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Abstract. An inverse spectral problem for the convolution integro-
differential operator of fractional order α > 2 is studied. We show that
specification of one spectrum determines such operator uniquely indepen-
dently of particular value of α. The convolution kernel can be recovered
by solving a certain nonlinear equation.
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1. Introduction

Let Dα be the Riemann–Liouville fractional differential operator and M be
the convolution operator:

Mf(x) = (M ∗ f)(x) =

x∫

0

M(x − t)f(t)dt,

M ∈ L2(0, 1). We consider the inverse problem of recovering the integro-
differential fractional order operator:

L = Dα + MDα−1, α > 2, α /∈ N (1.1)

from given spectrum of the boundary value problem:

Ly = λy, Dα−ky(0) = 0, k = 2, [α] + 1, Dα−1y(1) = 0, (1.2)

where (and everywhere below) [α] denote an integer part of α.
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Inverse problems of spectral analysis consisting in recovering operators
from their spectral characteristics often appear in mathematics, mechanics,
physics and other branches of natural sciences and engineering. The great-
est success in inverse problem theory has been achieved for Sturm–Liouville
operators and afterwards for differential operators of an arbitrary (integer)
order.

Inverse problems for integro-differential operators were found to be es-
sentially more difficult. “Non-local” nature of such operators is insuperable
obstacle for classical methods of inverse problem theory. Sporadic results ob-
tained in this direction [3,5–7,9,10] do not form a comprehensive picture.

Most deep and nontrivial results were obtained in special (and important)
case of convolution integro-differential operators. In [2] (see also [1]) it was
shown that the Dirichlet spectrum of the operator:

Ly(x) = −y′′(x) +
∫ x

0

M(x − t)y′(t)dt

determines uniquely the kernel M(·), which can be recovered by solving some
nonlinear (uniquely solvable) equation. Moreover, similar result is true for con-
volution operators of any integer order, namely, specification of one spectrum
determines uniquely the operator:

Ly(x) = y(n)(x) +
∫ x

0

M(x − t)y(n−1)(t)dt.

On can notice that these results are in contrast with the results of classical
inverse problem theory for differential operators: it is well-known, for instance,
that specification of one (say, Dirichlet) spectrum of the Sturm–Liouville op-
erator does not determine the potential uniquely.

In this paper, we use some results of the author [4] to provide further
development of the method presented in [2]. We show that main results of [2]
can be, in general, extended to the fractional order case, namely, the fractional
order operator (1.1) is determined uniquely by specification of (one) spectrum
of the boundary value problem (1.2); the kernel M(·) can be recovered by
solving some nonlinear (uniquely solvable) equation.

2. Construction of the Transformation Operator

Let y(x, λ) be the solution of the following Cauchy problem:

Ly = λy, Dα−ky(0) = δk,1, k = 1, [α] + 1, (2.1)

where δj,k denote the Kroenecker delta.
It is clear that the spectrum of the problem (1.1)–(1.2) coincides with the

set of roots of the following characteristic function Δ(λ) := Dα−1y(1, λ). De-
fine ψ(x, λ) := Dα−1y(x, λ). Then Δ(λ) = ψ(1, λ). Let ỹ(x, λ) be the solution
of the “simplest” Cauchy problem:
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Dαy = λy, Dα−ky(0) = δk,1, k = 1, [α] + 1. (2.2)

Then for ŷ := y − ỹ one has:

Dαŷ − λŷ = −MDα−1y = Mψ.

Since Dα−kŷ(0) = 0, k = 1, [α] + 1 this yields:

ŷ = −Jα(E − λJα)−1Mψ,

where

Jf(x) :=
∫ x

0

f(t)dt

and Jα denote the Riemann–Liouville fractional integration operator. Acting
with the operator Dα−1 we obtain finally the following integral equation with
respect to ψ(x, λ):

ψ = −ΦλMψ + ϕ, (2.3)

where Φλ = (E − λJα)−1J , ϕ = Dα−1ỹ = (E − λJα)−11 or in more details:

ϕ(x, λ) =
∞∑

n=0

λnxnα

Γ(nα + 1)
, Φλf(x) =

x∫

0

ϕ(x − t, λ)f(t)dt.

We use the successive approximation method and obtain the solution of (2.3)
in the form:

ψ(x, λ) =
∞∑

n=0

(−1)nϕn(x, λ), ϕ0 = ϕ, ϕn+1 = ΦλMϕn.

Main technical tool for our further considerations is contained in the following
lemma [4].

Lemma 2.1. For x, y > 0, λ ∈ C the following relations hold:

ϕ
(
xωj , λ

)
= ϕ(x, λ), x > 0, j = −[α/2], [α/2], ω := exp

(
i
2π

α

)
,

ϕ(x, λ)ϕ(y, λ) =
1
α

[α/2]∑
j=−[α/2]

ϕ
(
x + ωjy, λ

)

+
∫ x

0

g(x − t, y)ϕ(t, λ)dt +
∫ y

0

g(y − t, x)ϕ(t, λ)dt,

where

g(x, y) = − sin απ

π
· xα−1yα

x2α − 2xαyα cos απ + y2α
.
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Using the assertion of Lemma 2.1 we obtain for ϕ1(x, λ), ϕ2(x, λ), . . .
successively the representations:

ϕn(x, λ) =
∫ x

0

Kn(x − t, t)ϕ(t, λ)dt, (2.4)

Kn(η, ξ) = θn(ξ)M∗n(η) +
n−1∑
ν=0

θν(ξ) (Anν ∗ M∗n) (η), (2.5)

where (and below) we use the notations:

f∗n := f ∗ f∗(n−1), f∗1 := f, θn(ξ) :=
1
n!

(
ξ

α

)n

= 1∗n

(
ξ

α

)
.

Coefficients Anν(η) in (2.5) can be calculated recursively as follows:

A10 = − 2
α

[α

2

]
+ g10 + g20, (2.6)

An+1,n = An,n−1 +
1
α

∑
0<|j|<α/2

ωj

1 − ωj
+ g20, (2.7)

An+1,ν = An,ν−1 +
1
α

∑
0<|j|<α/2

ωj

1 − ωj

(
θn−ν,j +

n−1∑
μ=ν

θμ−ν,j ∗ Anμ

)

+g2,n−ν +
n−1∑
μ=ν

g2,μ−ν ∗ Anμ, ν = 1, n − 1, (2.8)

An+1,0 = − 1
α

∑
0<|j|<α/2

(
θn,j +

n−1∑
μ=0

θμ,j ∗ Anμ

)

+g2n + g1n +
n−1∑
μ=0

(g2μ + g1μ) ∗ Anμ, (2.9)

where

g1ν(η) : =
∫ η

0

g(η − t, t)θν(t)dt, g2ν(η) :=
∫ η

0

g(t, η − t)θν(t)dt, (2.10)

θnj(ξ) : = θn

(
ξ

1 − ωj

)
. (2.11)

Observing that

g1ν(η) = γ1νθν(η), g2ν(η) = γ2νθν(η),

where the constants γ1ν , γ2ν are bounded as ν → ∞ and using (2.6)–(2.11)
one can deduce the estimate:

max
η∈(0,1)

|Anν(η)| ≤ Cn. (2.12)
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From (2.5) and (2.12) it follows that the series
∑∞

n=1(−1)nKn(η, ξ) converges
absolutely and uniformly on the simplex {η, ξ ≥ 0, η + ξ ≤ 1} and we obtain
the following result.

Theorem 2.1. The function ψ(x, λ) admits the integral representation:

ψ(x, λ) = ϕ(x, λ) +
∫ x

0

K(x − t, t)ϕ(t, λ)dt,

K(η, ξ) =
∞∑

n=1

(−1)n

(
θn(ξ)M∗n(η) +

n−1∑
ν=0

θν(ξ) (Anν ∗ M∗n) (η)

)
.

3. Inverse Problem

Let Δ̃(λ) = ϕ(1, λ) be a characteristic function of the boundary value problem
(1.2) with “simplest” operator L̃ = Dα. Since ϕ(t, λ) = E1/α

(
λt1/α; 1

)
one

can deduce the properties of ϕ(t, λ), Δ̃(λ) and the corresponding spectrum
from the well-known properties of Mittag–Leffler functions Ep(z;μ) and their
roots [8].

Lemma 3.1. The characteristic function Δ̃(λ) has infinite sequence {λ̃k}∞
k=1

of roots. All roots are simple and real. For k → ∞ the following asymptotics
hold:

λ̃k = ρ̃α
k , ρ̃k = exp

(
i
π

α

) π

sin(π/α)

(
k − 1

2

)
+ O(exp(−γk)),

where γ > 0.

Lemma 3.2. The following representation holds:

ϕ(t, λ) =
1
α

[α/2]∑
j=−[α/2]

exp(ρωjt) +
∫ ∞

0

g(t, x) exp(−ρx)dx, λ = ρα,Reρ > 0,

where g(·, ·) is the same is in Lemma 2.1.

Now we consider the characteristic function Δ(λ) of general boundary
value problem (1.2). From Theorem 2.1 it follows the representation:

Δ(λ) = Δ̃(λ) +
∫ 1

0

w(1 − t)ϕ(t, λ)dt, (3.1)

where w(t) = K(t, 1−t) ∈ L2(0, 1). Using Lemmas 3.1, 3.2, representation (3.1)
and repeating standard arguments based on the Rouche theorem we conclude
that the characteristic function Δ(λ) has infinitely many roots and these roots
(being counted with their multiplicities) {λk}∞

k=1 admits the asymptotics:

λk = ρα
k , ρk = ρ̃k + o(1). (3.2)
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Moreover, one can obtain more detailed result by substituting

λk =
(
zk exp

(
i
π

α

))α

to the equation Δ(λk) = 0 and using the asymptotics (as k → ∞):

zk =
π

s

(
k − 1

2

)
+ o(1), Δ(λk) =

2
α

exp(czk) cos(szk) + O
(
exp(czk)k−1/2

)
,

c : = cos
(π

α

)
, s := sin

(π

α

)

that follow from (3.1), (3.2) and Lemmas 3.1, 3.2. On this way we arrive at
the following result.

Theorem 3.1. Boundary value problem (1.2) has infinite sequence {λk}∞
k=1 of

eigenvalues. The eigenvalues have the form:

λk = ρα
k , ρk = ρ̃k + ρ̂k, k−1ρ̂k ∈ l1.

Now we can give precise formulation of the inverse problem we consider.

Inverse Problem 1 Given {λk}∞
k=1, where the eigenvalues λk are counted with

their algebraic multiplicities. Find M(η), η ∈ (0, 1).
The first step in our solution of the inverse problem consists in recovering

the characteristic function Δ(λ) from given spectrum {λk}∞
k=1. The Hadamard

theorem implies:

Δ(λ) = Cλr
∞∏

k=r+1

(
1 − λ

λk

)
. (3.3)

Since Δ̃(0) = ϕ(1, 0) = 1 the Hadamard theorem for Δ̃(λ) reads as follows:

Δ̃(λ) =
∞∏

k=1

(
1 − λ

λ̃k

)
. (3.4)

In order to find the constant C in (3.3) we notice that by virtue of (3.1) and
Lemmas 3.1, 3.2 we have:

lim
λ→+∞

Δ(λ)
Δ̃(λ)

= 1.

On the other hand, from Theorem 3.1 it follows that the infinite product∏∞
k=r+1(λ̃k/λk) converges and

lim
λ→+∞

∞∏
k=r+1

λ − λk

λ − λ̃k

= 1.

This yields:

C =
r∏

k=1

(−1
λ̃k

) ∞∏
k=r+1

(
λk

λ̃k

)
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and finally we obtain the representation:

Δ(λ) =
∞∏

k=1

λk − λ

λ̃k

. (3.5)

Our next observation is that the function w(t) := K(t, 1−t) is determined
uniquely via (3.1) once the characteristic function Δ(λ) has been calculated
since the system {ϕ(t, λ)}λ∈C is complete in L2(0, 1).

Further, Theorem 2.1 yields:

w(t) = K(t, 1 − t) = −θ1(1 − t)M(t) − (A10 ∗ M)(t)

+
∞∑

n=2

(−1)n

(
θn(1 − t)M∗n(t) +

n−1∑
ν=0

θν(1 − t) (Anν ∗ M∗n) (t)

)
.

We rewrite this in the following form:

M(t) = − α

1 − t
w(t) − A10

∫ t

0

α

1 − t
M(τ)dτ

+
∞∑

n=2

(−1)n

{
αθn(1 − t)

1 − t
M∗n(t)

+
∫ t

0

(
n−1∑
ν=0

αθν(1 − t)
1 − t

Anν(t − τ)

)
M∗n(τ)dτ

}
(3.6)

and consider (3.6) as a nonlinear equation w.r.t. desired function M(·).
Theorem 3.2. For any fixed T ∈ (0, 1) equation (3.6) is uniquely solvable in
L2(0, T ).

Theorem 3.2 follows immediately from estimates (2.12) and the general
lemma below that can be obtained by repeating the arguments from the proof
of Theorem 4 in [1].

Lemma 3.3. Consider the integral equation:

y(t) = f(t) +
∞∑

n=1

(
fn(t)y∗n(t) +

∫ t

0

Fn(t, τ)y∗n(τ)dτ

)
,

where

‖fn‖L2(0,T ) ≤ Cn, ‖Fn‖L2((0,T )×(0,T )) ≤ Cn.

Suppose that f1(t) ≡ 0. Then for any function f ∈ L2(0, T ) the equation has
a unique solution in L2(0, T ).

Thus, we arrive at the following main result.

Theorem 3.2. Specification of the spectrum {λk}∞
k=1 of the boundary value

problem (1.2) determines uniquely operator (1.1). The kernel M(·) can be re-
covered by making the following steps:
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1) Calculate Δ(·) via (3.5).
2) Find w(·) from (3.1).
3) Find M(·) by solving main Eq. (3.6).
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