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Abstract. We discuss to what extent the local techniques of resolution of
singularities over fields of characteristic zero can be applied to improve
singularities in general. For certain interesting classes of singularities,
this leads to an embedded resolution via blowing ups in regular centers.
We illustrate this for generic determinantal varieties. The article is par-
tially expository and is addressed to non-experts who aim to construct
resolutions for other special classes of singularities in positive or mixed
characteristic.
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Introduction

The study of the geometry of a scheme may be quite hard if singularities
appear. The goal of resolution of singularities is to reveal the information
hidden in the singularities.

Conjecture 1 (Embedded Resolution of Singularities). Let X ⊂ Z be a reduced
closed subscheme of a quasi-excellent regular Noetherian scheme Z. There exist
a regular scheme Z ′ and a proper, birational morphism π : Z ′ → Z such that
(1) the strict transform X ′ ⊂ Z ′ of X in Z ′ is regular,
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(2) π is an isomorphism outside of the singular locus, π−1(Z\Sing(X)) ∼=
Z\Sing(X),

(3) π−1(Sing(X))red is a simple normal crossing divisor (i.e., each irreducible
component is regular and they intersect transversally) which intersects X ′

transversally.

Over fields of characteristic zero the conjecture is true due to Hironaka’s
celebrated theorem [55]. Several people have studied and improved his result so
that nowadays there exists a quite accessible proof for canonical constructive
resolution of singularities in characteristic zero, [10,11,17,34,39,40,50,69,84,
86,90,91,93]. The latter means that Z ′ → Z is obtained by a finite sequence of
blowing ups in canonical regular centers. Let us mention that there also exist
implementations of the resolution algorithm in characteristic zero [16,42].

In contrast to this, there are only results in small dimensions, [1–6,23,
25,26,33,35,36,54,58,67,71], or for special cases, [9,12,14,15,24,29,70,92], in
positive or mixed characteristic. For threefolds, Cossart and Piltant proved the
existence of a global birational model X ′ → X without an embedding (first
over differentially finite fields [27,28] and then in the arithmetic case [29–31]).
The general case of resolution in dimension four and higher, and embedded
resolution in dimension three remain very difficult problems. For more details
on difficulties that need to be overcome, we refer to [51–53,75].

A local variant of resolution of singularities, so called local uniformization,
is studied in [68,76,78,79,81,85,87], for example. Further, if one requires X ′ →
X only to be generically finite and not birational, de Jong [37] showed the
existence of such a model in any dimension. Later, this has been refined by
Gabber [63] and by Temkin [88].

The purpose of the present article is to show how central techniques of
characteristic zero are interesting in positive or mixed characteristic and can
be developed so that they can be applied to certain classes of singularities.
Non-trivial examples are the resolution of varieties defined by binomial ideals
([12,14,15]), or of generic determinantal varieties (Sect. 5).

The local resolution data of X ⊂ Z at a point x ∈ X can be encoded
in a pair E = (J, b) on the regular local ring R = OZ,x, for an ideal J ⊂ R
(connected to the ideal locally defining X at x) and a positive rational number
b ∈ Q+. In particular, we are interested in its singular locus Sing(E) which is
the set of those points in X, where J has at least order b (Definition 1.2). The
goal is to find a sequence of blowing ups such that the transform of E has no
points of order b (In Sect. 1, we explain more details on this).

It is natural to identify pairs which undergo the same resolution process.
Thus we obtain an equivalence relation on the set of pairs on R for which an
equivalence class is called idealistic exponent. In Theorem 3 we address the
task of finding an appropriate representative of an idealistic exponent which
reveals the nature of the singularities of E.
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Before we can state the results, we need to introduce some technical
objects that play a central role in the article. Suppose Sing(E) �= ∅. Let M be
the maximal ideal of R. A first approximation for the singularity of E = (J, b) at
M is given by the tangent cone pair TM (E) = (InM (J, b), b) (Definition 1.23).
It is a pair on the associated graded ring of R, grM (R) :=

⊕
i≥0 M i/M i+1

(which is isomorphic to a polynomial ring over the residue field), and InM (J, b)
is a homogeneous ideal generated by the b-initial forms of elements of J (Def-
inition 1.16). From this, we obtain a cone C := Spec(grM (R)/InM (J, b)).

Associated to C there is the directrix DirM (E) of E (at M). This is
the largest sub-vector space V of Spec(grM (R)) leaving the cone C stable
under translation, C + V = C (Defintion 1.19(1)). The significance of the
directrix appears if the characteristic of the residue field is either zero or larger
than dim(X)/2 + 1. In this case, the points, where the singularity does not
improve after blowing up a permissible center, have to lie in a projective space
associated to the directrix (see [26] Theorem 2.14 which is based on work by
Hironaka [61] Theorem IV, [62] Theorem 2, and Mizutani [74]). Moreover, over
fields of characteristic zero, the directrix has a strong connection to subvarieties
of maximal contact (Definition 1.12). The latter is a regular subvariety H ⊂
Spec(R) that contains Sing(E) and the inclusion remains true for the respective
transforms under permissible blowing ups, i.e., Sing(E′) ⊂ H ′. This allows to
reduce the resolution problem to one in a smaller dimensional ambient space,
namely in H. This is a crucial step in proving resolution of singularities in
characteristic zero.

While maximal contact locally always exists in characteristic zero, this
is not true in general. This leads to the notion of the ridge (or fâıte in French
literature) RidM (E) of E (at M), a generalization of the directrix (see Giraud’s
work [46,47]). The ridge associated to the cone C above is the largest addi-
tive subgroup of Spec(grM (R)) leaving C stable under translation (Definition
1.19(2)). Without any restriction on the characteristic, the ridge provides infor-
mation on the locus of points where the singularity does not improve after
blowing up a permissible center. Unfortunately, one only achieves “singular
subvarieties of maximal contact”. We explain this in more detail below since
one of the consequences of Theorem 3 is a variant of this in the idealistic
setting.

The ridge RidM (E) is defined by certain additive polynomials σ1, . . . , σs,
where σi is homogeneous of degree qi := pdi and q1 ≤ · · · ≤ qs, for p =
char(k) ≥ 0. (In characteristic zero, the only additive polynomials are those
homogeneous of degree one and hence qi = 1 for all i). This provides the pair
RidM (E) := (σ1, q1) ∩ · · · ∩ (σs, qs) living in grM (R). (For the definition of an
intersection of pairs see (1.1)). For a suitable choice of (σ), we have that for
every σi there exists a differential operator Di on grM (R) of order b − qi and
some Fi ∈ InM (J, b) such that

DiFi = σi. (0.1)
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The Di are given by Hasse-Schmidt derivatives ∂
∂Y B (see (4.2)), where (Y ) =

(Y1, . . . , Yr) is a subset of variables in grM (R) defining DirM (E). (For the
meaning of the latter condition, see Definition 1.21(3)).

Theorem 2 (Theorem 4.1). Let R be a regular local ring with maximal ideal M
and E be a pair on R. Suppose that Sing(E) �= ∅. Then the pairs TM (E) and
RidM (E) are equivalent.

In other words, the theorem states that all information on the singularity
of E at M that we can obtain from the tangent pair TM (E) is concentrated in
RidM (E).

One of the key ingredients for the proof is (0.1). In order to obtain the
desired representative for the idealistic exponent corresponding to E, we want
to translate the arguments for the proof of the previous theorem from the
graded ring grM (R) to R. For this, we need to be able to lift the differen-
tial operators Di (on grM (R)) to R. Hence, we have to impose the follow-
ing assumption: Let (u, y) = (u1, . . . , ue; y1, . . . , yr) be a regular system of
parameters for R such that (Y ) defines the directrix of E, where Yj := yj

mod M2 ∈ grM (R), for 1 ≤ j ≤ r. We say condition (D) holds for (E, R) if

(D)

{
the Hasse-Schmidt derivatives ∂

∂Y B : grM (R) → grM (R) lift to Hasse-

Schmidt derivatives ∂
∂yB : R→R on R, for every B∈Z

r
≥0 with |B| < b.

For example, this condition is fulfilled for any E if R = S[[y]], or if R = S[y]M ,
where S is a regular local ring with maximal ideal N and M := N +〈y〉 ⊂ S[y].
(Note that this includes the case R = k[x1, . . . , xn]〈x1,...,xn〉 for a field k).
Another large class of examples is provided by Nomura’s theorem (see [73]
Theorem 30.6 p. 237) which implies (D) if R is equi-characteristic of dimension
n fulfilling that the module of k-derivations Derk(R) is a free R-module of rank
n, where k is a quasi-coefficient field of R (see also the cited theorem for further
equivalent conditions).

Theorem 3 (Theorem 4.3). Let R be a regular local ring with maximal ideal M
and residue characteristic p = char(R/M) ≥ 0. Let E be a pair on R and, using
the above notations, let RidM (E) =

⋂s
i=1(σi, qi). Suppose that Sing(E) �= ∅

and that condition (D) holds for (E, R). Then E is equivalent to a pair of the
form G ∩ D+ with

(1) G =
⋂s

i=1(gi, qi), for some gi ∈ R such that gi ≡ σi mod Mqi+1, and
(2) D+ = (I, c), for some ideal I ⊂ R and c ∈ Z+ with ordM (I) > c.

If R contains a perfect field k this already appears in [57], where it is called
the Tschirnhausen decomposition of E (loc. cit. Definition 3 and Theorem 4).

Theorem 3 is a translation of Theorem 2 from the graded ring to R.
In particular, we see how the ridge yields “singular maximal contact” in
the idealistic framework: Using facts about pairs, Theorem 3 implies that
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Sing(E) ⊂ ⋂
i Sing(gi, qi) and this inclusion is stable under permissible blow-

ing ups, since the equivalence is. Hence we get some control on the behavior of
Sing(E) in the sense that V (g1, . . . , gs) (which we obtain from condition (1))
is a subvariety of singular maximal contact.

Secondly, we can deduce from the theorem (more precisely, by studying
the pair in (1)) whether it is possible to reduce the resolution problem to one in
smaller dimension: If we have q1 = 1, then V (g1) = Spec(R/g1) is regular and
has maximal contact (in the characteristic zero sense). Therefore, using the
technique of coefficient pairs (Definition 1.10), we can reduce the resolution
problem for E on R to the one for some pair E∗ = (J∗, b∗) on R/g1. Since
dim(R/g1) < dim(R), it is possibly easier to construct a sequence of blowing
ups in regular centers resolving E∗. If we find such a sequence, the maximal
contact condition implies that the same sequence resolves E. In Procedure 4.4,
we describe a more general version of the reduction principle.

As a third consequence, we see which kind of pairs need to be understood
in order to make progress on resolution of singularities: We can read off when
a reduction in the sense of characteristic zero is not possible anymore. For
example, as it is known to experts, an important case that has to be understood
is how to resolve hypersurfaces of the form

V (yq + h(u1, u2, u3, y)), for h ∈ Mq+1 and q = pd, d ≥ 2.

As an application, we construct an embedded resolution of singularities
for generic determinantal varieties Xm,n,r which are defined by the r×r minors
of a generic m × n matrix (i.e., whose entries are independent variables), r ≤
m ≤ n ∈ Z+. This is a slight generalization of a result by Vainsencher [89] to
the case of non-algebraically closed fields and even mixed characteristic. More
precisely, we prove

Theorem 4 (Theorem 5.4). Let m, n, r ∈ Z+ with r ≤ m ≤ n, let R0 be a
regular ring, and let M = (xi,j)i,j be a generic m × n matrix. The following
sequence of blowing ups provides an embedded resolution of singularities for the
generic determinantal variety Xm,n,r ⊂ Z = Spec(R0[xi,j | i, j ]),

Z =: Z0
π1←− Z1

π2←− . . .
πr−1←− Zr−1,

where π� is the blowing up with center the strict transform of Xm,n,� in Z�−1,
1 ≤ � ≤ r − 1.

After recalling in Sects. 1 and 2 the language of idealistic exponents, some
notions, invariants and results, we make the reader familiar with the techniques
and ideas for reduction by considering several examples in Sect. 3. In Sect. 4,
we prove Theorems 2 and 3, and discuss the characterization procedure in
detail. In the last section we show Theorem 4.
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1. Idealistic Exponents in a Nutshell

We give a brief overview on the language of idealistic exponents that we are
going to use (for more details we refer to [57,60,83]). Nowadays, there are
several variants (e.g. marked ideal [13,69,93], basic objects [17], presentations
[10], a variant in the terms of Rees algebras [7,18], or idealistic filtrations [64–
66]) each different in technical details but all having their origins in Hironaka’s
notions of pairs and idealistic exponents [57].

Remark 1.1. Since the theory of idealistic exponents is a bit technical, let us
first motivate it by discussing the hypersurface case: Consider X = V (f) ⊂
Spec(R) = Z, where R is a regular local ring and 0 �= f ∈ R. A rough measure
for the complexity of the singularity of V (f) at a point x ∈ Spec(R) is the
order of f ,

ordP (f) := sup{ d ∈ Z≥0 | f ∈ P d } ,

where P = Px is the prime ideal defining the point x ∈ Spec(R). The worst
points with respect to the order are those with order equal to

b := max{ordPx
(f) | x ∈ Spec(R)}.

Hence we memorize the pair E := (f, b) and we denote the set of points where
the order of f is maximal by Sing(f, b). Note that Sing(f, b) is closed by the
upper semi-continuity of the order (see [55] Chapter III §3 Corollary 1, p.220).

The goal is to find a sequence of finitely many permissible blowing ups
(Definition 1.5) such that, for every point x′ lying on the strict transform V (f ′)
of V (f), we have ordPx′ (f

′) < b. In other words, Sing(f ′, b) = ∅ which, by
definition, means that the pair (f ′, b) is resolved. It is important to mention
that the variety V (f ′) is not necessarily resolved (see Examples 1.6 and 3.7).
But we attained a strict improvement of the singularity since the order can
not increase under permissible blowing ups.

We start over, i.e., we consider (f ′, b′) with b′ < b the new maximal
value of the order of f ′. Assuming that all this is possible we reach the case
Sing(f ′′, 2) = ∅, where V (f ′′) denotes the strict transform of V (f). Since
there is no point of order two or bigger the original singularity is resolved.
This reduces the problem of finding a resolution of singularities for X, to the
task of constructing a resolution for E.

In order to achieve the desired sequence of permissible blowing ups one
has to overcome technical difficulties and refine the previous principle by con-
sidering the information on the preceding blowing ups which is encoded in the
exceptional divisors. Note also that we did not address condition (3) of Conjec-
ture 1, yet. Further, one may have to discuss the question if locally constructed
resolutions patch together to a global one. Therefore it is preferable to avoid
any non-intrinsic choice when determining the center for the blowing ups. For
an example on this issue and how it is overcome, see Example 1.27 or [33]
Example 1.14.
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From the viewpoint of resolving singularities it is reasonable to identify
pairs which undergo the same resolution process. This provides an equivalence
relation on the set of pairs on R, for which an equivalence class is called ide-
alistic exponent.

Let us come to the precise definitions. Although idealistic exponents are
defined in a more general setting, we restrict ourselves to the local situation.

Definition 1.2. Let R be a regular local ring. A pair E = (J, b) on R is a pair
consisting of an ideal J ⊂ R and a positive integer b ∈ Z+. We define its order
at a point x ∈ Spec(R) (corresponding to a prime ideal P = Px ⊂ R) as

ordx(E) :=

⎧
⎨

⎩

ordP (J)
b , if ordP (J) ≥ b and

0, else.

We define the singular locus (or (co)support) of E as

Sing(E) := {x ∈ Spec(R) | ordPx
(J) ≥ b}.

If Sing(E) = ∅ then E is called resolved.
Let E1 := (J1, b1) and E2 := (J2, b2) be two pairs on R. Set c :=

lcm(b1, b2) and ci = c
bi

, for i ∈ {1, 2}. We define the intersection of E1 and E2

to be the pair

E1 ∩ E2 := (Jc1
1 + Jc2

2 , c). (1.1)

Similarly, we define the intersection of arbitrarily finitely many pairs.

Since R is regular it is Noetherian, by definition. Here, we do neither
impose on R to contain a field, nor to fulfill condition (D). Again, Sing(E)
is closed since the order is upper-semi continuous. It is not hard to show
that we have Sing(E1 ∩ E2) = Sing(E1) ∩ Sing(E2) and ordx(E1 ∩ E2) =
min{ordx(E1), ordx(E2)}, for x ∈ Sing(E1 ∩ E2).

Definition 1.3. Let R be a regular local ring with maximal ideal M and J0 ⊂ R
be a non-zero ideal in R.

(1) The associated graded ring of R is defined by

grM (R) :=
⊕

i≥0

M i/M i+1.

For a non-zero element g ∈ R, its initial form with respect to M is the
element inM (g) ∈ grM (R) defined by

inM (g) := g mod Mb+1, where b := ordM (g).

We define the initial ideal of J0 with respect to M as the ideal in grM (R)
given by

InM (J0) := 〈inM (g) | g ∈ J0〉 ⊂ grM (R).

Analogously, grP (R), inP (g), and InP (J0) are defined for any non-zero
prime ideal P ⊂ R.
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(2) Let (f) = (f1, . . . , fm) be a set of elements in J0. Set bi := ordM (fi) and
Fi := inM (fi), 1 ≤ i ≤ m, We say, (f) is a standard basis for J0 (in the
sense of Hironaka) if the following holds:
(a) 〈F1, . . . , Fm〉 = InM (J0) ⊂ grM (R),
(b) b1 ≤ b2 ≤ · · · ≤ bm, and
(c) Fi /∈ 〈F1, . . . , Fi−1〉, for all i ∈ {2, . . . , m}.

The notion of standard bases is closely related to that of Macaulay bases,
but for the latter conditions (b) and (c) above are not required.

Note that grM (R) is isomorphic to a polynomial ring over the residue
field k := R/M . More precisely, if (w) = (w1, . . . , wn) is a regular system of
parameters for R and if we denote by Wi := wi mod M2 the images in the
graded ring, 1 ≤ i ≤ n, then grM (R) ∼= k[W1, . . . , Wn].

By results of Hironaka, a standard basis for J0 generates J0 ([56], Corol-
lary (2.21.d)) and the strict transforms of (f) under a reasonable blowing up
still generate the strict transform of the ideal J0 under the same blowing up
([55], III.2, Lemma 6, p. 216, and see also III.6, Theorem 5, p. 238). In general,
this is not true for any set of generators, e.g. I := 〈y2 − x3, y2 − z5〉 ⊂ R :=
k[x, y, z]〈x,y,z〉 and the blowing up of the maximal ideal, for k any field.

Remark 1.4. Let us explain how to associate a pair to a given singularity X ⊂
Z, where X is a closed subscheme of an excellent regular Noetherian scheme Z
(not necessarily containing a field). Let x0 ∈ X and let U = Spec(R) ⊂ Z be
a sufficiently small affine neighborhood of x0, where R = OZ,x0 is the regular
local ring whose maximal ideal M corresponds to x0. The closed subscheme
X ∩ U ⊂ U is given by an ideal J0 ⊂ R. Let (f) = (f1, . . . , fm) be a standard
basis for J0. The pair associated to J0 ⊂ R is defined by

E = (f1, b1) ∩ (f2, b2) ∩ · · · ∩ (fm, bm).

(Recall that bi := ordM (fi)). If we can resolve E, then the Hilbert-Samuel
function must drop locally above x0 ([26] Theorem 2.10 (2), (6) and Definitions
1.26 and 1.28)

Definition 1.5. Let E = (J, b) be a pair on R.

(1) A closed subscheme D ⊂ Spec(R) is called permissible center for E (or
permissible for E) if D is regular and D ⊆ Sing(E). If D is permissible
for E then we also say that the blowing up π : Z′ → Spec(R) with center
D is permissible for E.

(2) Let π be a permissible blowing up for E and U ′ = Spec(R′) ⊂ Z′ an affine
chart. The transform of E in U ′ is then given by E

′ = (J ′, b), where J ′ is

defined via J · R′ = J ′Hb, where H denotes the ideal of the exceptional
divisor in U ′.

We call a composition of the form U ′ ↪→ Z′ → Spec(R) a local
blowing up. A sequence of local blowing ups is said to be permissible for
E if each of the blowing ups is permissible for the corresponding transform
of E.
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(3) A finite sequence of permissible local blowing ups such that the singular
locus of the final transform of E is empty (i.e., the final transform is
resolved) is called a (local) resolution of singularities for E.

Note that in other literature there exist notions of permissible centers
which are different from the latter, see for example [26] Definition 2.1, where
additionally X has to be normally flat along D.

Example 1.6. Let R = k[[x, y, z]], where k is any field, and let J = 〈x3 −y3z2〉.
Then

Sing(J, 2) = V (x, y) ∪ V (x, z) ,
Sing(J, 3) = V (x, y) .

Hence V (x, z) is permissible for (J, 2) but not for (J, 3), whereas V (x, y) is
permissible for both. We blow up with center V (x, y) and consider the point
with coordinates (x′, y′, z′) = (x

y , y, z). The total transform of J is J · R′ =

〈y′3(x′3 − z′2)〉 and the ideal of the exceptional divisor is H = 〈y′〉. Hence
the transform of (x3 − y3z2, 2) is (y′(x′3 − z′2), 2). On the other hand, the
transform of (x3 − y3z2, 3) at the same point is (x′3 − z′2, 3) and the singular
locus of this pair is empty.

The example also illustrates that the transform of a pair E = (J, b) is in
general neither given by the total transform nor by the strict transform. The
transform E

′ lies in between them and is controlled by the number b.

From the viewpoint of resolving pairs it is natural to identify those pairs
which show the same behavior under permissible blowing ups. Working with
these equivalence classes has the advantage that we can change the represen-
tative in order to achieve a situation where good properties are revealed.

Before giving the precise definition we have to introduce the following:
Let E = (J, b) be a pair on R and let (t) = (t1, . . . , ta) be an arbitrary finite
system of independent indeterminates. Then the lift of E to R[t] is defined as
E[t] = (J · R[t], b).

Definition 1.7. Two pairs E1 = (J1, b1) and E2 = (J2, b2) on R are defined to
be equivalent, E1 ∼ E2 if the following holds:

Let (t) = (t1, . . . , ta) be an arbitrary finite system of independent inde-
terminates. Then any sequence of local blowing ups (over R[t]) which is
permissible for E1[t] is also permissible for E2[t] and vice versa.

An idealistic exponent E∼ is the equivalence class of a pair E.

Allowing the extension from R to R[t] looks at first sight technical and not
necessary but it is useful for proving results on idealistic exponents. In other
literature pairs are sometimes also called idealistic exponents (e.g. [60]) and
there is no distinction made between the representative and the corresponding
equivalence class.
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Observe: If E3 is another pair on R, then E1 ∩ E2 ∼ E3 means that a
sequence of local blowing ups over R[t] is permissible for E3[t] if and only if it
is permissible for E1[t] and E2[t].

Theorem 1.8 (Numerical Exponent Theorem). Let E1 and E2 be two equivalent
pairs on R. For every x ∈ Spec(R), we have

ordx(E1) = ordx(E2).

In particular, Sing(E1) = Sing(E2). Hence the singular locus is an invariant of
the idealistic exponent since it does not depend on the choice of the represen-
tative.

For the proof, we refer to [60] Theorem 5.1, or [82] Proposition 1.1.10.
One of the key techniques in the local study of singularities in charac-

teristic zero is the method of hypersurfaces of maximal contact and, directly
related to it, the coefficient ideal. They allow to reduce the resolution problem
locally to one in lower dimension and thus to apply an induction argument.
The idea of coefficient ideals goes back to Hironaka (in the context of idealistic
exponents this appears in [59] Theorem 1.3, p. 908, and [57] Section 8, Theo-
rem 5, p. 111) and was later developed by Villamayor (for basic objects) and
Bierstone and Milman (for presentations).

The counterpart of the coefficient ideal in the setting of pairs is the so
called coefficient pair with respect to some regular subvariety V (y1, . . . , yr) ⊂
Spec(R), where (y) is part of a system of parameters (see also Section 3 of
[83]). In Remark 1.13, we explain more on its role in resolution of singularities.
Before we recall the definition, let us mention the following.

Remark 1.9. Let (u) = (u1, . . . , ue) be a system of elements in R extending
(y) = (y1, . . . , yr) to a regular system of parameters. Let b ∈ Z+. Every element
f ∈ R has an expansion of the form

f = f(u, y) =
∑

B∈Z
r
≥0

|B|<b

fB(u)yB + h, (1.2)

where h ∈ 〈y〉b and the coefficients fB(u) ∈ R do not depend on (y): We

define f
(1)
0 := f |y1=0 ∈ R and put g

(1)
0 := y−1

1 (f − f
(1)
0 ) ∈ R. We repeat,

f
(1)
i := g

(1)
i−1|y1=0 ∈ R and g

(1)
i := y−1

1 (g
(1)
i−1 − f

(1)
i ), for i ∈ {1, . . . , b − 1}, and

we obtain that

f =

b−1∑

i1=0

f
(1)
i1

yi1
1 + h1, for some h1 ∈ 〈y1〉b.

If r = 1, we have the desired expansion. If r > 1, we apply induction on r for

each f
(1)
i1

, and get that

f
(1)
i1

=
∑

(i2,...,ir)
i1+...+ir<b−i1

fi2,...,ir (u)yi2
2 · · · yir

r + h
(1)
i1

,
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where h
(1)
i1

∈ 〈y〉b−i1 and fi2,...,ir (u) ∈ R do not depend on (y). This provides
(1.2).

Definition 1.10. Let E = (J, b) be a pair on R. Let (u, y) = (u1, . . . , ue, y1, . . . ,
yr) be a regular system of parameters for the regular local ring R. We define
the coefficient pair D(E; u; y) of E with respect to (y) as the pair, which is
given by the following construction: For f ∈ J , we consider an expansion
f =

∑
B fB(u)yB + h, as in (1.2). We set

D(f ; u; y) :=
⋂

B∈Z
r
≥0

|B|<b

(fB(u), b − |B|),

and

D(E; u; y) :=
⋂

f∈J

D(f ; u; y) .

Note that we may consider D(E; u; y) as a pair on R as well as one on R/〈y〉.
Facts 1.11. Let R be a regular local ring, let E1 = (J, b) = (J1, b1) and E2 =
(J2, b2) be pairs on R, and let (u, y) be a regular system of parameters for R.

(1) For every a ∈ Z+, we have that (Ja, ab) ∼ (J, b). Moreover, if b2 = b1 = b
then we have that (J1, b) ∩ (J2, b) ∼ (J1 + J2, b).

(2) If Sing(J1, b1 + 1) = Sing(J2, b2 + 1) = ∅, then (J1, b1) ∩ (J2, b2) ∼
(J1J2, b1 + b2).

(3) Let D be a differential operator of order m ∈ Z≥0, m < b, on R such that
D(R) ⊂ R. We have that (J, b) ∼ (DJ, b − m) ∩ (J, b).

(4) If E1 ∼ E2, then D(E1; u; y) ∼ D(E2; u; y).
(5) We have that (y, 1) ∩ E ∼ (y, 1) ∩ D(E; u; y).

Proof. We just give the references for the proofs. Part (1) and (2) follow easily
from the definitions. The arguments for the proof can also be found in [82],
Lemma 1.1.8. The third part is the so called Diff Theorem, see [60], Theorem
3.4, or [83], Proposition 1.9. The remaining part, (4) resp. (5), is proven in [83],
Theorem 3.2 resp. Corollary 3.3. The idea is to assume that the equivalence
does not hold and then deduce a contradiction from the existence of a sequence
of blowing ups that is permissible for one, but not the other. �

By (1) we can extend the notions of pairs and idealistic exponents to
b ∈ Q+; (J, b) is defined to be the pair which is equivalent to (Ja, ab), where
a ∈ Z+ is such that a · b ∈ Z+. Part (3) and (5) are extremely useful for
simplifying the representative of an idealistic exponent. And (4) is telling us
that the coefficient pair D(E; u; y) is an invariant of the idealistic exponent E∼
and (u, y). Thus it is a reasonable object to consider in this theory.

In particular, (4) and the Numerical Exponent Theorem (Theorem 1.8)
imply that

δx(E, u, y) := ordx(D(E; u; y)),
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for x ∈ Spec(R), is an invariant of the idealistic exponent E∼. In [84], the
author showed that it is possible to relate this number with certain polyhedra
attached to idealistic exponents and that δx(E, u, y) is one of the key ingre-
dients of the invariant of Bierstone and Milman for constructive resolution of
singularities in characteristic zero [10,11].

Definition 1.12. Let R be a regular local ring and let E be a pair on R. Let
(y) = (y1, . . . , yr) be a system of elements in R which can be extended to a
regular system of parameters for R. We say W := V (y) has maximal contact
with E if the following equivalence holds

E ∼ (y, 1) ∩ E .

Facts 1.11 (1) and (3) provide that a system (y) having maximal contact
can be determined by using differential operators. For concrete examples see
the Sect. 3.

Remark 1.13. Let E, R and (y) be as in the previous definition. Suppose (D)
holds for R and V (y) has maximal contact with E. The equivalence implies
that Sing(E) ⊂ V (y), i.e., any center which is permissible for E is of the form
V (y, g1, . . . , gd) for some g1, . . . gd coming from R/〈y〉. Facts 1.11(4) provides
that E ∼ (y, 1) ∩ D(E; u; y). It is not hard to see that this condition is stable
under permissible blowing ups as long as the transform of E is not resolved.
Furthermore, if we consider one of the Yj-charts of the blowing up, the trans-
form of E is resolved, since so is (y, 1).

Unfortunately, maximal contact does not always exist in general. This
problem is discussed in the next sections.

Example 1.14. Let R = k[[x, y, z]], where k is a field of characteristic zero or
p > 3. Consider the hypersurface given by the polynomial

f = x2 + y3 + 3y2z + 3yz2 + z3 + z5 .

We associated the following pair on R to this:

E := (f, 2) ∼ (x, 1) ∩ (y3 + 3y2z + 3yz2 + z3 + z5, 2)

The equivalence follows from Facts 1.11(3) by taking the derivative by x and
using that (2x, 1) = (x, 1) since 2 is invertible in k.

The coefficient pair is D1 := D(E; y, z; x) = (y3 + 3y2z + 3yz2 + z3 +
z5, 2) and δ1 := δ(E, u, y) = 3

2 . By the above equivalence, we can deduce a
resolution of E from a resolution of D1. For the latter, we first want to eliminate
the singularities of highest order, i.e., in this case those of order 3. Hence we
consider

D
∗
1 := (y3 + 3y2z + 3yz2 + z3 + z5, 3)

(Note that 3 = δ1 · 2). After resolving D
∗
1, we have to study the transform D

′
1

of D1 under the preceding blowing ups. This is slightly more involved and we
refer the reader to the next section for more details.
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Using Facts 1.11(3), we get D
∗
1 ∼ (6y + 6z, 1) ∩ D

∗
1 after taking two times

the derivative by y. We set w := y + z and replace y by w − z. (Note that 6
is invertible in k). We have (y + z)3 + z5 = w3 + z5 and D

∗
1 ∼ (w, 1) ∩ (z5, 3).

Therefore the next coefficient pair is D2 := (z5, 3) and δ2 := 5
3 . We modify the

assigned number as before and get D
∗
2 = (z5, 5) ∼ (z, 1).

Since f = x2 + w3 + z5, the origin V (x, w, z) = V (x, y, z) is the only
possible permissible center for the first blow-up. We leave it as an exercise to
the reader to compute the transforms of the considered pairs under the blowing
up.

Remark 1.15. Suppose we are in the situation of maximal contact, E ∼
(y, 1) ∩ D(E; u; y) and assume by induction D(E; u; y) yields the center DY :=
V (g1, . . . , gd), for certain gi ∈ R/〈y〉. Then the center for E is given by
D := V (y, g1, . . . , gd), where gi ∈ R denotes any lift of gi. In Example 3.1
we explain more in detail how this improves the original singularity.

For our characterization result we need some technical notions. Namely,
the idealistic variant of the tangent cone and certain objects associated with
it (the so called directrix and the ridge, which were introduced and studied
by Hironaka and Giraud. These are invariants of the idealistic exponent that
provide some refined information on it. For a detailed discussion we refer to
Section 2 of [83].

Definition 1.16. Let E = (J, b) be a pair on R, M be the maximal ideal of R,
and k = R/M be its residue field. Suppose Sing(E) �= ∅.

(1) For f ∈ J , the b-initial form of f (at M) is defined by

in(f, b) :=

{
f mod Mb+1, if b ∈ Z+,

0, if b /∈ Z+.

(2) We define the tangent cone CM (J, b) ⊂ Spec(grM (R)) of E at M as the
cone defined by the homogeneous ideal InM (J, b) ⊂ grM (R), where

InM (J, b) :=

{
〈J mod Mb+1〉 = 〈in(f, b) | f ∈ J〉, if b ∈ Z+,

〈0〉, if b /∈ Z+.

Remark 1.17. The condition Sing(E) �= ∅ is equivalent to x0 ∈ Sing(E), where
x0 denotes the closed point corresponding to the maximal ideal M , or, in
other words, it is equivalent to ordM (J) ≥ b. Therefore Sing(E) �= ∅ implies

f ∈ Mb, for every f ∈ J . Hence, in(f, b) is either homogeneous of degree b (if
ordM (f) = b), or zero (if ordM (f) > b).

The latter also justifies to put in(f, b) := 0 if b ∈ Q+\Z+. Since
ordM (J) ∈ Z≥0 and ordM (J) ≥ b, we have ordM (J) > b in this case and
thus ordM (f) > b for every f ∈ J .

Example 1.18. Let R be a regular local ring with maximal ideal M and residue
field k = R/M , char(k) = p > 0. Let (x, y, z, t, u, v) be a regular system of
parameters for R. We have that grM (R) ∼= k[X, Y, Z, T, U, V ].
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(1) Consider the pair E = (J, b) := (〈f1, f2, f3〉, p2 + 1), for

f1 := xyp2 − xt3up2

, f2 := zp2−p+1(t + u)p − vp3

, f3 := tp
2+2 − up2+1v.

By the above definition: in(f1, p
2 + 1) = XY p2

, in(f2, p
2 + 1) =

Zp2−p+1(T + U)p, and in(f3, p
2 + 1) = 0. Therefore, InM (J, b) =

〈XY p2
, Zp2−p+1(T + U)p〉 ⊂ grM (R).

(2) Suppose that k is not perfect and let λ ∈ k\kp. Let ε ∈ R× be a unit in
R such that ε ≡ λ mod M . Let E

′ = (J ′, b′) := (〈f ′
1, f

′
2〉, p2) be the pair

defined by

f ′
1 := (xp + εyp)zp2−p + tuvp2

, f ′
2 := zp2

+ up2

+ ε(xp + εyp)p + vp2+1.

We get: in(f ′
1, p

2) = (Xp + λY p)Zp2−p and in(f ′
2, p

2) = Zp2
+ Up2

+
λ(Xp +λY p)p, and InM (J ′, b′) is the ideal in grM (R) generated by these
two.

Definition 1.19. Let E = (J, b) be a pair on R, M be the maximal ideal of R,
and k = R/M be its residue field. Suppose Sing(E) �= ∅.

(1) The directrix Dir(E) = DirM (E) of E is defined to be the largest sub-
vector space V of Spec(grM (R)) leaving the cone CM (J, b) stable under
translation, CM (J, b)+V = CM (J, b). In other words, Dir(E) corresponds
to a smallest list of variables Y1, . . . Yr ∈ grM (R)1 (homogeneous of degree
one) such that

( InM (J, b) ∩ k[Y1, . . . , Yr] ) · grM (R) = InM (J, b). (1.3)

(2) The ridge (fâıte in French) Rid(E) = RidM (E) of E is defined to be
the largest additive subgroup of Spec(grM (R)) leaving the cone CM (J, b)
stable under translation. In other words, Rid(E) corresponds to a smallest
list of additive homogeneous polynomials σ1, . . . , σs ∈ grM (R) such that

( InM (J, b) ∩ k[σ1, . . . , σs] ) · grM (R) = InM (J, b). (1.4)

Recall that a polynomial σ(W ) ∈ k[W1, . . . , Wn] is called additive if we
have σ(a + b) = σ(a) + σ(b), for any a, b ∈ kn. If char(k) = 0 then the
additive polynomials are those homogeneous of degree one, i.e., the definition
of the directrix and the ridge coincide. If char(k) = p > 0 then the additive

homogeneous polynomials are of the form σ =
∑n

i=1 λiW
q
i , λi ∈ k and q = pd,

d ∈ Z≥0.

Example 1.20. Let us continue Example 1.18.

(1) We have InM (J, b) = 〈XY p2
, Zp2−p+1(T + U)p〉 ⊂ grM (R). At the first

look, one might think that the variables (Y1, . . . , Yr) corresponding to
the directrix Dir(E) are (X, Y, Z, T, U). But we may replace t by the new

parameter t̃ := t + u. Then Zp2−p+1(T + U)p = Zp2−p+1T̃ p and we see
that

(Y1, . . . , Y4) = (X, Y, Z, T̃ ).
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Moreover, a possible choice for the additive polynomial defining the ridge
Rid(E) is

σ1 := X, σ2 := Z, σ3 := T̃ p, σ4 := Y p2

,

and XY p2
= σ1σ4 and Zp2−p+1T̃ p = σp2−p+1

2 σ3. Note that p2 − p + 1 is
prime to p.

(2) The ideal of the tangent cone CM (J ′, b′) is generated by

F ′
1 := (Xp + λY p)Zp2−p and F ′

2 := Zp2

+ Up2

+ λ(Xp + λY p)p.

Since λ is not a p-power in k, we can not perform a change in the param-
eters to reduce the number of variables appearing in the generators as
before. Therefore, the directrix Dir(E′) is given by

(Y ′
1 , Y ′

2 , Y ′
3 , Y ′

4) = (X, Y, Z, U).

(We use Y ′
i in order to avoid confusion with the first example). Further-

more, a possible choice for the additive polynomials giving Rid(E′) is

σ′
1 = Xp + λY p, σ′

2 = Zp, σ′
3 = F ′

2.

(Again, we use σ′
j to distinguish this from the previous example). We

have that F ′
1 = σ′

1(σ
′
2)

p−1 and F ′
2 = σ′

3.

Definition 1.21. Let the situation be as in the previous definition.

(1) We say that additive polynomials σ1, σ2, . . . , σs ∈ K[Y1, . . . , Yr] are in
triangular form if

σi = Y qi

i +
r∑

j=i+1

λij Y qi

j , (1.5)

where qi = pdi , for certain di ∈ Z≥0, and qi ≤ qi+1, and λij ∈ k,
1 ≤ i ≤ s.

Note that, for every set of additive polynomials, there exists a set of
additive polynomials in triangular form which generates the same ideal.
One could even achieve that λij = 0 for every j with qi = qj . But for
our purpose it is only important that (σ) = (σ1, . . . , σs) are in triangular
form.

(2) If we can choose the system (Y ) = (Y1, . . . , Yr) in such a way that
σj = Y

qj

j , for all j, then we say that the reduced ridge coincides with

the directrix. (Note that then s = r). For example, this is the case if k is
perfect. In general, this is only true after a finite pure-inseparable base
field extension K/k; for more on this see [83], Remark 2.6. (For more
details on the ridge (and in particular an intrinsic definition) see [46]
and [8]; further in [32] its role as a refined invariant for a singularity is
discussed).

(3) We say a system (y) = (y1, . . . , yr) (resp. (g) = (g1, . . . , gs)) in R deter-
mines (or defines) the directrix (resp. the ridge) if their initial forms (Y ),
Yj = yj mod M2, 1 ≤ j ≤ r, (resp. (σ), σi = gi mod Mqi+1, 1 ≤ i ≤ s)
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fulfill (1.3) (resp. (1.4)). Here we always implicitly assume that r (resp. s)
is minimal with this property. In the same way, we say (Y ) (resp.(σ))
defines DirM (E) (resp. RidM (E)).

Example 1.22. Let us continue the previous examples.

(1) For E, the additive polynomials (σ1, . . . , σ4) are in triangular form and
the reduced ridge coincides with the directrix. Further, g1 := x, g2 :=

z, g3 := t̃p, and g4 := yp2 − t3up2
is a possible choice for elements in R

that determine the ridge of E.
(2) For E

′, the additive polynomials (σ′
1, σ

′
2, σ

′
3) are not in triangular form. In

order to achieve the latter, we need to replace σ′
3 = Zp2

+ Up2
+ λ(Xp +

λY p)p by σ∗
3 := Up2

. Note that (σ′
1, σ

′
2, σ

∗
3) generates the same ideal as

(σ′
1, σ

′
2, σ

′
3). Since λ /∈ kp is not a p-power, the polynomial σ′

1 = Xp+λY p

is reduced and the reduced ridge does not coincide with the directrix.

Finally, g′
1 := xp + εyp, g′

2 := zp, and g′
3 := up2

+ vp2−1 are elements in
R defining Rid(E′).

By passing to the localization RP all the previous notions are defined for
any point x ∈ Sing(E), x corresponding to P ⊂ R a non-zero prime. Further,
all definitions and result can be applied for R being a polynomial ring over a
field (or any regular local ring) instead of a regular local ring.

Definition 1.23. Let E = (J, b) be a pair on R and suppose Sing(E) �= ∅.
Let (Y ) = (Y1, . . . , Yr) (resp. (σ) = (σ1, . . . , σs)) be elements defining the
directrix (resp. the ridge) of E. In particular, Yj are homogeneous of degree

one, 1 ≤ j ≤ r, and σi are additive homogeneous polynomials of order pdi ,
di ≥ 0, 1 ≤ i ≤ s. Then we define the following pairs on grM (R) ∼= k[Y, U ]
(where (U) = (U1, . . . , Ue) are homogeneous elements of degree one extending
(Y )):

T(E) = ( InM (E), b ) idealistic tangent cone of E (at M),

Dir(E) = ( 〈Y1, . . . , Yr〉, 1 ) idealistic directrix of E (at M),

Rid(E) =
⋂s

i=1( σi, pdi ) idealistic ridge of E (at M).

Let E1 = (J1, b1), E2 = (J2, b2) be two pairs on R and assume Sing(E1 ∩
E2) �= ∅. Then we have InM (E1 ∩ E2) = InM (E1) + InM (E2). From this we
obtain the equalities T(E1 ∩ E2) = T(E1) ∩ T(E2), Dir(E1 ∩ E2) = Dir(E1) ∩
Dir(E2), and Rid(E1 ∩ E2) = Rid(E1) ∩ Rid(E2).

Proposition 1.24 ([83], Proposition 2.14, Corollary 2.12). Let E = E1 = (J1, b1)
and E2 = (J2, b2) be two equivalent pairs on R, E1 ∼ E2, and suppose
Sing(E1) = Sing(E2) �= ∅. We have

T(E1) ∼ T(E2) , Dir(E1) = Dir(E2) , and Rid(E1) ∼ Rid(E2) . (1.6)

Moreover, if char(k) = 0 or b < char(k), k = R/M , then

Dir(E) ∼ Rid(E) ∼ T(E) . (1.7)
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The first part, (1.6), shows that the idealistic variant of the tangent cone,
the directrix and the ridge of E are well-defined objects for idealistic exponents,
T(E∼), Dir(E∼), Rid(E∼). In fact, the directrix is independent of the choice of
the representative for E∼.

Moreover, (1.7) reveals a connection of these objects which is not seen
in their non-idealistic variants. In the proof the generators for the directrix
resp. the ridge are deduced from those of the initial ideal by applying cer-
tain differential operators. The restriction on the characteristic is necessary to
obtain the equivalence on the left hand side.

In fact, if we translate this equivalence back to R, we obtain elements
(y1, . . . , yr) which have maximal contact with E. The failure of the equivalence
on the left hand side in general is one of the reasons why the proof of resolu-
tion of singularities over fields of characteristic zero can not be immediately
extended to positive characteristic. See also the Sect. 3 for concrete examples.

In Theorem 4.1 we extend the previous result to a characteristic-free
variant which builds the basis for our characterization, Procedure 4.4.

Example 1.25. Let us come back to our running examples (Examples 1.18,
1.20, 1.22).

(1) For E, we have that

T(E) = (〈XY p2
, Zp2−p+1T̃ p〉, p2 + 1),

Dir(E) = (〈X, Y, Z, T̃ 〉, 1),

Rid(E) = (〈X, Z〉, 1) ∩ (T̃ p, p) ∩ (Y p2
, p2).

Facts 1.11(1) provides Dir(E) ∼ Rid(E). (Recall the definition of the
intersection of pairs (1.1)). If we apply ∂

∂X to T(E) and using Facts

1.11(3), we get that T(E) ∼ T(E) ∩ (Y p2
, p2). We apply ∂

∂Y p2 , ∂

∂T̃ p
,

resp. ∂

∂Zp2−p+1 to T(E). (For their precise definition of these differ-

ential operators, we refer to (4.2); what we use here is the property
∂

∂Y p2 XaY bZdT̃ e =
(

d
p2

)
XaY bZd−p2

T̃ e, for any a, b, c, d, e ∈ Z≥0, and

similarly for the others). We obtain that

T(E) ∼ T(E) ∩ (Y p2

, p2) ∩ (X, 1) ∩ (Zp2−p+1, p2 − p + 1) ∩ (T̃ p, p).

By Facts 1.11(1) and (2), we eventually have that T(E) ∼ Rid(E) ∼
Dir(E).

Suppose the differential operators ∂
∂x , ∂

∂yp2 , ∂
∂t̃p , and ∂

∂zp2−p+1 exist

in R. If we apply the same operations as before to E, we can deduce (using
the notations of Example 1.22(1)) that E ∼ (〈g1, g2〉, 1)∩(g3, p)∩(g4, p

2)∩
(〈vp3

, f3〉, p2 + 1). Note that ordM ((〈vp3
, f3〉, p2 + 1)) > 1 (cf. Theorem

4.3).
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(2) For E
′, we have that

T(E′) = (〈(Xp + λY p)Zp2−p, Zp2
+ Up2

+ λ(Xp + λY p)p, p2),

Dir(E′) = (〈X, Y, Z, U〉, 1),

Rid(E′) = (Xp + λY p, p) ∩ (Zp, p) ∩ (Up2
, p2).

We have that T(E′) ∼ Rid(E′) ∼ (〈Z, U〉, 1)∩(Xp+λY p, p), but Rid(E′) �∼
Dir(E′) (cf. Theorem 4.1). Using the notations of Example 1.22(2), we
can deduce under an assumption analogous to the one in (1) that E

′ ∼
(〈g′

1, g
′
2〉, p) ∩ (g′

3, p
2) ∩ (tuvp2

, p2) with ordM (tuvp2
, p2) > 1 (cf. Theorem

4.3). We leave the details as an exercise to the reader.

Note that the first part of Proposition 1.24 implies E �∼ E
′ since Dir(E) �=

Dir(E′).

To end this section let us mention the following extension of the previous
notions which become important if one aims to obtain a reasonable resolution
procedure. In particular, this is useful to achieve condition (3) of Conjecture 1.

Let Z be a regular Noetherian scheme. Recall that a reduced (Cartier)
divisor B ⊂ Z is called a simple normal crossing divisor if each irreducible
component of B is regular and they intersect transversally.

Let further D ⊂ Z be a regular closed subscheme and denote by π : Z′ →
Z the blowing up with center D. We say that D has at most simple normal
crossings with B if the reduced divisors (E′ ∪ B′)red, associated to the union
of the exceptional divisors E′ := π−1(D) of π and the strict transform B′ of
B, is a simple normal crossing divisor.

Definition 1.26. Let E = (J, b) be a pair on R and D ⊂ Spec(R) a closed
subscheme. Let B be a finite collection of irreducible (Cartier) divisors on
Spec(R) and denote by B the reduced divisor obtained from the union of the
elements of B. Suppose B is a simple normal crossing divisor.

(1) Then D is called permissible center for (E, B) (or B-permissible for E)
if D is permissible for E and additionally D has at most simple normal
crossings with B. We say that a blowing up is B-permissible if its center
is.

(2) The transform of (E, B) under a B-permissible blowing up is defined as
(E′, B′), where E is the transform as defined in Definition 1.5 and B′ =

B̃∪{E′}, where B̃ is the collection of the strict transforms of the elements
of B and E′ denotes the exceptional divisor of the blowing up.

(3) A (local) resolution of singularities for (E, B) is a finite sequence of local
B-permissible blow-ups such that the final transform of E is resolved.

Since the center in (2) is B-permissible, the divisor B′ is automatically a
simple normal crossing divisor. Further, note that a resolution of singularities
for (E, B) yields one for E whereas the converse is not necessarily true in general
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(even if B = ∅) since we do not require the centers to be B-permissible in the
latter.

This kind of additional structure B given by some simple normal crossing
divisor appears for example as the collection of the exceptional divisors of
preceding blowing ups (or maybe one already wants to start the resolution
process with this extra structure).

Example 1.27. Let R = k[[x, y, z]], where k is any field, and let J = 〈x2−y3z2〉.
We have Sing(J, 2) = V (x, y)∪V (x, z). In order to get a canonical resolution of
singularities for (J, 2) (resp. J) we have to blow up the origin V (x, y, z). If we
consider the transform of (J, 2) at the origin of the Z-chart (i.e., at the point
with coordinates (x′, y,′ , z′) := (x

z , y
z , z)), then we get the same pair. Hence

there is no obvious improvement.
If we add the extra structure of the exceptional divisor, E′ = V (z′),

then it is clear that V (x′, z′) is contained in the exceptional divisor, whereas
V (x′, y′) is not. Thus V (x′, y′) is the strict transform of the corresponding
component before the blowing up and it is in some sense “older” than V (x′, z′).

If we have some extra structure at the beginning given by the regular
divisor B = V (y + z2) then we see that V (x, y) is not B-permissible for (J, 3).

If we desire to obtain a canonical resolution in the last example, we need
to be able to distinguish the two components in the singular locus; otherwise
we would always blow up the origin and the process never ends. Therefore
it is necessary to take the exceptional divisors of the resolution process into
account.

Another reason is that for applications it may become necessary that the
preimage of a given singular variety/scheme under a resolution of singularities
is a simple normal crossing divisor. Since the exceptional divisors appear in
the preimage, we have to ensure that they behave nicely during the resolution
process.

Let us mention the following example which explains also the handling
in the general case: Consider a curve embedded in a three dimensional regular
ambient space and suppose we have resolved its singularities and the excep-
tional divisors have at most normal crossings with it. The preimage of the
original variety is not yet a divisor. In order to achieve this one has to blow up
the entire (B-permissible) curve itself at the end. But note that condition (2)
of Conjecture 1 is then not fulfilled anymore.

2. A Characteristic Zero Invariant

In order to make more precise what we mean by improving the singularity, we
briefly give the definition of the invariant by Bierstone and Milman [13] for
resolution of singularities over fields of characteristic zero in a variant adapted
to our setting (with no restriction to the characteristic), cf. [84].
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Let X ⊂ Z be a closed subscheme of an excellent regular Noetherian
scheme Z and let B be a finite set of irreducible divisors on Z such that
the reduced divisor B defined their union has at most simple normal crossing
singularities. The invariant consists of a finite set of pairs (νi, si), where νi is
the order of some pair and si counts certain divisors in B,

ιX(x) := (ν1(x), s1(x); ν2(x), s2(x); . . .), for x ∈ X,

where we equip the string of numbers with the lexicographical order. Further,
we denote by ιX(x)κ+ 1

2
:= (ν1(x), s1(x); . . . ; νκ+1(x)) the truncation of ιX(x)

after the (2κ + 1)-th entry. The first invariant is the Hilbert-Samuel function
of X at x ([13] Section 1.3, see also the modified version [26] Definition 1.28)

ν1(x) := HX(x).

It is possible that there are preceding blowing ups in the resolution pro-
cess. Let us fix some notation,

B0 B1 . . . Bi . . . Bj−1 Bj =: B

Z0
π1←− Z1

π2←− . . .
πi←− Zi

πi+1←− . . .
πj−1←− Zj−1

πj←− Zj =: Z
⋃ ⋃ ⋃ ⋃ ⋃

X0 ←− X1 ←− . . . ←− Xi ←− . . . ←− Xj−1 ←− Xj =: X

xi �−→. . . �−→xj−1 �−→xj =: x,

(2.1)

where X0 ⊂ Z0 and B0 is the situation that the resolution process initially
started with (X0 a closed subscheme of an excellent regular Noetherian scheme
Z0 and B0 a finite set of irreducible divisors having simple normal crossings),
Xi (resp. Zi) is the strict transform of Xi−1 (resp. Zi−1) under the blowing
up πi, Bi is the union of the strict transforms of the components in Bi−1 and
the exceptional divisor of πi.

Further, x ∈ X is the point that we consider. Thus R = OZ,x and we
associate E :=

⋂m
i=1(fi, bi) to X via choosing a standard basis for the ideal

locally defining X at x, as in Remark 1.4. We denote by B(x) the set of divisors
in B passing through x.

Remark 2.1. (Old and new exceptional divisors). Let H be an invariant mea-
suring the complexity of the singularity of X at x. We require that H is upper
semi-continuous (so that the locus where it is maximal is closed), and that H
does not increase if we blow up a regular center contained in the locus where
H is maximal. Assume that the centers of blowing ups in (2.1) are of the
preceding type. We distinguish the components in B(x) as follows:

We choose i ∈ {0, . . . , j} such that H last decreased after the i-th blowing
up, H(xi−1) > H(xi) = H(x), where xκ = πκ+1(xκ+1) for i ≤ κ < j. We
declare all divisors in Bi(xi) to be old with respect to H, OH(xi) := Bi(xi).
This leads to the distinction B(x) = OH(x) ∪ NH(x), where OH(x) are the
strict transforms of OH(xi), and NH(x) := B(x)\OH(x) are said to be new
since they arose after H decreased the last time.
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Construction 2.2. Let x ∈ X ⊂ Z as before. Using the previous notations, we
set

G1(x) := E = (f1, b1) ∩ · · · ∩ (fm, bm)

and R is the local ring of Z at x. Note that ordx(E) = 1. We define

s1(x) := #Oν1(x).

Let g1, . . . , gs1 ∈ R be local generators for the old divisors. We put

F1(x) := G1(x) ∩ (〈g1, . . . , gs1〉, 1),

and we replace B(x) by B(1)(x) := Nν1(x). If there exists no hypersurface of
maximal contact for F1(x), we stop and set ιX(x) := (ν1(x), s1(x)).

Suppose V (z1) has maximal contact with F1(x). Let (w) = (w2, . . . , wn)
be any set of regular elements extending z1 to a regular system of parameters
for R. We pass to the coefficient pair

D1(x) := D(F1(x); w; z1) =: (I1, d1).

on R1 = R/〈z1〉. We may consider B(1)(x) as a set of divisors in Spec(R1).

Denote by η1, . . . , ηa the generic points of the components in B(1)(x). We define

ν2(x) := ordx(D1(x)) −
a∑

i=1

ordηi(D1(x)) ≥ 0,

ιX(x)1+ 1
2

:= (ν1(x), s1(x); ν2(x)).

We have a factorization I1 = M(I1) · N(I1), where M(I1) is a monomial in

the components coming from B(1)(x) (that corresponds to the sum that we
subtract in the definition of ν2(x)) and N(I1) is an ideal in R1 such that

none of the components in B(1)(x) factors from it. We associate the so called
companion pair to this:

G2(x) :=

{
(N(I1), d · ν2(x)), if ν2(x) ≥ 1,

(N(I1), d · ν2(x)) ∩ (M(I1), d · (1 − ν2(x))), if ν2(x) < 1.

We repeat the previous steps for G2(x) instead of G1(x). The old components

in B(1)(x) are now considered to be old with respect to ιX(x)1+ 1
2
. This ends

when either there does not exist a hypersurface of maximal contact, or M(Iκ) =
Iκ, for some κ ≥ 1. In the latter case, νκ+1(x) = 0 and this is called the
monomial case, where a simple combinatorial procedure can be applied to
lower the invariant (see [13] Section 5 Step II Case A).

Remark 2.3. While maximal contact always exists locally over a field of charac-
teristic zero, this is not true in general. Hence ιX(x) can only be the beginning
of an appropriate invariant, in general, and there is a need to find a second
part controlling the case where there is no maximal contact.

The constructed invariant has the following properties (see [13] Theorem
7.1): (1) ιX distinguishes regular and singular points, (2) ιX is upper semi-
continuous, (3) ιX can not increase under a blowing up with a center contained
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in the maximal locus of ιX , (4) ιX can only decrease finitely many times strictly
until the singularities are resolved.

3. First Examples for the Reduction

Let us discuss some examples before coming to the precise formulation of the
reduction result. All examples are of the same shape:

The ambient scheme is Z = Spec(S[y]), where (y) = (y1, . . . , yr) and S is
a regular local ring with parameters (u) = (u1, . . . , ue) (e.g., S = k[u]〈u〉, for
some field k, or S = Z[u2, . . . , ue]〈p,u2,...,ue〉, for p ∈ Z+ prime); B = ∅ and
X = V (f) is a hypersurface in Z, for

f = yN + h(u) ∈ 〈u, y〉|N|, where h ∈ 〈u〉|N|+1 and |N | ≥ 2.

Further, R = S[y]〈u,y〉 is the local ring of Z at the closed point x0 = V (u, y)
(with maximal ideal M = 〈u, y〉) and p > 0 denotes the characteristic of the
residue field of R.

Example 3.1. Let r = 1, p > 2, and let X = V (f) ⊂ Z be defined by

f := y2 + h(u1, u2, u3).

Therefore we consider the pair E := (f, 2) in R. If we apply the derivative by
y, we obtain the equivalences (using Facts 1.11)

(f, 2) ∼ (2y, 1) ∩ (f, 2) ∼ (y, 1) ∩ (f, 2) ∼ (y, 1) ∩ (h, 2), (3.1)

where we use in the second equivalence that 2 is invertible in R. Hence V (y)
has maximal contact with E (Definition 1.12) and ιX(x0)1+ 1

2
= (2, 0; m0

2 ),

where m0 := ordM (h). This allows us to reduce the problem of finding a
resolution for E (resp. for X) to the corresponding problem for the surface
Y = V (h) ⊂ Spec(S) determined by the coefficient pair D(E; u; y) = (h, 2).

Since resolution of singularities via blowing ups in regular centers is known
for surfaces [26], we can proceed as follows: By induction on the dimension,
we can resolve D

∗ := (h, m0), i.e., if we denote by (h1, m0) the transform
of D

∗, say in S1 locally at a point x1 corresponding to the ideal M1, then
Sing(h1, m0) = ∅ or, equivalently, ordM1(h1) < m0. Note that we can lift
the sequence of blowing ups as explained in Remark 1.15 to one in R and we
denote by X1 the strict transform of X.

We distinguish the parameters in S1 as (u, v) = (u1, . . . , ue; v1, . . . , vd)
such that each ui corresponds to an exceptional divisor passing through x1,
while (v) is any set of elements extending (u) to a system of parameters for
S1. (By abuse of notation, we continue to use the letters ui instead of u′

i).
Note that the transform of (h, 2) under the preceding blowing ups is

(εuAh1, 2), for some A = (A1, . . . , Ae) ∈ Z
e
≥0 and a unit ε ∈ S×

1 (which comes
from exceptional divisors not containing x1). Thus ιX1(x1)1+ 1

2
= (2, 0; m1

2 ) <

ιX(x0)1+ 1
2
, where m1 := ordM1(h1). If Sing(h1, 2) �= ∅, we repeat the previ-

ous step and resolve (h1, m1). Since m1 < m0, we reach after finitely many
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steps Sing(h�, 2) = ∅, for � ≥ 1. Without loss of generality, we assume that
Sing(h1, 2) = ∅.

If Sing(εuAh1, 2) = ∅, then (3.1) provides that we obtain a resolution of
(f, 2). Suppose this is not the case. Then we have to pass to the companion
pair,

G := (h1, d) ∩ (uA, 2 − d), with d := ordM1(h1) ≤ 1.

(If d = 0, we neglect (h1, d)). In other words, we also take the monomial uA

into account in order to obtain centers that are permissible for the transform
of (f, 2). We then resolve G which will either result in a decrease of the order
of h1 (so that we are left with the exceptional monomial) or in a decrease of A.
By lifting the sequence of blowing ups, we eventually obtain a resolution for
(f, 2). Alternatively, it is also not too hard to construct an explicit resolution

for (f1, 2) = (y2 + uAh1, 2) with ordM1(h1) ≤ 1 (for example, using ideas of
[12] or [70]).

Example 3.2. Suppose S = Z(p), for p prime. Let r = p and X = V (f) ⊂ Z =
Spec(S[y1, . . . , yp]) be defined by

f := pp + y1y2 · · · yp.

Using Facts 1.11, we obtain:

E := (f, p) ∼ (pp + y1y2 · · · yp, p) ∩ (〈y1, . . . , yp〉, 1) ∼ (〈p, y〉, 1).

Therefore V (p, y) = Sing(E) is the only permissible center. After blowing it
up, the idealistic exponent is resolved in every chart, while the strict trans-
form X ′ of X is still singular. For example, at the point with coordinates
(z′, y′

1, . . . , y
′
p) = ( p

y1
, y1,

y2
y1

, . . . ,
yp

y1
), we get X ′ = V (f ′) with f ′ = z′p +

y′
2 · · · y′

p. (Note: the ambient scheme is now Z′ = Spec(Z(p)[z
′, y′]/〈p − z′y1〉)).

Nonetheless, since the order is at most p − 1, one can achieve a resolution of
X with the methods of characteristic zero.

Example 3.3. Let r = 1, p > 2, and let X = V (f) ⊂ Z = Spec(S[y]) be defined
by

f := y4 + h(u1, u2, u3), with h ∈ 〈u〉5.
Since 4 is a unit in S we get as before

E := (f, 4) ∼ (y, 1) ∩ (f, 4) ∼ (y, 1) ∩ (h, 4).

In particular, V (y) has maximal contact with E. This reduces the resolution
problem of X to that of Y = V (h) ⊂ Spec(S) and we can resolve (f, 4)
with the methods of the first example. But this time we do not obtain a full
local resolution of singularities for X since the singularity given by the strict
transform f ′ of f is not necessarily regular. We only know that the order at
every point is below 4.

As a special case of this example, the strict transform of f could be of the

form f ′ = u3
1 + h̃(u1, u2, u3, y) with h̃ ∈ 〈u1, u2, u3, y〉4. If p = 3, we can not
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deduce that V (u1) has maximal contact with the techniques of the previous

section (which is in general false, even if there is no u1 appearing in h̃).

Nevertheless, we see that there exist special cases in which we can reduce
the resolution problem for a given singularity to one in lower dimensions. The
last example can be formulated more generally as

Example 3.4. Let r = 1, n ∈ Z≥2 with (n, p) = 1 and let X = V (f) ⊂ Z =
Spec(S[y]) be defined by

f := yn + h2(u)yn−2 + . . . + hn(u), with hi(u) = hi(u1, u2, u3) ∈ 〈u〉i+1.

Since (n, p) = 1 , n ∈ S× is a unit. Therefore V (y) has maximal contact at the
point x0 = V (u, y),

E := (f, n) ∼ (y, 1) ∩ (f, n) ∼ (y, 1) ∩
n⋂

i=2

(hi, i) = (y, 1) ∩ D(E; u; y)

Since S has dimension three, we can resolve D(E; u; y) as before. Using the
techniques of Example 3.1 in this slightly more general variant, we obtain a
resolution for E and hence an improvement of the singularities of X, i.e., a
decrease of ιX(x)1+ 1

2
.

Sometimes this reduction can also be applied for higher dimensional vari-
eties.

Example 3.5. Let r = 2 and let X = V (f) ⊂ Z = Spec(S[y1, y2]) be defined
by

f := yp
1 yp

2 + h(u1, u2, u3) with h ∈ 〈u〉2p+1.

Using the differential operator ∂
∂yp

1
(resp. ∂

∂yp
2
) which sends yp

1 (resp. yp
2) to one

(see (4.2) below for more on these) one can show that V (y1, y2) has maximal
contact with E := (f, 2p), and

(f, 2p) ∼ (y1, 1) ∩ (y2, 1) ∩ (h, 2p).

Again, we reduced the problem of lowering the order of f to the problem of
finding a resolution for (h, 2p) in S. As before, we can achieve that the invariant
drops below ιX(x0)2+ 1

2
= (2p, 0; 1, 0; m0

2p+1 ), where m0 := ordM (h). (Note that

the case p = 2, i.e., order 4 = p2, is not excluded).

Example 3.6. Let r = 3, set z3 := y3, and let X = V (f) ⊂ Z =
Spec(S[y1, y2, z3]) be defined by

f := yp
1yp

2 + (z2p+1
3 + h(u1, u2, u3)) = 0 with h ∈ 〈u〉2p+2.

As explained in the previous example the resolution of E := (f, 2p) reduces to

that of D1 := (z2p+1
3 + h(u1, u2, u3) , 2p). Since 2p + 1 is prime to p, we can

reduce the resolution problem for D
∗
1 := (z2p+1

3 + h(u1, u2, u3) , 2p + 1) further
to the one for (h(u1, u2, u3) , 2p+1). The latter is in S and hence can be solved
as in Example 3.1, and the same techniques show that the original singularity
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improves, i.e., the invariant drops below ιX(x0)2+ 1
2

= (2p, 0; 1, 0; 2p+1
2p ) after

finitely many permissible blowing ups.

Example 3.7. Let r = 2, set z := y2, and let X = V (f) ⊂ Z = Spec(S[y, z])
be defined by

f := yp2+1 + z2p2+1 + h(u1, u2) with h ∈ 〈u〉2p2+2.

We have E := (f, p2 + 1) ∼ (y, 1) ∩ (z2p2+1 + h, p2 + 1) and further D
∗
1 :=

(z2p2+1+h, 2p2+1) ∼ (z, 1)∩(h, 2p2+1). Thus ιX(x0)1+ 1
2

= (p2+1, 0; 2p2+1
p2+1 ).

Any permissible center will be of the form V (y, z, g1, . . . , ga) for certain gi ∈ S.

If we blow up and consider the origin of the Z-chart, then E
′ = (yp2+1 + zp2

+

h̃(u1, u2, z), p2 + 1) is resolved. But in the next step of the resolution process
for X, we have to deal with

E
new := (zp2

+ yp2+1 + h̃(u1, u2, z), p2)

and it is not clear why E ∼ (z, 1) ∩ E should be true. (In general, this is false!)

Narasimhan gave in [77] an example of a threefold (t2+xy3+yz3+x7z=0
over a field of characteristic p = 2) whose singular locus has embedding dimen-
sion four. Hence there can not exist a regular hypersurface containing the sin-
gular locus. In particular, there is no regular hypersurface of maximal contact.

Let us mention the following construction in connection with this.

Example 3.8. Let m ∈ Z+ and f0, f1, . . . , fm ∈ S[z1, . . . , zm] with fi ∈
〈z, u1, . . . , ue〉. The singular locus of the hypersurface X = V (f) ⊂ Z =
Spec(S[z]) defined by

f := fp
0 + z1f

p
1 + · · · zmfp

m ,

is Sing(X) = V (f0, f1, . . . , fm). Using this, we can easily produce other exam-
ples, where the embedding dimension of the singular locus (resp. of the locus
of order p) is e + m.

4. The Criterion for a Possible Reduction

In this section we generalize the second part of Proposition 1.24 to a
characteristic-free variant. By translating the equivalence to R we deduce the
criterion to decide when a local resolution problem can be reduced to one in
lower dimensions.

Recall that two pairs E1 and E2 on some ring S are equivalent, E1 ∼ E2,
if the following holds (see Definition 1.7): For any finite system of independent
indeterminates (t) = (t1, . . . , ta), any sequence of local blowing ups (over S[t])
which is permissible for E1[t] is also permissible for E2[t] and vice versa (where
Ei[t] = (Ji · S[t], b) for Ei = (Ji, bi) and Ji ⊂ S).
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Theorem 4.1. Let R be a regular local ring and E∼ an idealistic exponent on
R. Assume Sing(E∼) �= ∅. Then we have that

Rid(E∼) ∼ T(E∼). (4.1)

If furthermore the reduced ridge coincide with the directrix, then we even obtain
the equivalence Dir(E∼) ∼ Rid(E∼) ∼ T(E∼).

Recall that Rid(E∼) and T(E∼) are idealistic exponents in the graded
ring grM (R). If (w) = (w1, . . . , wn) is a regular system of parameters for R,
then we have grM (R) ∼= k[W1, . . . , Wn] =: S, where k = R/M is the residue
field of R.

The main ingredient for the proof of the above proposition are k-linear
differential operators Diffk(S) in S and the Diff Theorem, Facts 1.11(3). If
char(k) = 0, then Diffk(S) is generated by the derivations. This is not true if
char(k) = p > 0, where also Hasse-Schmidt derivations appear ([47], Sections
2.5, 2.6, or [38] Example (3.3.1)): Let f(W ) ∈ S and (T ) = (T1, . . . , Tn) be a
set of independent variables. We have

f(W + T ) = f(W1 + T1, . . . , Wn + Tn) =
∑

N∈Z
n
≥0

fN (W ) T N ∈ k[W, T ].

Given N = (N1, . . . , Nn) ∈ Z
n
≥0, the Hasse-Schmidt derivative of f with

respect W N = W N1
1 · · · W Nn is defined as

DN (f) :=
∂

∂W N
f := fN (W ) ∈ S.

Hence we have that, for any B, N ∈ Z
n
≥0 and λ ∈ k,

DN (λW B) = λ

(
B

N

)

W B−N , (4.2)

where
(

B
N

)
=

(
B1
N1

) · · · (Bn

Nn

)
, and

(
Bi

Ni

)
= 0 if Ni > Bi. In particular, ∂

∂W q
1
W q

1 = 1,

for any p-power q. (Neglecting the characteristic, we can write the Hasse-

Schmidt derivative as ∂
∂W N = 1

N1!···Nn! · (
∂

∂W1

)N1 · · · ( ∂
∂Wn

)Nn).

Proof of Theorem 4.1. By Proposition 1.24, we may assume char(k) = p > 0,
where k = R/M . Let E = (J, b) be a representative of E∼. We set I :=
InM (J, b). Let (Y ) = (Y1, . . . , Yr) (resp. (σ) = (σ1, . . . , σs)) be elements defin-
ing the directrix (resp. the ridge) of E. We pick (σ) in triangular form (1.5). We
have T(E) = (I, b), and Rid(E) =

⋂s
i=1(σi, qi), and grM (R) ∼= k[Y, U ], where

(U) = (U1, . . . , Ue) is a system of elements extending (Y ) as before. Set

τ := σ1, q := q1, and Z := Y1.

Case s = 1 By the definition of the ridge, there exists a system of generators
for I such that every element F in it is of the form F = λmτm, for some
λm ∈ k× and m = b

q ∈ Z+. Facts 1.11 implies (F, b) ∼ (τ, q) and thus T(E) =

(I, b) ∼ (I, b) ∩ (F, b) ∼ (I, b) ∩ (τ, q) ∼ (τ, q) = Rid(E).
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Case s ≥ 2 By the definition of the directrix, we can choose a system of
generators for I such that any element F in the system is homogeneous of
degree b with respect to (Y ). Further, F can be written as F =

∑
CA,dτdσA

+,

d ∈ Z≥0, A ∈ Z
s−1
≥0 , (σ+) := (σ2, . . . , σs). There exists at least one generator for

which there is some d0 ∈ Z+, (d0, p) = 1, and CA0,d0 �= 0, for some A0 ∈ Z
s−1
≥0 ;

otherwise (σ) would not determine the ridge and have to replace τ by τp.
We pick such a generator F and choose d0 ∈ Z+, (d0, p) = 1, to be

maximal for F . We put β := q · (d0 − 1). Using Lucas’ Theorem ([72] Section

XXI,
(∑κ

i=1 aip
i

∑κ
i=1 bipi

) ≡ ∏κ
i=1

(
ai

bi

)
mod p, for ai, bi ∈ {0, . . . , p − 1}), we have

DβF = d0 · τ ·
(

∑

A0

CA0,d0 σA0

+

)

+
∑

A

CA,d0−1 σA
+ ,

and there is at least one coefficient CA0,d0 �= 0. We pick one of these

A0 and apply the Hasse-Schmidt derivation D0 := ∂

∂(Y2···Ys)q∗A0 , where

(Y2 · · · Ys)
q∗A0

= Y
q2A0

2
2 · · · Y qsA0

s
s for A0 = (A0

2, . . . , A
0
s) ∈ Z

s−1
≥0 . Then we

obtain that

D0DβF = d0 · τ +
∑

A

CA,d0−1 ·
(

A

A0

)

· σA−A0

+ ,

which is homogeneous of order q. Since d0 is invertible in k, we can define

s1 := d0
−1 · ∑

A CA,d0−1 · (
A
A0

) · σA−A0

+ and get

d0
−1 · D0DβF = τ + s1 .

Therefore, we have (I, b) ∼ (I, b)∩ (τ +s1, q). Using Hasse-Schmidt derivations
and Facts 1.11, we can obtain that s+ is an additive polynomial. Without
loss of generality we may assume s+ = 0. (If this is not the case, we put
τnew := τ + s+ and replace τ by τnew; at the end this will not change the
result and this still defines the ridge). Therefore we have

T(E) = (I, b) ∼ (I, b) ∩ (τ, q) = (I, b) ∩ (σ1, q1). (4.3)

In the next step, we repeat the previous for τ = σ2. This provides

T(E) ∼ (I, b) ∩ (σ1, q1) ∩ (σ2, q2).

Note that we possibly modify σ2 to get s2 = 0 (analogous notation to above).
Facts 1.11 (1) and (4.3) allow us to keep the new system (σ) triangular. We
go on and eventually get



48 Page 28 of 39 B. Schober Results Math

T(E) ∼ (I, b) ∩
s⋂

i=1

(σi, qi) ∼
s⋂

i=1

(σi, qi) = Rid(E) ,

where the second equivalence follows by Facts 1.11(1) and (2) and the assump-
tion that (σ) defines the ridge of E. This shows the first assertion of the propo-
sition and the second is an immediate consequence. �
Remark 4.2. Originally, we used in our proof differential operators of the form
∂

∂τ for some additive polynomial τ . A more general variant of these were intro-
duced in Dietel’s thesis [38], for the special case mentioned see loc. cit. Example
(3.3.2). Although these are different from Hasse-Schmidt derivations in general,
they coincide under favorable conditions (e.g. if (σ) are in triangular form).

Let us recall condition (D): Let E be a pair on R and let (u, y) =
(u1, . . . , ue; y1, . . . , yr) be a regular system of parameters for R such that (y)
defines the directrix of E. Denote by (U, Y ) the corresponding elements in the
graded ring grM (R) ∼= k[U, Y ]. We say condition (D) holds for (E, R) if the
Hasse-Schmidt derivatives ∂

∂Y B : grM (R) → grM (R) lift to Hasse-Schmidt

derivatives ∂
∂yB : R → R on R with |B| < b.

Theorem 4.3. Let R be a regular local ring with maximal ideal M and residue
characteristic p = char(R/M) ≥ 0. Let E∼ be an idealistic exponent on R
represented by a pair E = (J, b). Let (u, y) be a regular system of parameters
for R such that the system (y) determines the directrix of E.

Suppose that Sing(E) �= ∅ and that condition (D) holds for (E, R). Then
we have that

E ∼ G ∩ D+, where (4.4)

(1) G =
s⋂

i=1

(gi, qi), for some elements (g1, . . . , gs) in R defining the ridge

Rid(E), and
(2) D+ = (I, c), for some ideal I ⊂ R and c ∈ Z+ with ordM (I) > c.

Note that (1) implies that qi = pdi , for di ∈ Z≥0 and we may suppose d1 ≤
d2 ≤ . . . ≤ ds.

Proof. In Theorem 4.1 we showed Rid(E) ∼ T(E). In the proof we only used
Hasse-Schmidt derivatives with respect to (Y ). Since (D) holds for (E, R), we
can apply the corresponding Hasse-Schmidt derivatives with respect to (y) on
E = (J, b) in R and obtain using the analogous arguments:

E ∼ G ∩ E ∼ G ∩ D+ ,

for G and D+ as in the assertion, where we use Facts 1.11(1) and (2) for the
second equivalence in order to eliminate the terms corresponding to the initial
part in E. �

It is worth to mention that the elements gi are of the form gi = ai + hi,
where ai is an additive homogeneous polynomial of degree qi = pdi and hi are
some terms of higher order or zero.
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Using the previous result, we can give the following criterion with which
we can test if it is possible to reduce the order lowering problem to one in lower
dimensions.

Procedure 4.4. Let the situation and notations be as in Theorem 4.3. We have

E ∼ (g1, p
d1) ∩ (g2, p

d2) ∩ . . . (gs, p
ds) ∩ D+ .

We apply Facts 1.11(1) for every gi which is a p-power and reduce the assigned
numbers as much as possible. We obtain that

E ∼ (f1, p
c1) ∩ (f2, p

c2) ∩ · · · (fs, p
cs) ∩ D+ ,

where none of the fi is a p-power and after a possible reordering we may assume
c1 ≤ · · · ≤ cs. We have the following cases:

(1) If c1 > 0 then there is no reduction to a (local) resolution problem of
lower dimension possible. Here we mean a reduction as in the proof for
resolution of singularities in characteristic zero.

(2) If c1 = · · · = ct = 0, for some t ≥ 1, then without loss of generality
fi = yi, for 1 ≤ i ≤ t and V (y1, . . . , yt) has maximal contact with E. By
Facts 1.11(5), we get that

E ∼ (〈y1, . . . , yt〉, 1) ∩ D(E; u, yt+1, . . . , yr; y1, · · · , yt)

and the (local) resolution problem reduces to one on V (y1, . . . , yt). Set
D := D(E; u, yt+1, . . . , yr; y1, · · · , yt). We have:
(a) If there exists a resolution for D (e.g., if the resolution problem for D

corresponds to one in dimension two [26], or if D is defined by bino-
mials [12,14,15]), then we can achieve an improvement of the sin-
gularity. More precisely, we can make ιX decrease below ιX(x0)t+ 1

2
,

where x0 is the closed point corresponding to M .
(b) Suppose we are not in case (a) and t = s. Then we repeat the reduc-

tion procedure for the companion pair associated to D (cf. Construc-
tion 2.2 and Examples 3.6 and 3.7).

(c) Suppose we are not in case (a) and t < s. Then there is no further
reduction (in the sense of characteristic zero) to a resolution problem
in lower dimension possible.

Of course, this is not a deep criterion and certainly known to experts.
Nevertheless this is more than just saying “apply Hironaka’s procedure for
characteristic zero and see if it works” and hopefully provides an easier access
for non-experts who want to determine explicitly a resolution of singularity for
special cases in positive or mixed characteristic.

As one can see from the above, one of the most interesting singularities to
study from the viewpoint of resolution of singularities are hypersurfaces given
by some element of the form

ype

+ h(u1, . . . , un, y) with h ∈ 〈u, y〉pe+1.

For e = 1, n = 3 and h(u, y) either of the form h(u, y) = f(u) or
h(u, y) = gp−1y + f(u), an explicit resolution of singularities is constructed by
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Cossart and Piltant [28] (over differentially finite fields) and [31] (arithmetic
case). Furthermore, they deduce from this the existence of a global birational
resolution of singularities in dimension three (see also [27] resp. [30] for the
reduction to these cases).

For n = 3, and e = 2, or e = 1 and h not of the above form, the
construction of an embedded resolution of singularities for the corresponding
hypersurfaces via blowing ups in regular centers remains a difficult open prob-
lem.

5. Embedded Resolution of Singularities for Determinantal
Varieties

In the final section we discuss how the results of this article provide the ground
for the explicit construction of a resolution of singularities for varieties defined
by minors of fixed size of a generic matrix. For an introduction to determinantal
varieties, see for example the book by Bruns and Vetter [20] or Harris’ book
[49], Lecture 9. We also refer to [21,22,89] for the discussion of a resolution of
singularities for these.

Definition 5.1. Fix positive integers m, n, r ∈ Z+ such that r ≤ m ≤ n. Let R0

be a regular ring (e.g. R0 a field) and let S = R0[xi,j |1 ≤ i ≤ m, 1 ≤ j ≤ n] be
the polynomial ring over R0 with m·n independent variables. Set Z := Spec(S)
and M := (xi,j)i,j be the generic m × n matrix defined by the variables. The
generic determinantal variety

Xm,n,r = V (Jm,n,r)

is defined as the subvariety of Z given by the r × r minors of M .
For subsets I ⊂ {1, . . . , m} and J ⊂ {1, . . . , n} with #I = #J = r, we

define

fI,J := det(MI,J), (5.1)

where MI,J denotes the r × r submatrix of M determined by I and J . By
definition,

Jm,n,r = 〈fI,J | I ⊂ {1, . . . , m}, J ⊂ {1, . . . , n} : #I = #J = r〉.
Clearly, each fI,J is homogeneous of degree r, every appearing monomial

is a product of r different variables, and every variable xi,j , with i ∈ I, j ∈ J ,
appears in fI,J . Further, (fI,J)I,J is a standard basis for Jm,n,r at the point
corresponding to 〈xi,j | i, j〉 (Definition 1.3), for this we may choose any total
ordering on the index set {(I, J) | I ⊂ {1, . . . , m}, J ⊂ {1, . . . , n} : #I = #J =
r}. Therefore, we associate the following pair to Xm,n,r,

Em,n,r :=
⋂

I,J

(fI,J , r) = (Jm,n,r, r).

We have Rid(Em,n,r) =
⋂m

i=1

⋂n
j=1(Xi,j , 1) = Dir(Em,n,r) and hence Theorem

4.3 provides.
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Lemma 5.2. We have that

Em,n,r ∼
m⋂

i=1

n⋂

j=1

(xi,j , 1) = Em,n,1.

In particular, Sing(Em,n,r) = V (xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n). Hence this is the
unique permissible center for Em,n,r of maximal dimension and after blowing
up the transform of Em,n,r is resolved..

Proof. Since Rid(Em,n,r) =
⋂m

i=1

⋂n
j=1(Xi,j , 1), we get (using the notation of

Theorem 4.3)

G =
m⋂

i=1

n⋂

j=1

(xi,j , 1) and Em,n,r ∼ Em,n,r ∩ G.

The desired equivalence follows by Facts 1.11(1) and (2). The remaining parts
are immediate consequences of the equivalence. �
Observation 5.3. Let us have a look at the case m = n = r. Then M is a
square matrix and Xn,n,n is defined by f := det(M). We blow up with center
V (xi,j | 1 ≤ i, j ≤ n). In the X1,1-chart the strict transform f ′ of f is given
by the following determinant

det

⎛

⎜
⎜
⎜
⎜
⎝

1 x′
1,2 · · · x′

1,n

x′
2,1 x′

2,2 · · · x′
2,n

...
...

. . .
...

x′
n,1 x′

n,2 · · · x′
n,n

⎞

⎟
⎟
⎟
⎟
⎠

= det

⎛

⎜
⎜
⎜
⎜
⎝

1 x′
1,2 · · · x′

1,n

0 x′
2,2 − x′

2,1x
′
1,2 · · · x′

2,n − x′
2,1x

′
1,n

...
...

. . .
...

0 x′
n,2 − x′

n,1x
′
1,2 · · · x′

n,n − x′
n,1x

′
1,n

⎞

⎟
⎟
⎟
⎟
⎠

= det

⎛

⎜
⎜
⎝

y2,2 · · · y2,n

...
. . .

...
yn,2 · · · yn,n

⎞

⎟
⎟
⎠ , where yi,j := x′

i,j − x′
i,1x

′
1,j , for 2 ≤ i, j ≤ n .

(Note that the situation in the other charts is analogous). As we see, f ′ is now
defined by a generic (n−1)×(n−1) matrix. In other words, the strict transform
X ′

n,n,n of Xn,n,n is isomorphic to Xn−1,n−1,n−1. The previous lemma provides
that the next center in this chart is V (yi,j | 2 ≤ i, j ≤ n).

We obtain that after n−1 blowing ups following this procedure the strict
transform in each chart will be resolved since it is isomorphic to X1,1,1, i.e., it
is given by a generic 1 × 1 matrix. But we have to convince us that this yields
a global resolution. Namely, we have to show that the centers of the blowing
ups in each chart glue together to a global center.

By definition, yi,j = x′
i,j − x′

i,1x
′
1,j and hence it is the strict transform of

x1,1xi,j −xi,1x1,j . More generally, 〈yi,j | 2 ≤ i, j ≤ n〉 is the strict transform of
the ideal defined by the 2 × 2 minors of M , 〈xa,bxi,j − xi,bxa,j | 1 ≤ a, b, i, j ≤
n〉 = Jn,n,2. Note that, for i �= 1, j �= 1, b �= 1 we have in the X1,1-chart

x′
1,bx

′
i,j − x′

i,bx
′
1,j = x′

1,b(yi,j + x′
i,1x

′
1,j)

−(yi,b + x′
i,1x

′
1,b)x

′
1,j = x′

1,byi,j − yi,bx
′
1,j

and hence this vanishes in V (yi,j | 2 ≤ i, j ≤ n).
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This implies that the upcoming centers after the first blowing up globally
glue together and hence define a global center. By iterating this argument we
obtain that at every step of the described procedure the centers glue together
and hence define a global center. In fact, the center of the i-th blowing up is
the strict transform of Xn,n,i which is defined by the i × i minors of M . This
shows that we get a global resolution of the singularities of Xn,n,n.

It turns out that these methods apply in the case for arbitrary r ≤ m ≤ n,
see below. Therefore, using the techniques developed in this article, we obtain
a slight generalization of Vainsencher’s result [89], who obtains a resolution via
blowing up determinantal ideals if R contains an algebraically closed field k.
(Indeed, his centers of the blowing ups are defined by the same ideals as our’s).

Theorem 5.4. Let m, n, r ∈ Z+ with r ≤ m ≤ n, let R0 be a regular ring, and let
M = (xi,j)i,j be a generic m×n matrix. The following sequence of blowing ups
provides an embedded resolution of singularities for the generic determinantal
variety Xm,n,r ⊂ Z = Spec(R0[xi,j ]),

Z =: Z0
π1←− Z1

π2←− · · · πr−1←− Zr−1,

where π� is the blowing up with center the strict transform of Xm,n,� in Z�−1,
1 ≤ � ≤ r − 1.

Proof. We prove the result by induction on r. For r = 1, there is nothing to
show since Xm,n,1 is regular. Suppose that r > 1 and that the statement holds
true for Xm,n,i if i < r. In particular, we obtain that each center of the above
sequence of blowing ups is regular.

Let i1 ∈ {1, . . . , m} and j1 ∈ {1, . . . , n}. Let N be the (m − 1) × (n − 1)
matrix that we obtain after eliminating the i1-row and the j1-th column in M ,
and then replacing xi,j by

yi,j := x′
i,j − x′

i,j1x
′
i1,j , for i �= i1 and j �= j1.

We claim that the strict transform of Xm,n,r in the chart Xi1,j1 �= 0
coincides with the generic determinantal variety Ym−1,n−1,r−1 that is defined
using the matrix N . By induction, we obtain then that the above sequence
resolves Xm,n,r and since the blowing ups are defined globally (cf. Observation
5.3), the result follows.

We prove the claim: Let (fI,J)(I,J) be the standard basis for Jm,n,r

defined in (5.1). (Recall that the strict transform of a standard basis generates
the strict transform of the corresponding ideal under a permissible blowing
up). If i1 ∈ I and j1 ∈ J , then the same computation as at the beginning of
Observation 5.3 applied for fI,J provides that

I := 〈f ′
I,J | i1 ∈ I, j1 ∈ J〉

coincides with the ideal defining Ym−1,n−1,r−1. By Lemma 5.2,
Sing(Ym−1,n−1,r−1) = Ym−1,n−1,1 and the same arguments as in Observa-
tion 5.3 provide that this is the transform X ′

m,n,2 of the 2 × 2 minors of M in
the present chart.
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Hence it remains to show that f ′
I,J ∈ I if i1 /∈ I or j1 /∈ J . Suppose

i1 /∈ I and j1 ∈ J . Without loss of generality, j1 is the first column of MI,J

(interchanging columns only modifies the sign of the determinant). Let I =
{k1, . . . , kr} and J = {j1, �2, . . . , �r}. Using the definition of yi,j , we get that

f ′
I,J = det

⎛

⎜
⎜
⎜
⎝

x′
k1,j1 x′

k1,�2 · · · x′
k1,�r

x′
k2,j1 x′

k2,�2 · · · x′
k2,�r

...
...

. . .
...

x′
kr,j1 x′

kr,�2 · · · x′
kr,�r

⎞

⎟
⎟
⎟
⎠

= det

⎛

⎜
⎜
⎜
⎝

x′
k1,j1 yk1,�2 + x′

k1,j1x
′
i1,�2 · · · yk1,�r

+ x′
k1,j1x

′
i1,�r

x′
k2,j1 yk2,�2 + x′

k2,j1x
′
i1,�2 · · · yk2,�r

+ x′
k2,j1x

′
i1,�r

...
...

. . .
...

x′
kr,j1 ykr,�2 + x′

kr,j1x
′
i1,�2 · · · ykr,�r

+ x′
kr,j1x

′
i1,�r

⎞

⎟
⎟
⎟
⎠

= det

⎛

⎜
⎜
⎜
⎝

x′
k1,j1 yk1,�2 · · · yk1,�r

x′
k2,j1 yk2,�2 · · · yk2,�r

...
...

. . .
...

x′
kr,j1 ykr,�2 · · · ykr,�r

⎞

⎟
⎟
⎟
⎠

∈ I.

In the last equality, we apply elementary column operations and in order to
see that the last element is contained in I, we expand the determinant with
respect to the first column. The arguments in the other cases are similar and
we leave the details to the reader. �

In general, a determinantal variety is not necessarily defined via a generic
matrix. One may allow arbitrary polynomial entries for M = (fi,j)i,j with
fi,j ∈ R0[x1, . . . , xN ] (R0 as before). For recent results studying these singu-
larities from various viewpoints (over a field of characteristic zero), we refer
to [19,41,43–45,48,80]. An interesting problem would be to investigate which
assumptions need to be imposed on R0 and the entries fi,j in order to con-
struct a characteristic-free embedded resolution for this type of singularities.
One new technical detail that one has to take care of is then the choice of a
standard basis for the defining ideal which has been immediate in the generic
case.
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