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Abstract. The inverse source problem for one-dimensional heat equation
is investigated with nonlocal Wentzell–Neumann boundary and integral
overdetermination conditions. The generalized Fourier method is used
to show the existence, uniqueness and stability of the classical solution
under some regularity, consistency and orthogonality conditions on the
data. The considered inverse problem gives an idea of how total energy
might be externally controlled.
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1. Introduction and Problem Formulation

In theory of differential equations, the boundary conditions associated with
a second order partial differential operator usually involve the function and
its first derivative (including Dirichlet, Neumann and Robin conditions). In
Markov process theory, following the work of Wentzell [1], it was recognized
that it is natural to include boundary conditions involving the operator itself.
In recent years, a number of authors have focused on such type of non-standard
boundary conditions. This behavior is in contrast with the totally absorbing
Dirichlet boundary condition, the totally reflecting Neumann boundary condi-
tion, or the partially absorbing, partially reflecting Robin boundary condition.
One may think of the Wentzell boundary condition as describing a situation
like the Robin boundary condition, with the additional feature that the bound-
ary has the capacity for storing heat. For the classical results along these lines
go back to [2], see also e.g. [3–6] and, more recently, [7] and [8]. We refer to
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[9] and [10] and to the references contained therein for the motivations and
the study of general Wentzell boundary conditions in the theory of parabolic
partial differential equations.

This article considers the heat equation

ut = uxx + r(t)f(x, t), (x, t) ∈ ΩT (1.1)

with the initial condition

u(x, 0) = ϕ(x), x ∈ [0, 1], (1.2)

Dirichlet boundary condition

u(0, t) = 0, t ∈ [0, T ], (1.3)

and nonlocal Wentzell–Neumann boundary condition

ux(0, t) + αuxx(1, t) = 0, t ∈ [0, T ] (1.4)

for α > 0, where ΩT = {(x, t) : 0 < x < 1, 0 < t ≤ T} with fixed T > 0. The
functions f, ϕ are given functions in Ω̄T and 0 ≤ x ≤ 1.

Note that (1.4) is a dynamic boundary condition involving motion on the
boundary. Assuming that (1.1) is valid at x = 1, we plug (1.1) into (1.4), then
the boundary condition becomes

ux(0, t) + αut(1, t) = −αr(t)f(1, t).

The dynamic boundary conditions are not very common in the math-
ematical literature. Nevertheless, they appear in many mathematical models
including heat transfer in a solid in contact with a moving fluid, thermoelectric-
ity, diffusion phenomena, problems in fluid dynamics. Such conditions arise in
the applications and have been studied in [11–13] and more recently in [14,15].

When the coefficient r(t), 0 ≤ t ≤ T is also given, the problem of finding
u(x, t) from using Eq. (1.1), initial condition (1.2) and boundary conditions
(1.3) and (1.4) is termed as the direct (or forward) problem.

When the function r(t), 0 ≤ t ≤ T is unknown, the inverse problem is
formulated as a problem of finding a pair of functions {r(t), u(x, t)} which
satisfy the Eq. (1.1), initial condition (1.2), boundary conditions (1.3) and
(1.4) and overdetermination condition

1∫

0

u(x, t)dx = E(t), 0 ≤ t ≤ T, (1.5)

where E(t) is a given function whilst the prescription of the total energy,
or mass. This inverse problem for the model of microwave heating gives an
idea of how total energy content might be externally controlled. However, the
dielectric constant of the target material varies in space and time, resulting in
spatially heterogeneous conversion of electromagnetic energy to heat. This can
correspond to source term r(t)f(x, t), where r(t) is proportional to power of
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external energy source and f(x, t) is local conversion rate of microwave energy.
In ths way, the external energy is supplied to a target at a controlled level by
the microwave generating equipment.

In contrast to direct problems, the inverse parabolic problems with dy-
namic (and the related general Wentzell) boundary conditions are scarce [16–
18] and needs additional consideration.

This paper studies the inverse source problem for the heat equation with
a boundary condition including both nonlocal and dinamic character. Under
some regularity, consistency and orthogonality conditions on the initial data
and on the known part of source term, the well posedness of the classical so-
lution are shown by using the generalized Fourier method. The mathematical
motivation of considering such kind of inverse problems are the papers [19–22].
The first and second papers are devoted to direct and inverse initial boundary
value problems (IBVPs) for heat equation with nonlocal boundary and integral
overdetermination conditions. In third and fourth papers, the time dependent
source term is determined under nonlocal boundary and overdetermination
conditions of general form. In these papers the Green’s function representa-
tion of the solution is obtained by the techniques of fundamental solution of
heat equation. Some of the cases of nonlocal boundary conditions, when the
fundamental solution of the heat equation does not work, we used the expan-
sion in terms of eigenfunctions for the auxiliary spectral problem corresponding
to the considered initial boundary value problem in [23,24]. Then this method
is extended to some of IBVPs with Wentzell boundary conditions in [18].

There are some important recent works [25–29] on evolution equations
subject to Wentzell/dynamic boundary conditions. These problems are gen-
erally analysed from the point of view of semigroup theory. We are pointed
the evolution problems with Wentzell bounady conditions from the point of
view of spectral theory. In contrast to a disadvantage that the spectral the-
ory approach can not be extended to the multidimentional case, some of the
classes of the problems with Wentzell bounady condition can not be solved by
another approach, for example, semigroup approach.

The auxiliary spectral problem of the IBVP (1.1)–(1.4) is{−y′′(x) = λy(x), 0 ≤ x ≤ 1,
y(0) = 0, y′(0) − αλy(1) = 0.

(1.6)

We consider this spectral problem with α �= 1
xi sin xi

where xi are the roots
of the equation sinx+xcosx = 0 on (0,+∞). It is known from [30,31] that this
problem has at most infinitely many complex eigenvalues and their numbers
depend on α and the system of eigenfunctions with one deleted is a Riesz basis
in L2[0, 1]. For the case α = 1

x0 sinx0
where x0 is one of the positive roots of

the equation sinx+xcosx = 0, the spectral problem has the eigenfunctions as
well as one associated function correponding to eigenvalue λ = x0. Unlike the
previous case, the entire system of eigenfunctions and associated functions is
a Riesz basis in L2[0, 1].
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The paper is organized as follows. In Sect. 2, we recall the eigenvalues and
eigenfunctions of the auxiliary spectral problem and some of their properties.
In Sect. 3, the well-posedness of the inverse problem (1.1)–(1.5) are proved.

2. Some Properties of the Auxiliary Spectral Problem

Consider the spectral problem (1.6) with α �= 1
xi sin xi

for all i, where the xi are
the roots of the equation sinx + x cos x = 0 on (0,+∞) . In this case problem
(1.6) has only the eigenfunctions

Xn(x) =
√

2 sin
(√

λnx
)

, n = 0, 1, 2, . . .

where the eigenvalues λn, n = 0, 1, 2, . . . satisfy the equation α
√

λsin
√

λ = 1,
Re

√
λ > 0. This problem can have at most finite many complex eigenvalues,

and their number depends on the parameter α.
Let λn, n = 0, 1, 2, . . . , nα are complex eigenvalues and Xn(x), n = 0, 1, 2,

. . . , nα are corresponding eigenfunctions.
The asymptotic estimate for the eigenvalues

√
λn = πn +

(−1)n

παn
+ O

(
1
n3

)

is valid for large n.
It is shown in [30] that the system of eigenfunctions Xn(x), n = 1, 2, ..

, that is, the system of eigenfunctions of problem (1.6) with one deleted, is a
Riesz basis in L2[0, 1] and the system

Yn(x) =
√

2
√

λ0 sin
√

λ0(1 − x) − √
λn sin

√
λn(1 − x)√

λn cos
√

λn + sin
√

λn

, n = 1, 2, . . .

is a biortogonal to the system Xn(x), n = 1, 2, . . .

Definition 1. The pair {r(t), u(x, t)} from the class C[0, T ] × (C2,1(DT ) ∩
C2,0(D̄T )) for which the conditions (1.1)–(1.4) are satisfied, is called a classical
solution of the inverse problem (1.1)–(1.5).

The uniformly convergence of the Fourier series expansion in the system
Xn(x), n = 1, 2, . . . is important, since we are considering the classical solution
of the inverse problem (1.1)–(1.5).

Lemma 1 (Theorem 1, [31]). Suppose that a function ϕ ∈ C[0, 1] has a
uniformly convergent Fourier series expansion in the system sin (πnx) , n =
1, 2, . . . on the interval [0, 1]. Then this function can be expanded in a Fourier
series in the system Xn(x), n = 0, 1, 2, . . .and this expansion is uniformly
convergent on [0,1] if

(
ϕ, sin

√
λ0(1 − x)

)
= 0.
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Because the temperature distribution u(x, t) is real valued and some of
the eigenvalues are complex, we choose the method of annihilation of complex
terms of Fourier series expansions.

Notation 1. The class of functions which also contains the conditions of the
Lemma 1 will be denoted by

Φnα
≡

{
ϕ(x) ∈ C3 [0, 1] : ϕ(0) = ϕ′(0) = ϕ′′(0) = 0, ϕ(1) = ϕ′′(1) = 0,∫ 1

0
ϕ(x) sin(

√
λn(1 − x))dx = 0, n = 0, 1, 2, . . . , nα.

}

3. Classical Solution of the Inverse Problem

Let r(t), t ∈ [0, T ] be unknown function. The smoothness conditions f(x, t) ∈
C

(
DT

)
, ϕ(x) ∈ C2 [0, 1] , E(t) ∈ C [0, T ] and the consistency conditions

ϕ(0) = 0, ϕ′(0) + αϕ′′(1) = 0, E(0) =

1∫

0

ϕ(x)dx

are necessary for the existence of a classical solution of the problem (1.1)–(1.5).

Lemma 2. If ϕ(x) ∈ C3 [0, 1] satisfies the conditions ϕ(1) = ϕ′′(1) = 0, ϕ(0) =
ϕ′(0) = ϕ′′(0) = 0, then the inequality

∞∑
n=1

|λnϕn| ≤ c ‖ϕ′′′‖2L2(0,1) , c = const > 0

holds, where ϕn = (ϕ, Yn).

Proof. Because ϕ(0) = ϕ′(0) = ϕ′′(0) = 0, ϕ(1) = ϕ′′(1) = 0, the equality

ϕn = −
√

2
λn

√
λn

√
λn√

λn cos
√

λn + sin
√

λn

∫ 1

0

ϕ′′′(1 − s) cos
(√

λns
)

ds

holds by three times integrating by parts. The functions
√

2 cos
(√

λnx
)
, n =

1, 2, . . . are eigenfunctions of the differential operator generated by differential
expression l(y) = −y′′ and regular boundary conditions

y′(0) = 0, y(0) + αy(1) = 0.

The eigenfunctions and associated functions of this operator form a Riesz basis
in the space L2(0, 1) [25], which implies the Bessel type inequality

∞∑
n=1

∣∣∣
(
h,

√
2 cos

(√
λnx

))∣∣∣2 ≤ c ‖h‖2L2(0,1)

for each h(x) ∈ L2(0, 1).
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From the earlier discussion, by using the Schwarz and Bessel inequalities,
we obtain

∞∑
n=1

|λnϕn| ≤
∞∑

n=1

∣∣∣∣μn

∫ 1

0

ϕ′′′(1 − s)
√

2 cos
(√

λns
)

ds

∣∣∣∣

≤
[ ∞∑

n=1

|μn|2
] 1

2
[ ∞∑

n=1

∣∣∣∣
∫ 1

0

ϕ′′′(1 − s)
√

2 cos
(√

λns
)

ds

∣∣∣∣
2
] 1

2

≤ c1 ‖ϕ′′′‖L2(0,1) ≤ c1 ‖ϕ‖C3[0,1] ,

for some constant c, where μn = 1√
λn cos

√
λn+sin

√
λn

and
∑∞

n=1 |μn|2 < +∞,
since μn ∼ 1

πn , n → +∞. �

The main result is presented as follows.

Theorem 1 (Existence and uniqueness). Let the following conditions be satis-
fied:

• E(t) ∈ C1 [0, T ] ;

• ϕ(x) ∈ Φnα
and E(0) =

1∫
0

ϕ(x)dx;

• f(x, t) ∈ C
(
DT

)
and f(x, t) ∈ Φn0 ,

1∫
0

f(x, t)dx �= 0, ∀t ∈ [0, T ] ;

Then the inverse source problem has a unique classical solution {r(t),
u(x, t)} ∈ C[0, T ] × (C2,1(DT ) ∩ C2,0(D̄T )). Moreover, u(x, t) ∈ C2,1(D̄T ).

Proof. To construct the formal solution of the problem (1.1)–(1.4) for arbitrary
r(t) ∈ C[0, T ], we will use the generalized Fourier method. In accordance with
this method, the solution u(x, t) is sought in a Fourier series in terms of the
eigenfunctions Xn(x) =

√
2 sin

(√
λnx

)
, n = 0, 1, 2, . . . of the auxiliary spectral

problem (1.6).

u(x, t) =
∞∑

n=1

un(t)Xn(x), un(t) = (u(x, t), Yn(x)) .

For the functions un(t), n = 0, 1, 2, . . . we obtain the Cauchy problem

u′
n(t) + λnun(t) = r(t)fn(t),

un(0) = ϕn,

where ϕn = (ϕ, Yn) , fn(t) = (f(x, t), Yn). The solutions of these Cauchy
problems are

un(t) = ϕne−λnt +
∫ t

0

r(τ)fn(τ)e−λn(t−τ)dτ

Under the condition that ϕ(x) ∈ Φnα
and f(x, t) ∈ Φn0 ,∀t ∈ [0, T ], in partic-

ular,
∫ 1

0
ϕ(x) sin(

√
λn(1 − x))dx = 0,

∫ 1

0
f(x, t) sin(

√
λn(1 − x))dx = 0, n =
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0, 1, 2, . . . , nα, the Fourier coefficients ϕn = 0, fn(t) = 0, n = 0, 1, 2, . . . , nα

and

ϕn =
√

2
√

λn√
λn cos

√
λn + sin

√
λn

∫ 1

0

ϕ(x) sin
(√

λn(x − 1)
)

dx, n > nα

are real numbers and

fn(τ) =
√

2
√

λn√
λn cos

√
λn + sin

√
λn

∫ 1

0

f(x, t) sin
(√

λn(x − 1)
)

dx, n > nα

are real valued functions.
The formal solution of the mixed problem (1.1)–(1.4) is the series

u(x, t) =
∞∑

n=nα+1

[
ϕne−λnt +

∫ t

0

r(τ)fn(τ)e−λn(t−τ)dτ

]
Xn(x). (3.1)

Under the smoothness assumptions ϕ(x) ∈ C3 [0, 1] , f(x, t) ∈ C
(
DT

)
,

f(x, t) ∈ C3 [0, 1] for ∀t ∈ [0, T ] and ϕ(1) = ϕ′′(1) = 0, ϕ(0) = ϕ′(0) =
ϕ′′(0) = 0, f(1, t) = fxx(1, t) = 0, f(0, t) = fx(0, t) = fxx(0, t) = 0 the se-
ries

∑∞
n=1 |λnϕn| and

∑∞
n=1 |λnfn(τ)| are convergent by Lemma 2. The series

(3.1) and its x-partial derivative converge uniformly in DT since their majoriz-
ing sums are absolutely convergent. Therefore, their sums u(x, t) and ux(x, t)
are continuous in DT . In addition, the t-partial derivative and the xx-second
order partial derivative series are uniformly convergent for t > ε (ε is an arbi-
trary positive number). Thus, u(x, t) ∈ C2,1(DT ) ∩ C1,0(D̄T ) and satisfies the
conditions (1.1)–(1.4). In addition, ut(x, t) is continuous in D̄T because the
majorizing sum of t-partial derivative series is absolutely convergent.

The formulas (3.1) and (1.5) yields a following Volterra integral equation
with respect to r(t):

t∫

0

K(t, τ)r(τ)dτ + F (t) = E(t), (3.2)

where

F (t) =
∞∑

n=nα+1

[ √
2√
λn

(1 − cos
√

λn)ϕn

]
e−λnt,

K(t, τ) =
∞∑

n=nα+1

[ √
2√
λn

(1 − cos
√

λn)fn(τ)

]
e−λn(t−τ).

By using Lemma 2, the term F (t) and the kernel K(t, τ) are continuously
differentiable functions in [0, T ] and [0, T ] × [0, T ], respectively. It is easy to
show that

K(t, t) =
∞∑

n=nα+1

√
2√
λn

(1 − cos
√

λn)fn(t) =

1∫

0

f(x, t)dx,
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since
1∫

0

Xn(x)dx =
√

2√
λn

(1 − cos
√

λn) and f(x, t) =
∞∑

n=1

fn(t)Xn(x).

Further, under the consistency assumption
1∫
0

ϕ(x)dx = E(0), the Eq.

(3.2) yields the following Volterra integral equation of the second kind:

K(t, t)R(t) +

t∫

0

Kt(t, τ)R(τ)dτ + F ′(t) = E′(t).

Note that the function K(t, t) is never equal to zero because of the assumption
1∫
0

f(x, t)dx �= 0, ∀t ∈ [0, T ]. In addition, the functions F ′(t), E′(t) and the ker-

nel Kt(t, τ) are continuous functions in [0, T ] and [0, T ] × [0, T ], respectively.
We therefore obtain a unique function r(t), continuous on [0, T ], which, to-
gether with the solution of the problem (1.1)–(1.4) given by the Fourier series
(3.1), form the unique solution of the inverse problem. �

The following result on continuously dependence on the data of the solu-
tion of the inverse problem holds.

Theorem 2 (Continuous dependence upon the data). Let � be the class of
triples in the form of {f, ϕ, E} which satisfy the assumptions of Theorem 1
and

‖f‖C3,0(DT ) ≤ M0, ‖ϕ‖C3[0,1] ≤ M1, ‖E‖C1[0,T ] ≤ M2, 0 < M3≤
∣∣∣∣∣∣

1∫

0

f(x, t)dx

∣∣∣∣∣∣ ,

for some positive constants Mi, i = 0, 1, 2, 3.
Then the solution pair (u, r) of the inverse problem (1.1–1.5) depends

continuously upon the data in �.

The proof of this Theorem is omitted since it is similar to Theorem 2 in
[18].

4. Conclusion

We investigate the inverse source problem for the heat equation with a non-
local Wentzell–Neumann boundary condition and integral overdetermination
condition. Under some regularity, consistency and orthogonality conditions on
initial data and known part of source term, the well-posedness of the clas-
sical solution are shown by using the generalized Fourier method. Theorems
1 and 2 establish that the inverse problem under investigation given by Eqs.
(1.1)–(1.5) is well-posed in appropriate spaces of regular functions. However, in
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practice the input data, especially the measured one, such as the energy (1.5),
is non-smooth and hence, the solution of the inverse problem becomes unstable
under unregularised inversion. The discretisation of the inverse problem using
the different methods and the discussion of the regularization of the numerical
solution is for the future investigations. This inverse problem enables us to
arrive at some conclusions on an externally controlled problem. The external
energy is supplied to a target at a controlled level by a microwave generating
equipment. However, the dielectric constant of the target material varies in
space and time, resulting in spatially heterogeneous conversion of electromag-
netic energy to heat. This can correspond to a source term r(t)f(x, t), where
r(t) is proportional to the power of external energy source and f(x, t) is the lo-
cal conversion rate of microwave energy. It is needed to notice that this spatial
variation of absorbing material does not greatly affect the thermal diffusivity,
which is due to another material at higher concentration. It is also needed
to say that the temperature is not so high that the temperature dependence
of the dielectric constant is important, as in thermal runaway studies [32]. If
u(x, t) denotes the concentration of absorbed energy, then its integral over all
volume of material determining the time dependenent absorbed energy. The
above mentioned inverse problem for such a model gives an idea of how total
energy content might be externally controlled when the boundary of material
is supported by the nonlocal Wentzell–Neumann condition.

References

[1] Wentzell, A.D.: On boundary conditions for multidimensional diffusion pro-
cesses. Theory Prob. Appl. 4, 164–177 (1959)

[2] Luo, Y., Trudinger, N.S.: Linear second order elliptic equations with Venttsel
boundary conditions. Proc. R. Soc. Edinb. 118A, 193–207 (1991)

[3] Campiti, M., Metafune, G.: Ventcel’s boundary conditions and analytic semi-
groups. Arch. Math. 70(5), 377–390 (1998)

[4] Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: Co-semigroups gen-
erated by second order differential operators with general Wentzell boundary
conditions. Proc. Am. Math. Soc. 128, 1981–1989 (2000)

[5] Vogt, H., Voigt, J.: Wentzell boundary conditions in the context of Dirichlet
forms. Adv. Differ. Equ. 8(7), 821–842 (2003)

[6] Arendt, W., Metafune, G., Pallara, D., Romanelli, S.: The Laplacian with
Wentzell–Robin boundary conditions on spaces of continuous functions. Semi-
group Forum 67(2), 247–261 (2003)

[7] Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: The heat equation
with nonlinear general Wentzell boundary condition. Adv. Differ. Equ. 11(5),
481–510 (2006)

[8] Coclite, G., Goldstein, G., Goldstein, J.: Stability of parabolic problems with
nonlinear Wentzell boundary conditions. J. Differ. Equ. 246, 2434–2447 (2009)



68 Page 10 of 11 M. I. Ismailov Results Math

[9] Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: The heat equation
with generalized Wentzell boundary condition. J. Evol. Equ. 2, 1–19 (2002)

[10] Vázquez, J.L., Vitillaro, E.: Heat equation with dynamical boundary conditions
of reactive–diffusive type. J. Differ. Equ. 250(4), 2143–2161 (2011)

[11] Hintermann, T.: Evolution equations with dynamic boundary conditions. Proc.
R. Soc. Edinb. 113A, 43–60 (1989)

[12] Sauer, N.: Dynamical Processes Associated with Dynamic Boundary Conditions
for Partial Differential Equations Differential Equations and Applications, pp.
374–378. Ohio University Press, Athens (1989)

[13] Escher, J.: Quasilinear parabolic systems with dynamical boundary conditions.
Commun. Partial Differ. Equ. 18(7–8), 1309–1364 (1993)

[14] Igbida, N., Kirane, M.: A degenerate diffusion problem with dynamical bound-
ary conditions diffusion problem with dynamical boundary conditions. Mathe.
Annal. 323(2), 377–396 (2002)

[15] Vrabel, V., Slodicka, M.: Nonlinear parabolic equation with a dynamical bound-
ary condition of diffusive type. Appl. Math. Comput. 222, 372–380 (2013)

[16] Slodicka, M.: A parabolic inverse source problem with a dynamical boundary
condition. Appl. Math. Comput. 256, 529–539 (2015)

[17] Kerimov, N.B., Ismailov, M.I.: Direct and inverse problems for the heat equation
with a dynamic-type boundary condition. IMA J. Appl. Math. 80(5), 1519–1533
(2015)

[18] Hazanee, A., Lesnic, D., Ismailov, M.I., Kerimov, N.B.: An inverse time-
dependent source problem for the heat equation with a non-classical buondary
conditions. Appl. Math. Model. 39, 6258–6272 (2015)

[19] Cannon, J.R., Lin, Y., Wang, S.: Determination of a control parameter in a
parabolic partial differential equation. J. Aust. Math. Soc. Ser. B 33, 149–163
(1991)

[20] Cannon, J.R., Lin, Y., van der Hoek, J.: A quasi-linear parabolic equation with
nonlocal boundary condition. Rend. Math. Appl. (7) 10(2), 239–264 (1990)

[21] Ivanchov, M.I.: On the determination of unknown source in the heat equation
with nonlocal boundary conditions. Ukr. Math. J. 47, 1647–1652 (1995)

[22] Ivanchov, M.I.: The inverse problem of determining the heat source power for
a parabolic equation under arbitrary boundary conditions. J. Math. Sci. 88(3),
432–436 (1998)

[23] Ismailov, M.I., Kanca, F., Lesnic, D.: Determination of a time-dependent heat-
source under nonlocal boundary and integral overdetermination conditions.
Appl. Math. Comput. 218(8), 4138–4146 (2011)

[24] Hazanee, A., Ismailov, M.I., Lesnic, D., Kerimov, N.B.: An inverse time-
dependent source problem for the heat equation. Appl. Numer. Math. 69, 13–33
(2013)

[25] Cavalcanti, M.M., Correa, W.J., Lasiecka, I., Lefler, C.: Well-posedness and
uniform stability for nonlinear Schrödinger equations with dynamic/Wentzell
boundary conditions. Indiana Univ. Math. J. 65(5), 1445–1502 (2016)



Vol. 73 (2018) Inverse Source Problem for Heat Equation Page 11 of 11 68

[26] Guidetti, D.: Parabolic problems with general Wentzell boundary conditions and
diffusion on the boundary. Commun. Pure Appl. Anal. 15(4), 1401–1417 (2016)

[27] Gvelesiani, S., Lippoth, F., Walker, C.: On global solutions for quasilinear one-
dimensional parabolic problems with dynamical boundary conditions. J. Differ.
Equ. 259(12), 7060–7085 (2015)

[28] Warma, M.: Parabolic and elliptic problems with general Wentzell boundary
condition on Lipschitz domains. Commun. Pure Appl. Anal. 12(5), 1881–1905
(2013)

[29] Warma, M.: Semi linear parabolic equations with nonlinear general Wentzell
boundary conditions. Discrete Contin. Dyn. Syst. 33(11–12), 5493–5506 (2013)

[30] Marchenkov, D.B.: The basis property in the space Lp(0,1) of a system of eigen-
functions corresponding to a problem with a spectral parameter in the boundary
condition. Differ. Equ. 42(6), 847–849 (2006)

[31] Marchenkov, D.B.: On the convergence of spectral expansions of functions for
a problem with a spectral parameter in the boundary condition. Differ. Equ.
41(10), 1496–1500 (2005)

[32] Roussy, G., Bennani, A., Thiebaut, J.: Temperature runaway of microwave ir-
radiated materials. J. Appl. Phys. 62, 1167 (1987)

Mansur I. Ismailov
Department of Mathematics
Gebze Technical University
41400 Gebze Kocaeli
Turkey
e-mail: mismailov@gtu.edu.tr

Received: November 28, 2017.

Accepted: April 17, 2018.


	Inverse Source Problem for Heat Equation with Nonlocal Wentzell Boundary Condition
	Abstract
	1. Introduction and Problem Formulation
	2. Some Properties of the Auxiliary Spectral Problem
	3. Classical Solution of the Inverse Problem
	4. Conclusion
	References




