expresions $|p_2p_4 - p_6|$ and $|p_6 - p_3|^2$ are equal to 2. From [\(2.5\)](#page-3-0) we can conclude that $|p_2p_4 - p_6| = 2$ only if $p_2 = 0$ or $|p_2| = 2$. We shall discuss these two cases.

I. Let $|p_2| = 2$. According to Lemma [6,](#page-2-1) we can assume that $p_2 = 2$. From Lemma [2](#page-1-3) for $m = 2$ we know that all odd coefficients of p are equal and $p_{2k} = 2, k = 1, 2, \ldots$ In this case, Lemma [3](#page-1-1) for $n = 2$ leads to

$$
\begin{vmatrix} 2 & p_1 & 2 \\ \overline{p}_1 & 2 & p_1 \\ 2 & \overline{p}_1 & 2 \end{vmatrix} \ge 0
$$
\n(2.10)

which is equivalent to $Imp_1 = 0$. Consequently, $p_1 = p_3 = \cdots = p_{2k+1} =$ $\cdots = a, a \in \mathbb{R}$ for all $k = 1, 2, \ldots$ For this reason, (2.9) can be written as $|4 - a^2| = 4$, so $a = 0$. This means that (2.9) holds for the functions p of the form [\(2.7\)](#page-3-2) and their rotations.

II. Let $p_2 = 0$. Condition [\(2.9\)](#page-3-1) is satisfied if $|p_3| = 2$. In this case, given Lemma [6,](#page-2-1) we assume that $p_3 = 2$ $p_3 = 2$. From Lemma 2 for $m = 3$ we obtain that $p_1 = p_4 = \cdots = p_{3k+1} = \cdots$, $p_2 = p_5 = \cdots = p_{3k+2} = \cdots$ and $p_{3k} = 2$ for all $k = 1, 2, \ldots$ Now we apply Lemma [3](#page-1-1) with $n = 2$ and $n = 3$. We have

$$
\begin{vmatrix} 2 & p_1 & 0 \\ \overline{p}_1 & 2 & p_1 \\ 0 & \overline{p}_1 & 2 \end{vmatrix} \ge 0
$$
 (2.11)

and

$$
\begin{vmatrix} 2 & p_1 & 0 & 2 \\ \overline{p}_1 & 2 & p_1 & 0 \\ 0 & \overline{p}_1 & 2 & p_1 \\ 2 & 0 & \overline{p}_1 & 2 \end{vmatrix} \ge 0,
$$
\n(2.12)

which are equivalent to

$$
|p_1| \le \sqrt{2}
$$
 and $|p_1|^4 - 4\Re(p_1^3 - 8|p_1|^2 \ge 0.$ (2.13)

Writing $p_1 = re^{i\theta}$, we obtain

$$
r \le \sqrt{2}
$$
 and $r^2(r^2 - 4r\cos(3\theta) - 8) \ge 0,$ (2.14)

which is satisfied only if $r = 0$. This means that p_1 is equal to 0 and, consequently, the extremal functions are rotations of that given by (2.6). quently, the extremal functions are rotations of that given by (2.6) .

Finally, applying (2.5) in (2.8) , we obtain an improvement of the inequality from Lemma [9.](#page-3-4)

Lemma 10. *If* $p \in \mathcal{P}$ *, then* $|p_2p_4 - p_3^2| \leq 4 - \frac{1}{2}|p_2|^2 + \frac{1}{4}|p_2|^3$ *.*

3. Determinant $H_2(3)$ for S^* , K and \mathcal{R}

Let f, g, h be univalent. Then

$$
f \in \mathcal{S}^* \Leftrightarrow \frac{zf'(z)}{f(z)} \in P,\tag{3.1}
$$

$$
g \in \mathcal{K} \Leftrightarrow 1 + \frac{z g''(z)}{g'(z)} \in P,\tag{3.2}
$$

$$
h \in \mathcal{R} \Leftrightarrow h'(z) \in P. \tag{3.3}
$$

From now on, we assume that $f(z) = z + a_2z^2 + a_3z^3 + \cdots$, $g(z) = z + b_2z^2 + b_3z^3 + \cdots$ $b_3z^3 + \cdots$, $h(z) = z + c_2z^2 + c_3z^3 + \cdots$ and $p(z) = 1 + p_1z + p_2z^2 + \cdots$ are in $\mathcal{S}^*, \mathcal{K}, \mathcal{R}$ and P, respectively.

From [\(3.1\)](#page-5-0) we obtain

$$
(n-1)a_n = \sum_{j=1}^{n-1} a_j p_{n-j}.
$$
 (3.4)

Hence,

$$
a_2 = p_1,
$$

\n
$$
a_3 = \frac{1}{2}(p_2 + p_1^2),
$$

\n
$$
a_4 = \frac{1}{3}(p_3 + \frac{3}{2}p_1p_2 + \frac{1}{2}p_1^3),
$$

\n
$$
a_5 = \frac{1}{4}(p_4 + \frac{4}{3}p_1p_3 + \frac{1}{2}p_2^2 + p_1^2p_2 + \frac{1}{6}p_1^4).
$$
\n(3.5)

Therefore, if $f \in S^*$, then $H_2(3) = F(p_1, p_2, p_3, p_4)$, where

$$
F(p_1, p_2, p_3, p_4) = \frac{1}{144} \left(-p_1{}^6 - 3p_1{}^4 p_2 + 8p_1{}^3 p_3 - 9p_1{}^2 p_2{}^2 + 18p_1{}^2 p_4 - 24p_1 p_2 p_3 + 9p_2{}^3 + 18p_2 p_4 - 16p_3{}^2 \right). \tag{3.6}
$$

According to the Alexander relation, $nb_n = a_n$. Substituting it into the definition of $H_2(3)$ for a convex function and applying formulae (3.5) , we obtain $H_2(3) = G(p_1, p_2, p_3, p_4)$, where

$$
G(p_1, p_2, p_3, p_4) = \frac{1}{2880} \left(-p_1^6 - 2p_1^4 p_2 + 12p_1^3 p_3 - 9p_1^2 p_2^2 + 24p_1^2 p_4 - 28p_1 p_2 p_3 + 12p_2^3 + 24p_2 p_4 - 20p_3^2 \right). \tag{3.7}
$$

Finally, if $f \in \mathcal{R}$, then $nc_n = p_{n-1}$. Directly from (1.2) it follows that $H_2(3) = H(p_1, p_2, p_3, p_4)$, where

$$
H(p_1, p_2, p_3, p_4) = \frac{1}{15} p_2 p_4 - \frac{1}{16} p_3^2.
$$
 (3.8)

Taking into account the explicit formulae of $H_2(3)$, it is a difficult problem to find the exact bounds of these expressions. For this reason, we start with a particular case.

Theorem 1. Let f be given by (1.1) with an additional assumption that $a_2 = 0$.

Vol. 73 (2018) On Hankel Determinant ^H2(3) for Univalent Functions Page 7 of [12](#page-10-1) **⁸⁹**

1. *If* $f \in S^*$ *, then* $|H_2(3)| \leq 1$ *.* 2. If $f \in \mathcal{K}$, then $|H_2(3)| \leq \frac{1}{15}$.

Both results are sharp.

Proof. Assume that for f given by (1.1) there is $a_2 = 0$. From (3.5) it follows that $p_1 = 0$.

If $f \in \mathcal{S}^*$, then

$$
|H_2(3)| = \frac{1}{144} |9p_2^3 + 2p_2p_4 + 16(p_2p_4 - p_3^2)|.
$$
 (3.9)

For $f \in \mathcal{K}$, we can write

$$
|H_2(3)| = \frac{1}{720} |3p_2^3 + p_2p_4 + 5(p_2p_4 - p_3^2)|.
$$
 (3.10)

It is enough to apply Lemmas [1](#page-1-2) and [9](#page-3-4) to obtain the bounds 1 and $1/15$ for S^* and K , respectively.

The expression [\(3.9\)](#page-6-0) is equal to 1 if and only if $|p_2| = 2$, $|p_4| = 2$ and $|p_2p_4-p_3|^2|=4$. It is possible only for rotations of [\(2.7\)](#page-3-2). This means that the extremal starlike functions are $f(z) = \frac{z}{1-z^2}$ and its rotations.
The same argument as above is also valid for the equi-

The same argument as above is also valid for the equality in the estimation of $|H_2(3)|$ for convex functions. This argument leads to the conclusion that only for rotations of $f(z) = \frac{1}{2} \log \frac{1+z}{z}$ there is $|H_2(3)| = 1/15$. that only for rotations of $f(z) = \frac{1}{2} \log \frac{1+z}{1-z}$ there is $|H_2(3)| = 1/15$.

Observe that the extremal functions in Theorem [1](#page-5-2) are odd. This results in the following corollary. The symbol $A^{(2)}$ stands for a subclass of A consisting of all odd functions.

Corollary 1. Let f be given by (1.1) .

1. *If* $f \in S^{*(2)}$, *then* $|H_2(3)| \leq 1$. 2. If $f \in \mathcal{K}^{(2)}$, then $|H_2(3)| \leq \frac{1}{15}$.

Both results are sharp.

It is worth saying that the result from Theorem [1](#page-5-2) for starlike functions generalizes the result of Jakubowski, who proved in [\[7\]](#page-10-15) that the inequality $|a_3a_5| \leq 1$ holds for all odd starlike functions with real coefficients given by $(1.1).$ $(1.1).$

Now we can prove two general theorems.

Theorem 2. Let f be given by (1.1) .

1. *If* $f \in S^*$, *then* $|H_2(3)| \leq 1.573...$ 2. *If* $f \in \mathcal{K}$, then $|H_2(3)| \leq 0.096...$

Theorem 3. *If* $f \in \mathcal{R}$ *, then* $|H_2(3)| \leq \frac{4}{15}$ *. The equality holds only for* $f(z) =$
log $1+z = z = z + \frac{2}{5}z^3 + \frac{2}{5}z^5 + \dots$ and its relations $\log \frac{1+z}{1-z} - z = z + \frac{2}{3}z^3 + \frac{2}{5}z^5 + \cdots$ and its rotations.

Proof of Theorem [2.](#page-6-1) Let $f \in \mathcal{S}^*$. From [\(3.6\)](#page-5-3) it follows that

$$
F(p_1, p_2, p_3, p_4) = \frac{1}{144} \left[16(p_4 - p_1 p_3) (p_2 - \frac{1}{2} p_1^2) - 20(p_2 - p_1^2) (p_4 - \frac{7}{10} p_2^2) + 16(p_2 p_4 - p_3^2) - 5(p_2 + \frac{1}{5} p_1^2)(p_2 - p_1^2)^2 + 6p_1^2 (p_4 - \frac{2}{3} p_2^2) + 6p_2 (p_4 - p_1 p_3) - 2p_1 p_2 p_3 \right], \quad (3.11)
$$

Similarly, if $f \in \mathcal{K}$, then from (3.7) ,

$$
G(p_1, p_2, p_3, p_4) = \frac{1}{2880} \left[16(p_4 - p_1 p_3) (p_2 - \frac{1}{2}p_1^2) + 8p_2(p_4 - p_1 p_3) -20(p_2 - p_1^2) (p_4 - \frac{9}{20}p_2^2) + 20(p_2 p_4 - p_3^2) + 3p_2^3 + 12p_1^2 (p_4 - \frac{1}{3}p_2^2) + 2p_1^4 (p_2 - \frac{1}{2}p_1^2) -4p_1(p_2 - p_1^2)(p_3 - p_1 p_2) \right].
$$
\n(3.12)

In both cases, it is enough to apply the triangle inequality and Lemmas [1](#page-1-2) and [7.](#page-3-5) Denoting $p = |p_1|$ and $q = |p_2|$, we have

$$
|F(p_1, p_2, p_3, p_4)|
$$

\n
$$
\leq \frac{1}{144} \left[32 \left(2 - \frac{1}{2} p^2 \right) + 40 \left(2 - \frac{3}{10} q^2 \right) + 16 \left(4 - \frac{1}{2} q^2 + \frac{1}{4} q^3 \right) \right.
$$

\n
$$
+ 4(5q + p^2) + 6p^2 \left(2 - \frac{1}{3} q^2 \right) + 12q + 4pq \right]
$$

\n
$$
= \frac{1}{144} \left[210 + 32q - 20q^2 + 4q^3 - 2(1 - pq)^2 \right] \leq \frac{1}{144} \left(210 + 32q - 20q^2 + 4q^3 \right),
$$

which achieves its greatest value in [0, 2] for $q = 4/3$; hence, the result follows. Similarly,

$$
|G(p_1, p_2, p_3, p_4)|
$$

\n
$$
\leq \frac{1}{2880} [32 (2 - \frac{1}{2}p^2) + 16q + 40 (2 - \frac{9}{20}q^2) +20 (4 - \frac{1}{2}q^2 + \frac{1}{4}q^3) + 3q^3 + 12p^2 (2 - \frac{1}{3}q^2) + 2p^4 (2 - \frac{1}{2}p^2) + 2p(8 - 2p^2 + p^3)]
$$

\n
$$
= \frac{1}{2880} [224 + 16p + 8p^2 - 4p^3 + 6p^4 - p^6 + 16q - 28q^2 + 8q^3 - 4p^2q^2].
$$

Denoting $h(p,q) = 224 + 16p + 8p^2 - 4p^3 + 6p^4 - p^6 + 16q - 28q^2 + 8q^3$, we can see that $h(p,q)$ is an increasing function of the variable $p \in [0,2]$. Due to Lemma [4,](#page-2-2)

$$
|G(p_1, p_2, p_3, p_4)| \le \frac{1}{2880} h(p, q) \le \frac{1}{2880} h(\sqrt{2+q}, q), q \in [0, 2].
$$

Observe that it is equivalent to discuss the function $h(p, p^2 - 2), p \in [\sqrt{2}, 2]$ instead of $h(\sqrt{2+q}, q)$, $q \in [0, 2]$. Considering the derivative of $h(p, p^2 - 2)$, we find that its greatest value in $[\sqrt{2}, 2]$ is achieved for $p_0 = 1.666 \dots$, which is the only positive solution of the equation $4 + 118p + 56p^2 - 42p^3 - 21p^4 = 0$. Consequently, $\max\{h(p,q), (p,q) \in \Omega\} = h(p_0, p_0^2 - 2) = 278.503...$ This completes the proof. \Box *Proof of Theorem [3.](#page-6-2)* Observe that for $f \in \mathcal{R}$ we can write

$$
H(p_1, p_2, p_3, p_4) = \frac{1}{16} (p_2 p_4 - p_3^2) + \frac{1}{240} p_2 p_4.
$$
 (3.13)

The desired estimate follows directly from the triangle inequality and Lemmas [1](#page-1-2) and [9.](#page-3-4)

The equality

$$
|H_2(3)| = \frac{4}{15}
$$
 (3.14)

holds only if $|p_2p_4 - p_3^2| = 4$ and $|p_2| = |p_4| = 2$. By Lemma [9,](#page-3-4) it is possible only for $p(z) = \frac{1+z^2}{1-z^2}$. As a consequence, we obtain the extremal functions $f \in \mathcal{R}$ for which (3.14) holds $f \in \mathcal{R}$ for which [\(3.14\)](#page-8-0) holds.

4. Determinant $H_2(3)$ for S

The problem of finding a sharp bound of $|H_2(3)|$ for all univalent functions seems to be extremely difficult. The same can also be said about a sharp bound of $|H_2(2)|$ for $f \in \mathcal{S}$.

Let us recall that in [\[18](#page-10-16)] the following conjecture was posed:

$$
|H_2(n)| = |a_n a_{n+2} - a_{n+1}|^2 \le 1
$$
\n(4.1)

for all $f \in \mathcal{S}$ and $n = 2, 3, \ldots$

According to the result of Schaeffer and Spencer [\[23](#page-11-5)], this conjecture is false for $n \geq 4$ (see also [\[11\]](#page-10-17)). In [\[21](#page-11-1)] it was shown that for univalent functions $|H_2(2)|$ can exceed 1. Namely, for the function $f_\varepsilon, \varepsilon \in (0,1)$ which is a composition of the function $s(z)$ satisfying

$$
\frac{s}{(1+s)^2} = \frac{4\varepsilon}{(1+\varepsilon)^2} \cdot \frac{z}{(1+z)^2},
$$
\n(4.2)

and the function

$$
w(s) = \frac{(1+\varepsilon)^2}{4} \cdot \frac{s(1-\varepsilon s)}{\varepsilon - s},
$$
\n(4.3)

we have

$$
f_{\varepsilon}(z) = z + \frac{2(1-\varepsilon)(1+3\varepsilon)}{(1+\varepsilon)^2}z^2 + \frac{(1-\varepsilon)(3+15\varepsilon+33\varepsilon^2-19\varepsilon^3)}{(1+\varepsilon)^4}z^3
$$

+
$$
\frac{4(1-\varepsilon)(1+7\varepsilon+18\varepsilon^2+54\varepsilon^3-59\varepsilon^4+11\varepsilon^5)}{(1+\varepsilon)^6}z^4
$$

+
$$
\frac{(1-\varepsilon)(5+45\varepsilon+185\varepsilon^2+145\varepsilon^3+1855\varepsilon^4-2537\varepsilon^5+899\varepsilon^6-85\varepsilon^7)}{(1+\varepsilon)^8}z^5 + \cdots
$$

(4.4)

The function f_{ε} maps Δ univalently onto the set

$$
\mathbb{C}\backslash ((-\infty, -d_{\varepsilon}]\cup\{d_{\varepsilon}e^{i\theta}, \theta_{\varepsilon}\leq |\theta|\leq \pi\}),\tag{4.5}
$$

where

$$
d_{\varepsilon} = \frac{(1+\varepsilon)^2}{4} \quad \text{and} \quad \theta_{\varepsilon} = 2 \arccos \varepsilon. \tag{4.6}
$$

Admitting the cases $\varepsilon = 0$ and $\varepsilon = 1$, we obtain a univalent passage between the identity function $(f_1 = id)$ and the Koebe function $(f_0 = k, k(z) = \frac{z}{(1-z)^2})$.
For the function f, we have $H_1(2) = 1.175$ (see Theorem 2 in [21])

For the function f_{ε} we have $H_2(2) = 1.175...$ (see, Theorem 2 in [\[21\]](#page-11-1)) and

$$
H_2(3) = -K(\varepsilon),
$$

where

$$
K(\varepsilon) = \frac{(1-\varepsilon)^4}{(1+\varepsilon)^{12}} (1+16\varepsilon - 4\varepsilon^2 + 1136\varepsilon^3
$$

+4678\varepsilon^4 + 4976\varepsilon^5 - 2692\varepsilon^6 - 240\varepsilon^7 + 321\varepsilon^8), \ \varepsilon \in [0,1]. \tag{4.7}

It is easily seen that $K(\varepsilon) \geq 0$ for $\varepsilon \in [0,1]$. Moreover,

$$
K'(\varepsilon) = -\frac{256(1-\varepsilon)\varepsilon}{(1+\varepsilon)^{13}} \left(1 - 14\varepsilon - 2\varepsilon^2 + 173\varepsilon^3 + 301\varepsilon^4 - 220\varepsilon^5 - 4\varepsilon^6 + 21\varepsilon^7\right).
$$

For ε_0 , which is a greater solution of $1 - 14\varepsilon - 2\varepsilon^2 + 173\varepsilon^3 + 301\varepsilon^4 - 220\varepsilon^5$ $4\varepsilon^6 + 21\varepsilon^7 = 0$ in (0, 1), i.e., for $\varepsilon_0 = 0.205...$, we can write

$$
\max\{K(\varepsilon): \varepsilon \in [0,1]\} = K(\varepsilon_0) = 1.012\ldots \tag{4.8}
$$

We have proven

Theorem 4. If f is given by (1.1) *, then*

$$
\max\{|H_2(3)| : f \in \mathcal{S}\} \ge 1.012\ldots \tag{4.9}
$$

Remark 3*.* Theorem [4](#page-9-0) with previously obtained results lead to the conclusion that the conjecture in [\(4.1\)](#page-8-1) is false for all $n \geq 2$. From [\(4.5\)](#page-8-2) it follows that f_{ε} , $\varepsilon \in (0,1)$ is neither a starlike nor a close-to-convex function.

On the other hand, $|H_2(n)| = 1$ for the Koebe function $k(z) = \frac{z}{(1-z)^2}$ (as well as for its rotations). We also know that for all $f \in S^*$ we have $|H_2(1)| \leq 1$ and $|H_2(2)| \leq 1$. Although we do not know the sharp bound of $|H_2(3)|$, taking into account Theorem [1,](#page-5-2) point 1, and Theorem [2,](#page-6-1) point 1, it is likely that [\(4.1\)](#page-8-1) may hold just for functions in the class S^* .

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License [\(http://creativecommons.org/licenses/](http://creativecommons.org/licenses/by/4.0/) $by/4.0$, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- [1] Bansal, D., Maharana, S., Prajapat, J.K.: Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. **52**(6), 1139–1148 (2015)
- [2] Brown, J.E.: Successive coefficients of functions with positive real part. Int. J. Math. Anal. **4**(50), 2491–2499 (2010)
- [3] Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha. J. Math. Inequal. **11**(2), 429–439 (2017)
- [4] Deniz, E., Caglar, M., Orhan, H.: Second Hankel determinant for bi-starlike and bi-convex functions of order beta. Appl. Math. Comput. **271**, 301–307 (2015)
- [5] Grenander, U., Szegö, G.: Toeplitz Forms and Their Application. University of Calofornia Press, Berkely (1958)
- [6] Hayami, T., Owa, S.: Generalized Hankel determinant for certain classes. Int. J. Math. Anal. **4**(49–52), 2573–2585 (2010)
- [7] Jakubowski, Z.J.: On some extremal problems of the theory of univalent functions. In: Kühnau, R. et al. (eds.) Geometric Function Theory and Applications of Complex Analysis and Its Applications to Partial Differential Equations 2, pp. 49–55. Pitman Research Notes in Mathematics Series 257 (1993)
- [8] Janteng, A., Halim, S.A., Darus, M.: Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. **7**(2), 1–5 (2006)
- [9] Janteng, A., Halim, S.A., Darus, M.: Hankel determinant for starlike and convex functions. Int. J. Math. Anal. Ruse **1**(13–16), 619–625 (2007)
- [10] Lee, S.K., Ravichandran, V., Supramaniam, S.: Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. **2013**, 281 (2013)
- [11] Li, J.-L., Srivastava, H.M.: Some questions and conjectures in the theory of univalent functions. Rocky Mt. J. Math. **28**(3), 1035–1041 (1998)
- [12] Libera, R.J., Zlotkiewicz, E.J.: Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. **85**, 225–230 (1982)
- [13] Livingston, A.E.: The coefficients of multivalent close-to-convex functions. Proc. Am. Math. Soc. **21**, 545–552 (1969)
- [14] Marjono, Thomas, D.K.: The second Hankel determinant of functions convex in one direction. Int. J. Math. Anal. **10**(9), 423–428 (2016)
- [15] Mishra, A.K., Prajapat, J.K., Maharana, S.: Bounds on Hankel determinant for starlike and convex functions with respect to symmetric points. Cogent Math. (2016). <https://doi.org/10.1080/23311835.2016.1160557>
- [16] Noonan, J.W., Thomas, D.K.: On the Hankel determinants of areally mean pvalent functions. Proc. Lond. Math. Soc. **25**, 503–524 (1972)
- [17] Orhan, H., Magesh, N., Yamini, J.: Bounds for the second Hankel determinant of certain bi-univalent functions. Turkish J. Math. **40**(3), 679–687 (2016)
- [18] Parvatham, R., Ponnusamy, S. (eds.): New Trends in Geometric Function Theory and Application. World Scientific Publishing Company, Singapore (1981)
- [19] Pommerenke, C.: On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. **41**, 111–122 (1966)
- [20] Pommerenke, C.: On the Hankel determinants of univalent functions. Mathematika **14**, 108–112 (1967)
- [21] Răducanu, D., Zaprawa, P.: Second Hankel determinant for close-to-convex functions. C. R. Math. Acad. Sci. Paris **355**(10), 1063–1071 (2017)
- [22] Raza, M., Malik, S.N.: Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequal. Appl. **2013**, 412 (2013)
- [23] Schaeffer, A.C., Spencer, D.C.: The coefficients of schlicht functions. Duke Math. J. **10**, 611–635 (1943)
- [24] Vamshee Krishna, D., Venkateswarlua, B., RamReddy, T.: Third Hankel determinant for bounded turning functions of order alpha. J. Niger. Math. Soc. **34**, 121–127 (2015)
- [25] Zaprawa, P.: Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. **14**(1), 19 (2017)

Pawel Zaprawa

Department of Mathematics, Faculty of Mechanical Engineering Lublin University of Technology Nadbystrzycka 36 20-618 Lublin Poland e-mail: p.zaprawa@pollub.pl

Received: December 19, 2017. Accepted: June 4, 2018.