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On Hankel Determinant H »(3) for Univalent
Functions

Pawel Zaprawa

Abstract. In this paper we consider the Hankel determinant H2(3) =
aszas — a4? defined for the coefficients of a function f which belongs to
the class S of univalent functions or to its subclasses: S* of starlike func-
tions, K of convex functions and R of functions whose derivative has
a positive real part. Bounds of |H2(3)| for these classes are found; the
bound for R is sharp. Moreover, the sharp results for starlike functions
and convex functions for which as = 0 are obtained. It is also proved that
max{|H2(3)| : f € S} is greater than 1.
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1. Introduction

Let A be the unit disk {z € C: |z] < 1} and A be the family of all functions
f analytic in A, normalized by the condition f(0) = f'(0) —1 = 0. Hence, the
functions in A are of the form

f(z2)=z4a22® +az®+---. (1.1)

Pommerenke (see, [19,20]) defined the k-th Hankel determinant for a function
f as

2% Ap+1 v Gptk—1
An+1 Ap+2 oo An+k
Hy(m)=| "770 770 0 T (1.2)
Qn4k—1 An+k ce An42k—2

where n, k € N.
In recent years many mathematicians have investigated Hankel determi-
nants for various classes of functions contained in A. These studies focus on
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the main subclasses of class S consisting of univalent functions (see, [1,3,8-
10,14-16,21,22,24,25]). A few papers are devoted to some subclasses of S, of
bi-univalent functions (see, [4,17]). In fact, the majority of papers discuss the
determinants Hy(2) and Hz(1). The case Ha(1) = az — as? is also very well
known. It is the classical Fekete-Szego functional, which has been considered
since the 1930’s and is still of great interest, especially in a modified version
as — /1,0422.

From the explicit form of H3(1) we can see that it involves the second
Hankel determinant Hy(k), where k = 1,2,3. Indeed,

Hs(1) = a3H2(2) + a4l 4+ as Ha(1), (1.3)
or equivalently,
Hs(1) = Hy(3) + aJ + asH2(2), (1.4)
where I = asas — a4, J = azay — asas. Surprisingly, the determinant
Hy(3) = azas — as®

has not been discussed yet. In this paper we want to consider Hs(3) for S
and some its subclasses: S* of starlike functions, K of convex functions and
R of functions whose derivative has a positive real part. The main idea we
put forward in this paper is to express the coefficients of a function f in a
given class by the coefficients of a corresponding function p from the class P
of functions with a positive real part. After that, we can use the known and
some new estimates of coefficient functionals for p € P.

2. Auxiliary Lemmas

To obtain our results we need a few lemmas for functions p in P having the
form

p(z) =1+piz+p2®+--. (2.1)

Lemma 1 [6]. If p € P, then the sharp estimate |p, — uprpn—i| < 2 holds for
nk=1,2...,n>k, pel01].

From this lemma we obtain the very well known bound for coefficients
of p € P, ie |p,| < 2, as well as the inequality |p, — pxpn—i| < 2 proved by
Livingston [13].

Lemma 2 [2]. If p € P, then the sharp estimate |ppim — Pn| < 2¢/2 — Repy,
holds forn,m=1,2,....

Lemma 3 [5]. The power series for p given in (2.1) converges in A to a function
in P if and only if the Toeplitz determinants
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2 D1 D2 N
Tn — P—-1 2 D1 e pn—l, (22)
P—n P—n+1 P—n+2 .o 2
where p_, =p,,, n=1,2,... are all non-negative.

Directly from this lemma one can obtain sets of variability of the initial
coefficients of functions in P. In what follows, we need a set {2 of variability
of the pair (|p1], |p2|), where pi1, po are the first two coefficients of p € P. Let
Q2 ={(z,y) : max{0, 2% — 2} <y < 2}.

Lemma 4. If p € P, then (|p1], |p2|) € £2.

Proof. According to Lemma 3, if p(z) = 1+py2+p222+- -+ isin P, then in order
to determine (2 it is enough to consider the first two Toeplitz determinants.
For this reason

2 m
P 2 =0
and
2 p1 pe
D1 2 p1| > 0.
Dy P12
Hence,

lp1] <2 and 4+ Repyp,® — |paf* — 2|p1|* > 0.
Denoting = |p1|, y = |p2|, x,y > 0, the above inequalities lead to
r <2 and 4+x2y—y2—2x2 > 0.
Consequently, 0 <y < 2 for z € [0, \/5] and 22 -2 <y <2forzx € [\/5, 2. O

What plays a crucial role in estimating expressions involving coefficients
of p € P is the result obtained by Libera and Zlotkiewicz.

Lemma 5 [12]. Let p; € [0,2]. A function p belongs to P if and only if
2p = p1® + x(4 - p1?)
and
dps = p1® +2p1(4 = p1 )z — pr(4 = p1?)2® + 204 — pi*) (1 = [2*)z
for some x and z such that |z| <1, |z| < 1.
Let f be given by (1.1) and let
fo(2) = e f(2e%),p €R. (2.3)

Lemma 6. If A is one of the classes: S, S*, K, R and ®(f) = |azas — a4?|
is a functional defined for f € A given by (1.1), then @(f) = D(f,) for every
p eR.
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This lemma makes it possible to assume that when estimating &(f), one
selected coefficient of f is a non-negative real number.

Remark 1. A similar observation can be made for functions of the class P.
Namely, if p € P is given by (2.1), p,(z) = p(ze'¥) and &(p) is one of the
expressions |p, — UprPn—_k| OF [Pn_1Pni1 — pu2l, nk=1,2,...,n >k, p € R,
then ®&(p) = ¢(p,) for every p € R.

From Lemma 5 we immediately obtain two results which are generaliza-
tions of Lemma 1 in the case n = 2, £k = 1 and in the case p = 1, n = 3,
k=1.

Lemma 7. Ifp € P, then for u € R the following sharp estimate holds

2*#]9 2a ,[LSI 27
Ip2 — pp1?| < 1] ) /
2— (1 —p)p1l?, p=>1/2.

Lemma 8. If p € P, then |ps — pip2| < 5 (8 = 2[p1[* + |p1]?).
The proofs of both lemmas are not difficult to obtain, so they are omitted.

Remark 2. Considering p(z™), we can obtain related versions of these lemmas

writing pg, instead of pg, k = 1,2,.... For example,
2- Hip2 25 Hw S 1 27
[pa — pp2?| < 2| 5 / (2.4)
2= (1 —=plp2l*, p=1/2

or
Ips — p2pa| < 1 (8 = 2[p2f® + [p2|?) - (2.5)
Now, we can prove one more auxiliary lemma.

Lemma 9. Ifp € P, then |paps—p3?| < 4. The equality holds only for functions

14 23
= 2.6
pe) = 1, (26)
1422
= — 2.7
pe) = 1 (27)
and their rotations.
Proof. Since
Ipapa — p3®| < |p2pa — ps| + [ps — P32, (2.8)

we immediately obtain the declared bound of |paps — p3?|.
The equality
|paps — ps°| = 4 (2.9)
holds if both expresions |paps — pg| and |ps — p3?| are equal to 2. From (2.5) we

can conclude that |paps — pg| = 2 only if po = 0 or |p2| = 2. We shall discuss
these two cases.
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I. Let |pa] = 2. According to Lemma 6, we can assume that p; = 2. From
Lemma 2 for m = 2 we know that all odd coefficients of p are equal and
por = 2, k =1,2,.... In this case, Lemma 3 for n = 2 leads to

2 P1 2
P2 pi|20 (2.10)
2 p 2

which is equivalent to I'mp; = 0. Consequently, p1 = ps = -+ = pog41 =

~-=ua,a € Rforall k =1,2,.... For this reason, (2.9) can be written as
|4 — a?| = 4, so a = 0. This means that (2.9) holds for the functions p of the
form (2.7) and their rotations.

II. Let po = 0. Condition (2.9) is satisfied if |ps| = 2. In this case, given
Lemma 6, we assume that ps = 2. From Lemma 2 for m = 3 we obtain that

PL=DP4 =" =P3gp1 =", P2 =P5 = = P32 = --- and p3; = 2 for all
=1,2,.... Now we apply Lemma 3 with n = 2 and n = 3. We have

2 P1 0
P2 p1|=0 (2.11)
0 p 2
and
2 p 0 2
o2 Oy 2.12
0 pn 2 p|= 7 (2.12)
2 0 p 2
which are equivalent to
;1] < V2 and |pi|* — 4Repi® — 8|py|? > 0. (2.13)
Writing p; = re'’, we obtain
r<v2 and 72(r® — 4rcos(30) — 8) >0, (2.14)

which is satisfied only if » = 0. This means that p; is equal to 0 and, conse-
quently, the extremal functions are rotations of that given by (2.6). 0

Finally, applying (2.5) in (2.8), we obtain an improvement of the inequal-
ity from Lemma 9.

Lemma 10. If p € P, then |paps — p3?| < 4 — S|p2|® + L|paf3.
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3. Determinant H»(3) for S*, K and R
Let f, g, h be univalent. Then

2f'(2)

eS* s € P, 3.1
f B (3.1)

2"(2)
gek 1+ e P, 3.2
o) 2
heR & h(z)eP. (3.3)
From now on, we assume that f(z) = z +ag2? +az2®+---, g(2) = 2+ be2? +

b33+  h(2) = 24+ 222 + 328+ -+ and p(2) = 1+ prz + paz® + -+ are
in §*, KL, R and P, respectively.
From (3.1) we obtain

n—1
(n—1)a, = Z jPp—j- (3.4)
j=1
Hence,
a2 = P1,
as = %(pz +p12)7
a4 = % (PS + %P1P2 + %Pls) )
as = 1 (ps + %Plps + %P22 + pi%p2 + %P14) . (3.5)
Therefore, if f € §*, then Hy(3) = F(p1, p2, p3, pa), where
1
F(p1,p2,p3,pa) = i (=p1° = 3p1*p2 + 8p1°ps — 91 *p2?

+18p12ps — 24p1paps + 9p2” + 18paps — 16ps*) . (3.6)
According to the Alexander relation, nb, = a,. Substituting it into the
definition of H»(3) for a convex function and applying formulae (3.5), we obtain
H2(3) - G(plap21p37p4)a where
1
G(p1,p2,p3,p4) = 2330 (=p1° — 2p1*pa + 12p1°ps — 9p1°pa?
+24p1°ps — 28p1paps + 12po° + 24popy — 20ps®) . (3.7)

Finally, if f € R, then ne, = p,_1. Directly from (1.2) it follows that
H2(3) = H(pl,pQ,pB»IM), where
H(p1,p2,p3,pa) = %pzm - %62?32- (3.8)
Taking into account the explicit formulae of Hy(3), it is a difficult problem
to find the exact bounds of these expressions. For this reason, we start with a
particular case.

Theorem 1. Let f be given by (1.1) with an additional assumption that as = 0.
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1. If f € 8, then |H2(3)| <
2. If f € K, then |Ho(3)| < 5

Both results are sharp.
Proof. Assume that for f given by (1.1) there is ag = 0. From (3.5) it follows

that p; = 0.
If f € 5%, then

|H2(3)] = 144 9p2® + 2paps + 16(p2ps — p3?)| .- (3.9)
For f € K, we can write
|H2(3)| = = |3p2® + popa + 5(paps — p3°)| . (3.10)

720

It is enough to apply Lemmas 1 and 9 to obtain the bounds 1 and 1/15 for S*
and K, respectively.

The expression (3.9) is equal to 1 if and only if |ps| = 2, |ps| = 2 and
|paps — p3?| = 4. Tt is possible only for rotations of (2.7). This means that the
extremal starlike functions are f(z) = ;= and its rotations.

The same argument as above is also valid for the equality in the esti-
mation of |H3(3)| for convex functions. This argument leads to the conclusion

that only for rotations of f(z) = 1 log 12 there is |H(3)| = 1/15. O

Observe that the extremal functions in Theorem 1 are odd. This results
in the following corollary. The symbol A(?) stands for a subclass of A consisting
of all odd functions.

Corollary 1. Let f be given by

(1
1. If f € S*@) | then |Hy(3)| <
2. If f € K, then |Ha(3)| < <

Both results are sharp.

1),

1.
1
15"

It is worth saying that the result from Theorem 1 for starlike functions
generalizes the result of Jakubowski, who proved in [7] that the inequality
|agas| < 1 holds for all odd starlike functions with real coeflicients given by

(1.1).
Now we can prove two general theorems.
Theorem 2. Let f be given by (1.1).
1. If f € 8*, then |Hy(3)| < 1.573... .
2. If f € K, then |H5(3)] < 0.09. .. .

Theorem 3. If f € R, then |H2( )| < . The equality holds only for f(z) =
log 1+ 1+z —z=2z+ %,23 + %25 + .-+ and zts rotations.
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Proof of Theorem 2. Let f € 8*. From (3.6) it follows that

1
F(p1,p2,p3,4) = 77 [16(pa = p1ps) (2 = 3p1%) = 20(p2 = p1*) (ps — 15p2°)
+16(peps — p3*) — 5(p2 + £p1?)(p2 — p1°)?
+6p1? (ps — %p22) + 6p2(ps — p1p3) — 2p1p2ps) (3.11)
Similarly, if f € K, then from (3.7),

G(p1,p2,p3.p1) = [16(ps — p1p3) (p2 — $p17) + 8p2(ps — p1p3)

1
2880
—20(p2 — p1°) (pa — 25p2?) + 20(p2ps — p3°) + 3p2°
+12p12 (P — %pzz) + 2p14 (p - %p12)

—4p1(p2 — p1*)(ps — p1p2)] - (3.12)

In both cases, it is enough to apply the triangle inequality and Lemmas
1 and 7. Denoting p = |p1| and ¢ = |p2|, we have

|F(p1,pz,p3,p4)|
1.2 3 2 1.2 1.3
< [32(2—517)-1—40( —Oq)+16(4—§q +1q)
+4(5q + p*) + 6p° (2 —1q ) + 12q+4pq}

[210+32q—20q 1443 —2(1—pq)2] (210+32q—20q +4q>

1
144
which achieves its greatest value in [0, 2] for ¢ = 4/3; hence, the result follows.
Similarly,

T 144

|G(p1,p2,p3,p4)|
< a0 32(2- 1p%) +16 440 (2 — 2¢°)
420 (4— 167 + 1¢%) +3¢° + 12p (2 — 1¢%) + 2p* (2— 1p%) +2p(8 — 2p° + p%)]

= 5530 [224 4 16p + 8p> — 4p® + 6p* — p® + 16¢ — 28¢> + 8¢° — 4p°¢?] .

Denoting h(p, q) = 224 + 16p + 8p* — 4p® + 6p* — pb + 16q — 28¢> + 8¢°,
we can see that h(p, ¢) is an increasing function of the variable p € [0,2]. Due
to Lemma 4,

1
IS Sgg0"P @) < 2880h( 2+4,9), g€ [0,2].

Observe that it is equivalent to discuss the function h(p,p? —2), p € [V/2,2]
instead of h(v/2+ ¢,q), ¢ € [0,2]. Considering the derivative of h(p,p? — 2),
we find that its greatest value in [v/2,2] is achieved for pg = 1.666. .. , which
is the only positive solution of the equation 4 + 118p + 56p® — 42p® — 21p* = 0.
Consequently, max{h(p,q), (p,q) € 2} = h(po,po*> — 2) = 278.503.... This
completes the proof. O

|G (p1, D2, 3, Pa)
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Proof of Theorem 3. Observe that for f € R we can write

H(p1,p2,p3,p1) = % (p2p4 *P32) + ﬁpzm- (3.13)

The desired estimate follows directly from the triangle inequality and Lemmas
1 and 9.
The equality

[Ha(3)] = 15 (3.14)
holds only if |paps — p3?| = 4 and |p2| = |ps| = 2. By Lemma 9, it is possible
only for p(z) = ifji As a consequence, we obtain the extremal functions
f € R for which (3.14) holds. O

4. Determinant H>(3) for S

The problem of finding a sharp bound of |H(3)| for all univalent functions
seems to be extremely difficult. The same can also be said about a sharp bound
of |Hy(2)| for f € S.

Let us recall that in [18] the following conjecture was posed:

|H2(n)| = |anan+2 - an+12‘ <1 (4.1)

forall fe Sand n=2,3,....

According to the result of Schaeffer and Spencer [23], this conjecture is
false for n > 4 (see also [11]). In [21] it was shown that for univalent func-
tions |H2(2)| can exceed 1. Namely, for the function f., ¢ € (0,1) which is a
composition of the function s(z) satisfying

s 4e z
= . 4.2
(14+s)2 (1+¢)?2 (1+2)2 (4.2)
and the function
(1+¢)? s(1—es)
= . 4.3
wis) = S 25 (43)
we have
_ 2(1—e)(143e) 5 (1 —¢e)(3+ 15e+33e2 —19¢3) 4
fe(z) == d+eo)? z° 4+ (+e)p z
4(1 — e)(1 + 7e 4 182 + 54e® — 59e* + 11€5)
+ z
(1+¢)8
(1 —e)(5 + 45¢ + 185e2 + 1453 + 1855e* — 2537 + 899e% — 85¢7)
+ 254
(1+¢)®
(4.4)

The function f. maps A univalently onto the set

C\ ((—oo, —d.] U {d-e™,0. < |0 < 7}), (4.5)
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where
(1+¢)?
4
Admitting the cases ¢ = 0 and ¢ = 1, we obtain a univalent passage between
the identity function (f; = id) and the Koebe function (fo = &, k(z) = 7=57).
For the function f. we have Hy(2) = 1.175... (see, Theorem 2 in [21])
and

d. = and 6. = 2arccose. (4.6)

where

(1-¢)*
(1+¢e)2
+4678c* + 49765 — 26925 — 24027 + 321%), £ € [0,1]. (4.7)

K(e) = (1+ 16 — 4 + 1136¢>

It is easily seen that K (g) > 0 for ¢ € [0, 1]. Moreover,
~256(1 —¢)e
(14+¢e)13

For €y, which is a greater solution of 1 — 14e — 2e2 4 1733 + 301e* — 220¢° —
4e5 4+ 216" = 0 in (0, 1), i.e., for eg = 0.205.. ., we can write

K'(e) = (1 — 14e — 2e® +173% + 301* — 2206 — 45 + 21¢7) .

max{K(e) :e €[0,1]} = K(g9) = 1.012.... (4.8)
We have proven
Theorem 4. If f is given by (1.1), then
max{|H(3)| : f € S} > 1.012.... (4.9)

Remark 3. Theorem 4 with previously obtained results lead to the conclusion
that the conjecture in (4.1) is false for all n > 2. From (4.5) it follows that f.,
e € (0,1) is neither a starlike nor a close-to-convex function.

On the other hand, |Hy(n)| = 1 for the Koebe function k(z) = e (as
well as for its rotations). We also know that for all f € &* we have |[Hy(1)| <1
and |Hz(2)| < 1. Although we do not know the sharp bound of |H2(3)], taking
into account Theorem 1, point 1, and Theorem 2, point 1, it is likely that (4.1)
may hold just for functions in the class &*.

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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