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Abstract. As is known, if f € C?[0,1], then, for the Bernstein operator

B,,, there holds
lim n(B.f(x) - f(z)) = 21D prg

n—oo 2

uniformly on [0, 1]. We characterize the rate of this convergence in terms
of K-functionals and moduli of smoothness.
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1. Main Results

The Bernstein polynomial of degree n € N of f € C[0, 1] is defined for = € [0, 1]
by

Bufe) =308 () pus@), o) = () eH0

A quite well known result due to Voronovskaya [23] (or see e.g. [8, p. 307], or
[20, p. 22]) states that if f € C2[0,1], then

lim n(Buf (@) - f(a)) = 0=

n—0o0 2

f(x)
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uniformly on [0, 1]. Our goal is to estimate the rate of this convergence. To
this purpose, we introduce the linear operator

Dy f(x) :=n(Bnf(x) — f(x))
and the Sobolev-type function spaces

W (p)[0,1] := {f € C[0,1] : f € ACT71(0,1), ™ f™) € Lo[0,1]},

loc

where p(x) = \/x(1 — ). For f € W2 (¢)[0,1] we set Df(z) := @f”(w).
We denote the Loe-norm on [0,1] by || o ||, and | o ||; is Loo-norm on
the interval J. By ¢ we denote absolute positive constants, not necessarily the
same at each occurrence.
It is known that (see [9, Lemma 8.3])

which can be written in the form

¢
|Dnf —Df]| < mllwgf(?’)ll-

1 c .
Buf —f =5~ e f| < Wll@"f@)\l, (1.1)

We will show, assuming a higher degree of smoothness, that

1
’an_ f_ %902]?”

< S (IFOU+ ' DN) e Whie)D.1,
that is,
1Duf = DAl < = (IO + o' 701 -

Let us note that if f € W2 ()[0,1], then ?f" ©?>f®) € L, [0,1] (see
Lemma 2.2(a) below). That slightly improves the estimate

|5t - 1= 5o < 2 (N4 1501) . £ el

established in [16] (see also [15]).
To state our main results we will use the K-functionals

Kop(Fthuoei=  inf - {[w(F = Gl + tlug*G"l)}

where w is a weight on (0, 1), and

K(Ft) = i {F D +t( 298| + 4(4>>}.
(F.t) g€W4I%g0)[01 [ qll 161l + Nl g™ |l

We establish the following characterization of the rate of approximation
of Df by means of D, f.
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Theorem 1.1. For all f € W2 (¢)[0,1] and all n € N there holds
D, = A1 < eRDfn) < (Kol e + 1271 . (12)
Conversely, for all f € W2 (¢)[0,1] and all k,n € N there holds
Koo ("0 )p2.00 < 2| Dif = Df|
ot Ko (f K D+ S I (1)
The above two estimates can also be written in the form

B0~ 1= 7| < £ RO

c _ Cc
< SR n e+ S I (1)

and
c

_ 1
EKQ,LP( ”an 1)502700 S 2 ”ka_ f - ﬁ(prN

c —1 c 2
+5K2,g&(f//7k‘ )go{oo"’%”@ fHH' (15)

We will refer to (1.2) and (1.4) as direct Voronovskaya inequalities, and to (1.3)
and (1.5) as weak converse Voronovskaya inequalities.!

Similar direct point-wise estimates were established in [14, Theorem 3.2]
and [22, Theorem 2] ([14] contains an overview of other related results). The
assumptions on the functions made there are more restrictive. However, the
first of these results is very general and both give explicit values to the absolute
constant.

Remark 1.2. Since the quantities D), f —Df and Ky ,(f",t),2  are invariant
to translations of f by a quadratic polynomial, the relations above directly
imply the following slight improvement:

1Duf = DAl < ¢ (Kao1on ) gn e+ - Bl
and
Ko o0 ) 0 < 211Dif = D
b (£ Rl )+ 2 o).

where Eo(F )2 00 = infacr [[@*(F — )|

From Theorem 1.1 we shall derive the following equivalence relation.

1 The term “inverse Voronovskaya theorem” is also used for a different type of results (see
(1,4]).
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Corollary 1.3. Let f € W2 (¢)[0,1] and 0 < a < 1. Then
|Dnf =Df|=0(n"%) <= KQ,W(f”>t)ap2,oo = O(t*).
Bernstein [6] proved that if f € C?7[0, 1], then

s (51062 -5 (o) T ) <o

uniformly on [0,1] (see also [21]). A quantitative estimate of this convergence
for positive linear operators on C[0, 1] was established by Gonska [14] (see also
2,3,13)).

Setting r = 2 above we have for f € C%[0,1] (see (2.3) below)

lim n(D, f(z) - Df(x)) = D' f () (1.6)
uniformly on [0, 1], where

1 —2x)¢? .
D' f(z) := % FO(2) + FD ().
This shows that the operator D,, (restricted to C*[0, 1]) is saturated, as its sat-
uration order is n~! and its trivial class is the set of the algebraic polynomials
of degree at most 2.

We will establish the following quantitative estimate of the convergence
n (1.6).

Theorem 1.4. For all f € W2 (¢)[0,1] and all n € N there holds

Instead of K, (F,t),r o0 one can use the weighted Ditzian-Totik modu-
lus of smoothness w? (F,t),r o, defined in [10, Chapter 6], or its modification
wy . (F,t)so, given in [12, Chapter 3, Section 10] (see also [17-19]). Both moduli

are equivalent to Ks ,(F,t?),2 o. More precisely, [10, Theorem 6.1.1] states
WL (Fit)pr o0 < Ko o(Fy 1) gr 00 < cwl(Fyt)pros, 0 <t < tg,

= N 5 =

3¢t (x)
Al

C —
< E Ky (10,0 Y0+ 5 47O

with some ¢y > 0; and [17, Theorem 2.7] states that
¢wE (Fit)oo < Ko p(Fit?)pr oo < cws (Fit)os, 0<t<1. (1.7)

In this regard, the weighted Ditzian-Totik main-part modulus of smooth-
ness allows us to restate the characterization in Corollary 1.3 in a simpler form.
Corollary 1.3 and [10, (6.2.6) and (6.2.10)] yield

Corollary 1.5. Let f € W2 ()[0,1] and 0 < a < 1. Then
IDnf =Dl =0(n™) = [l9*Af,f" lj2nz,1-202) = O(h*?),
where A7 ) F(x) = F(x+hp(x)) —2F (2) + F(z — ho(x)), © € [2h%,1-217].
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Let us also note that (1.2), [17, Theorem 7.1] and (1.7) imply (1.1).

We refer the reader to the new monograph by Bustamante [7], which
includes, besides the classical, also the most recent results on the Bernstein
polynomials.

The contents of the paper are organized as follows. In Sect. 2 we recall
several pertinent properties of the Bernstein operator and establish Jackson,
Bernstein, and Voronovskaya-type inequalities concerning D,,. Then, in the
next and last section, we present proofs of Theorems 1.1 and 1.4 and of Corol-
lary 1.3.

2. Basic Properties of D,,

First, we recall several basic properties of the Bernstein operators. Direct com-
putation yields the following formula for the derivatives of the polynomials
Pk, K =0,...,n (see e.g. [8, Chapter 10, (2.1)]):

Pi(2) = 972 (2)(k = na)pn i (). (2.1)

We will use the quantities

n

Te(z) := Z(k‘ —nx) poi(z).

k=0
It is known (see [8, Chapter 10, Theorem 1.1]) that
Tho(x) = Z tep(2) (np*(2))”, €N, (2.2)
1<p<e/2

where t; ,(x) are polynomials, whose coefficients are independent of n.
In particular (see e.g. [8, p. 304] and [20, p. 14]),

Tho(z) =1, Tui(z)=0, T,a(z)=np*(z),
Ths(e) = (1= 22)ng*(x), Tpa(z) = 3n’p"(2) +ne?(2)(1 - 60°(2)).
(2.3)
The identity (2.2) implies
ne?(z), ng?®(z) < 1,
05 Tnanle) < ¢ { (ng?@)™ . ng(x) > 1. 24)

Then by Cauchy’s inequality and the identity Y ;_, pnx(2z) = 1 we have

- 1, ne?(z) < 1,
|k —na|"ppi(r) < c /2 (2.5)
;;) (n?(@))™", ng?(z) = 1.

After these preliminaries, we proceed to the basic properties of D,,.
First, we note that the operator D,, is bounded in the following sense.
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Proposition 2.1. For all f € WZ(¢)[0,1] and all n € N there holds
I1DnfIl < 2[DF-
Proof. As is known (see e.g. [9, p. 87]),
1
I1Baf ~ £ < = 62F"].
Hence the assertion immediately follows. U

Next, we will establish a Jackson-type estimate. Before that we make a
technical observation.

Lemma 2.2. (a) If g € W (9)[0,1], then ©%g",©*g®) € Lo,[0,1], as moreover
Ie29@1 < e (20"l + ' 1) (2.6)
b) If g € W$ 0,1], then ¢*g®, *¢®) € L 0,1], as moreover
o \P ¥ ¥ ¥
291l < e (le*g 1l + 9] (2.7)
and
It @1l < e (le*g 1l + @) (2.8)
Proof. To prove (a), we first apply [11, Proposition 2.1] with p = co, w; = ¢?,
wy = ¢* j =2 and m = 4 and thus get p?¢” € Ly.[0,1]. Again in virtue of
[11, Proposition 2.1] with p = 0o, w1 = 2, wy = ¢, j =1, m =2, and ¢” in
place of g, we have ¢2¢g®) € Lo[0,1] and (2.6).
Similarly, (b) follows from [11, Proposition 2.1] with p = oo, wy = 20U+,
=% j=0,1, m =2, and ¢¥ in place of g. O
Proposition 2.3. For all g € W ()[0,1] and all n € N there holds
c
1Dng = Dgll < = (1129 @1 + g 1)

Proof. First, we note that in virtue of Lemma 2.2(a) we have ¢2g”, ©%g®) €
L [0,1] too.
Applying Taylor’s formula, we have for z € (0, 1)

O
+(1),<f;—a?> ®) (z +é/k/n( —v) 9 (v) dv.
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Multiplying both sides by py, x(z), summing with respect to k and using the
identities (2.3) we obtain

[Dng(x) — Dyg(x)]

n(Bug(x) — g()) - %¢2(x>gff<x>

% (4 / Mk -
6n Z pn k n v g (U) dU

St [ (E-0) i

k=0

1 n
< —le*g® N+ <lle*g™|
n 6

‘We will show that

Obviously, it is enough to prove it for 0 < x < 1/2. We consider two cases.
Case 1. 1/n <z <1/2.

Then p?(x) > 1/2n and by using (for v between z and k/n) the inequality

[10, p. 141]

n E )2 n
e < Smatargl [ (o)
- Sf;(fﬂ) épn’k(z) <fl - m>4
. s@“;(:v) {3@;(33) LA 6@1(;))902(:6)} <<

Case 2. 0 <z < 1/n.
Analogously to [9, Lemma 8.3], we will estimate the terms in the sum of R,,(x)
separately for £k = 0,1 and k£ > 2. We have for k =0

v3 dv

poalo) [t rao = -ap [ o

x 21_ n—2
<(1—x)”_2/ vdv:M < °.
0
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For k =1 and n > 2 we have

pus (@) / o (; - v>3g04(v) dv

Un (L _ )3
:’I’Ll‘(l—l‘)n_l/ (n U) dv

2 1/n (1 3d
<nz(l—z)" ! <1 - 1) / () dv < <.

Trivially, for n = k = 1 we have

' ! — v 3 v
) [0t [T
v

For k > 2 and n > 3 we have
n k/n k 3
an,k(x)/ <n - v) o *(v)dv
k=2 *
<cx_2ip k(m)(k x)4<cx_2ip k(m)<k)4
= " e "

n—2

4
-2 n! k+2 nek—2 (k42
- 1—
“ ];)(k:+2)!(n—k—2)!x (1-=2) ( n
n—2 2
K ) P _ o
< _ _ = — | < —
_ckzzopn 2.1() (n?) c(m to o) S

where at the last but one estimate we have taken into account (2.3). The case
n =k = 2 is again trivial. The proof is complete. O

To prove the weak converse inequality in Theorem 1.1 we will use the
operator A,, defined for f € W2 (¢)[0,1] by

x

Aufla) =20 [ (@000 2 O1B.S(0) - S(O)dr

1/2
It is easy to see that A,, is well-defined. We show that in the lemma below.

Lemma 2.4. If f € W2 (9)[0,1], then ¢~ 2.(B,f — f) € L1[0,1].

Proof. Clearly, o= 2(x)[B, f(x)— f(x)] is continuous on (0, 1). To complete the

proof of the lemma, we will show that it is dominated by a summable function

on [0,1]. To this end, we expand f(t) at « € (0,1) by Taylor’s formula to get
¢

f(t)=f(x)+f’(x)(t—af)+/ (t —u)f"(u)du, te][0,1],

x
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and apply B, with respect to ¢ to both sides of this identity to arrive at

k/n
By f(x +ank / (7]2 u> ' (u) du.

Here we have used that Tn,o(sc) =1and T, 1(x) = 0 (see (2.3)).
Consequently,

Baf@) 50 =Y pste) [ (E-u)rwa. 9

k=0 x
Fork=1,...,n—1,n > 2, we have ¢ ?p, ; € C[0,1] and

k/n k . k/n du
[ Gl < |7
< llnn — Inz — In(L - 2)] [ ¢*£"].

For k =0 and k& = n, we have, respectively,

”"0 / wf"(u \ =)o

<

ll? £

and
Pnn(T) / ! 1 ‘ "
: 1—u)f"(u)du| < .
s ),
Hence the assertion of the lemma follows. O

To verify the converse inequality we need two inequalities concerning the
derivatives of A, f. The first one is a Bernstein-type inequality.

Proposition 2.5. For all f € W2 (¢)[0,1] and n € N we have A,, f € AC} (0, 1)
and

e (Anf) D) < en|l® "]

Proof. Clearly, if f € W2 ()[0,1], then A, f € AC} (0,1). To establish the
inequality, we first evaluate the fourth derivative of An f(z) for x € (0,1).
Using the representation (2.9), we get

(A, 1) () = 20 Z (p”k )I/j/n (fL —u) () du — mTM(m)

a.e. in (0,1). Takmg into account that T, 1(x) = 0, f”(x) is finite almost
everywhere, and that the functions (A,f)® (z) and the sum on the right
above are continuous on (0, 1), we deduce that

(A, ) () = 20 Z(p"’“ )//:/n <Su> ) du, =€ (0,1).

(2.10)
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We differentiate once more and arrive at
n " ek/n
Pk () k "
AW =23 (P ) [ (R ) g
! kz:(:) () ) J. \n

—onf"(z) i (p;j'(g))/ <fL - x) ae. in (0,1).  (2.11)

k=0

Let us consider the second sum on the right above. We calculate the derivative

pai(@)\ 221 ) 4 Po(@)
(@Q(I)) = i) PO T gy

and apply the identities (2.1), T}, 1(x) = 0 and T, 2(z) = ne?(z) (see (2.3)),

to arrive at
> () G-o) - s

Consequently, by (2.11) we get

N6 =00 () [ (5 )
—0 @
)

—2n¢?(z) f" (=

Thus to complete the proof of the proposition, it remains to show that

B () [ (5) o

for x € (0,1). We use that (see e.g. [11, Lemma 4.2])

Rk k °
[ (o) o < oo (52 ) 1

So, to verify (2.12), it suffices to establish the estimate

¢*(z) i (p”’k(:”))H‘ (k - x>2 <ec, xe(0,1). (2.13)

<cle* £l (2.12)

= |\ ¥*(z) n

First, let ng?(z) > 1. By means of (2.1) we represent the second deriva-
tive of ¢~ 2(x)py k(z) in the form

() - (%

)pn,ku)
1—2x

ey e+ e

(k— nm)zpmk(x).
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Consequently,

and (2.13) for np?(z) > 1 follows from (2.5).
Now, let np?(z) < 1. Since

51— ) B = (= 1)k — 2)a* - =
=2(k = 1)(n — k= a2 (1 —a)7h2
+(n—k—1)( —k—2)zF (1 — )RS,
in order to verify (2.13), it is enough to show for 2 € (0,1) that

— (n _ —NF 301 — )R (ke — )2 o
5 () = 00 2530 = )4 - ma)? < S

k=0 %) g;)
~ (7 D — k- DR 2(1 — 252 (% — na)2 cn?
(7 nek—1n—k—22F (1 — )" k3 (k — nz)2 cn?
kZ:o <k)( k=1)n-k=2) (1-2) (k ) < 22(2)

11

We will prove the first of these inequalities. The proof of the other two is quite
similar. We directly see that the terms for k = 0 and &k = n are estimated

above by cn?¢~2(z). Hence it remains to show

k=3
where n > 4.

ni (Z) (k—1)(k —2)z" 73 (1 — )" (k — na)? < en, (2.14)

We change the summation index and use that n/[¢(n — £)] < ¢ for £ =

1,...,n — 1, to deduce
n—1
3 <’;) (k—1)(k — 2)2"3(1 — )" *1(k — na)?
k=3

= i (k Z 3) (k4 1)(k+2)z*(1 — )" 4%k + 3 — nz)?

k=0
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=cn® Z_:pn_47k(:c) [(k—(n—4)z)+ (3 - 43:)]2

=cn®[Thoap(2) + 23 —42) T a1 (z) + (3 — 42)°Tp_ao(z)] < en?,

where at the last step we have taken into account (2.3). Thus (2.14) is verified.
This completes the proof of (2.13) for np?(x) < 1, and the proof of the
proposition. O

Next, we will estimate [¢*(A,g)® | using higher order derivatives. In
preparation, we establish the following auxiliary result.

Lemma 2.6. If f € C3[0,1], then the second derivative of o= %(z)[Bnf(x) —
f(x)] is continuous and bounded on (0,1).

Proof. Clearly, ¢=2(z)[B, f(x) — f(x)] is twice continuously differentiable on
(0,1). By (2.10) we have

an(l’) * f(x) ' & pn,k(‘r) ' k/m k 7
(5m) S 080) [ Gw)rwm seon
The summands on the right above for k = 1,...,n — 1, n > 2, are in C'[0, 1].
Also, it is clear that the first derivatives of the terms with k = 0 and k = n are
continuous on (0,1). It remains to show that they are bounded on (0,1). We
will demonstrate this only for & = 0; the case of k = n is treated in a similar
way.
For k = 0 we have

(“0 )(/ uf"(u —m_1ﬂ“j?WQAﬂu%wdu
_W/Ozuf”(u)du

2

Fi(z) := é/o uf(u)du, Fy(z):= %/0 wf” (u) du

For the derivative of Fy(x) we have

ﬂmzﬂw—lézﬂww

22
i/m wf” (u) du
x?

then Fj(z) is bounded on (0, 1).
To show this for Fy(z), we integrate by parts and get

Fao) = gz | F0d0) = 5770 - 55 [0 du

222

Set

and since

1
SQHJHIH’ xE(O,l),
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So, it remains to show that the derivative of the function
1 x
/ w? O (u) du
0

z2
is bounded on (0, 1). This is verified again straightforwardly since we have

2 /(f uw? O (u) du

3

Fg(x) =

Fi(z) = f®(x)

and

x3

1
<P, @ e ),

L% 5m
/Ouf (u) du

Proposition 2.7. For all g € C*[0,1] and all n € N we have
94 (An) @ < ¢ (Il + g @) -

Proof. In virtue of Lemma 2.6 we have A,g € AC®[0,1]. To establish the
inequality, we apply [11, Proposition 2.4, (2.13)] with p =00, r =1, s = 2,
w = ¢? and A,g in place of g, and get (note that D = 2D)

lo*(Ang) Wl < ¢ [ID*(Ang) || = ¢ ll9?(Dng)" |-

Finally, we get by means of [11, Proposition 4.3, (4.17)] with p = oo, s = 2
and w = 2, the inequality

I¢2(Dng)"ll = nllp*(Bug — )| < ¢ (%" + "1l

We proceed to a Voronovskaya-type estimate for the operator D,,.

Proposition 2.8. For all g € W5 (¢)[0,1] and all n € N there holds

1
HDng ~Dg— Dy

&
< = (Ie* @1 + 159 @11)
n

Proof. First, we note that in virtue of Lemma 2.2 we have ¢?g”, p?¢g(3), p2g(4),
©*g®) € Lo,[0,1] too.

Again we consider two cases.

Let np?(z) > 1. We expand g(t) at = € (0,1) by Taylor’s formula to get
for t € [0, 1]

5

90) = >0 @S 5 [ - 0O )

|
i=0 o!
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We apply B, to both sides of the above identity, take into account (2.3),
multiply by n, and rearrange the terms to get

1 — 6¢%(x)
L0 2wy )
1
Bint Tn,5($)9(5) ()

_|_
n k/n 5
n k
i N (6)
—|—5! kgopmk(z)/m <n u) 9" (u) du.

Dag(e) ~ Dglw) - Dgla) =

By (2.2) with £ =5 and (2.8) we have

To5(0)9 ()| < elng?(@)? |9 (@)| < en? (9@ + 6% @) . (2.16)

Further, we use that (see e.g. [11, Lemma 4.2])

k/n k 5 c k 6
L ®) () dul < K 6,(6)|
/ (n “) A <n x) el

Therefore, taking into account (2.4) with m = 3, we have

épn,k(x) /:/n (i - u>59(6)(u) du

&
S oLl B | (27)

Combining (2.15), (2.7), (2.16) and (2.17), we arrive at the inequality

C
<= (||<p49(4)H + ||<P69(6)||) :
n

Daste) ~ Do) - - D'g(o)
for np?(z) > 1.

Now, let np?(x) < 1. Using symmetry, we can also assume that 0 < z <
1/2. Then = < 2/n. In this case we start with the expansion

H=3g0@t=D 1 / (=g () du, te 0,1
i=0 z

7! 4!

We apply B, to both sides of the above identity, take into account (2.3),
multiply by n, and rearrange the terms to get

— 60%(x
L8 )y @ )

n k/n 4
n k
- T (5)
+4!’;Jpn,k(x)A (n U) 9 (u) du.

(2.18)

Dag(e) = Dgla) — - D'g(x) =
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In order to estimate the sum on the right above, we consider separately
the terms with £k =0 and k£ = 1.

For k = 0 we have, bearing in mind that 0 < x < 1/2 and « < 2/n,

’(1 —z)" /033 utg® (u) du

T 2
< [ T dulete®l < St
—Jo (1—u)? —nd

Similarly, for k = 1 and n > 2 we have

1/n 1 4
na(l —z)" ! / ( - u) g (u) du
. n

1/n
cr du
< - 4.,(5)
<3 /l 21— u)? le=g™ |l
1/n
cr du 4 (5 c 4 (5
< /x —|lle*g®l < — llp*g™.

Straightforward calculations yield for n = k = 1 the estimate

1 2
1—u
<o [ BT g ptg®)
" u

1
du .
<a / G tg®
" u

Thus we have established that

poste) | . (3- u)4g<5> (u) du

< |lp*g®.

< Zlp'g®), k=01, neN.
n n

(2.19)

In order to estimate the remaining part of the sum on the right of (2.18),
we take into account that (see e.g. [11, Lemma 4.2])

k/n 4
/ <k - u) g (u) du
. n

Hence, for n > 2, we have

épn,k(w) /w o (: - u>4g(5) (u) du

C - 3
< ——— > pur(@)lk—nxptg®].
i) 2 Prsl@lk = naf it

5
otg®]l.

= ot (z)

‘k
——z
n
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We estimate the sum on the right. We have

n
S puila)lk — naf
k=2

n—2 '
=3 From PPH2(1 = )" 2k 4 2 — nal?
k=0

MW —k—2)!

< n2a? an_gk(x) [(k—(n—2)z)+2(1— J})|5
k=0

n—2

gcn2m22pn72 k() [|/€ (n 2)x|5+1]
k=0

< cnzxz,

as at the last step we have taken into account (2.5).
Thus we have established that

n k/n k 4
an,k(x) / <n — u) 9(5) (u) du| <
k=2 x

Combining (2.18), (2.19), (2.20), (2.

7) an
C
< = (g @l + %9 @1)

Hso 9O (2.20)

d (2.8), we arrive at
1
Daste) ~ Dylo) - & D'g(o

for np?(z) < 1.
The proof of the proposition is completed. O

3. Proofs of the Main Theorems
Proof of Theorem 1.1. The direct inequality
|Dnf = Df|| < cK(Df,n™") (3.1)

follows from Propositions 2.1 and 2.3 and Lemma 2.2(a) by means of a standard
technique. For any g € W2 ()[0, 1] we have

1921 =11 £ 10 =)+ 102 =l 20 =)
<c[Ipr = 2ol + 1 (Il + "9 1)

We take the infimum on ¢ and arrive at (3.1).
Next, we observe that (2.6) directly implies for g € C*[0,1] and 0 < ¢ < 1

Ef,6) <[l = g+t (12" + g ) |

<c(lIe?(” = g+ tle*g @) + et * 11
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Taking the infimum on g, we get

Eofn<e it LI ")l +tleta® )} + et 2]
geC40,1]

< e (Kap(f" 1)+t 1)

as, to get the last estimate, we have applied [11, Lemma 5.1] with p = oo,

r=1,s=2and w = 2.

That completes the proof of (1.2). We proceed to the weak converse one
given in (1.3).
For any g € C*[0, 1] we have

Koo (7o < 192177 = (A I+ 6 (A1)
< 2| Drf - Df|l
2 (I (Al = )@l + e (k) - (32)
We estimate the second term by Proposition 2.5 to get
lo* (A(f = )N < ek llK*(f" = g")]- (3-3)

For the third term, by means of Proposition 2.7, we derive the estimate

le* (k)@ < e (29”1l + 19 21))

< (I(" = g+ g @l + 621 -
Now, combining (3.2)—(3.4), we arrive at

Ko p(f".n ") < 2|Dyf — DF|
+C(|w( SVOIREAL 9(4)”) D

(3.4)

Consequently,

Kool "0V < 21D1f — DF |
k. 1
ve(E e L1207 =g+ IO+ ).

n geC+[0,1]

Now, (1.3) follows from [11, Lemma 5.1] with p = oo, r = 1, s = 2 and
2

w = . ]
Proof of Corollary 1.3. If Ks ,(f",t),2,00 = O(t*) for some a € (0,1], then
(1.2) implies || D, f — Df]| = O(n~2).
To establish the converse implication, we use a standard method based
on the Berens-Lorentz lemma (see [5], or e.g. [8, Chapter 10, Lemma 5.2]).
Let || Dy f — Df]| = O(n~®) for some a € (0,1). Then (1.3) implies

_ _ k _ c
Koo 7" n 7)o 0 < Cpb™ 4 e K (£ K g SIS (35)
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where C'y is a positive constant that generally may depend on f, but not on k
or n.

Let 0 < s <t < 1. Set n:=]1/s[ and k :=]1/¢t[, where |y[ denotes the
smallest integer not less than the positive real . Then

1<sn<2, 1<tk<2. (3.6)

Using (3.5), (3.6) and the subadditivity of the K-functional on its second
argument, that is,

0
KQ,Lp(Fa 51)ga2,oo < max {1, 51} KQ,Lp(Fa 52)(/;2,007
2

we arrive at the estimate

KQ,Lp(f//a S)gaz,oo < 2K2,<p(f//a nil)apz,oo
S
< Cpt™ 4 o5 Koo (' 8) 2,00 + 05 [[97 7],
where, to recall, the constant ¢ is independent of f, s and ¢, and the constant

Cr may depend on f, but is independent of s and t.
Consequently,

Ko (£, 8)gt 00+ 5 |0°
S
< Cpte + 5 (Ka(f" e +LI21) (3.7)

We set ¢(y) = Ko o (", y?) 2,00 + U202 f"]]. Let 0 < 2 < y < 1. We put
s:=x? and t := y? in (3.7) and get

2
o) < s (4 o). 0<wsy<i (3.5
with some constant C'y, which may depend on f, but is independent of  and

Y.
Now, the Berens-Lorentz lemma yields

P(y) < Cpy**, 0<y<l1,

with some constant C'y, which may depend on f, but is independent of y.
Consequently,

KQ,LP(fNa t)gaQ,oo = O(ta)'
O

Proof of Theorem 1.4. We proceed similarly to the proof of the direct inequal-
ity in Theorem 1.1.
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Let g € C9[0,1] and h(x) := aa®/6 with a := (f — g)®)(1/2). We have,
in virtue of Propositions 2.3 and 2.8,

D.1-Df - L'

<UD =g =1 =D g~
b D (g - )
+[oata e m =g+ m - Lo

< = (1% = 9@ = alll + l¢*(F = 91l

C
+ =5 (I g1+ 169 @1) (3.9)
Trivially, we have

le*g @I < lle*(F = @I + 1" FO- (3.10)
Also, for F' € AC),c(0,1) such that p*F’ € L.[0,1], and = € (0, 1) there holds

| (@) (F () = F(1/2))| =

2xw’uu
w()AmF(M

T du
2(y _au
< e )/1/2 *(u)

l*F'|| < cllp*F'||. (3.11)

The estimates (3.9), (3.10), and (3.11) with F' = (f — ¢)® imply
c 1 c

< (10 - gD+ 1 15O + o IO
n n n

We complete the proof as we take the infimum on g € C°[0,1] in the
relation above and apply [11, Lemma 5.1] with p = oo, r = 1, s = 4 and
w = . d

HDJ—Df—iUf

References

[1] Abel, U., Ivan, M., Paltanea, R.: Geometric series of positive linear operators
and the inverse Voronovskaya theorem on a compact interval. J. Approx. Theory
184, 163-175 (2014)

[2] Adell, J.A., Bustamante, J., Quesada, J.M.: Estimates for the moments of Bern-
stein polynomials. J. Math. Anal. Appl. 432, 114-128 (2015)

[3] Adell, J.A., Bustamante, J., Quesada, J.M.: Sharp upper and lower bounds
for the moments of Bernstein polynomials. Appl. Math. Comput. 265, 723732
(2015)

[4] Altomare, F., Diomede, S.: Asymptotic formulae for positive linear operators:
direct and converse results. Jaen J. Approx. 2, 255-287 (2010)



11 Page 20 of 21 B. R. Draganov and I. Gadjev Results Math

[5] Berens, H., Lorentz, G.G.: Inverse theorems for Bernstein polynomials. Indiana
Univ. Math. J. 21, 693-708 (1972)

[6] Bernstein, S.N.: Complément & l’article de E. Voronovskaya “Détermination de
la forme asymptotique de l'approximation des fonctions par les polynomes de
M. Bernstein”. Dokl. Acad. Nauk. URSS A 4, 86-92 (1932)

[7] Bustamante, J.: Bernstein Operators and Their Properties. Birkhduser, Basel
(2017)

[8] DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin
(1993)

[9] Ditzian, Z., Ivanov, K.G.: Strong converse inequalities. J. Anal. Math. 61, 61-111
(1993)

[10] Ditzian, Z., Totik, V.: Moduli of Smoothness. Springer, New York (1987)

[11] Draganov, B.R.: Strong estimates of the weighted simultaneous approximation
by the Bernstein and Kantorovich operators and their iterated Boolean sums.
J. Approx. Theory 200, 92-135 (2015)

[12] Dzyadyk, V.K., Shevchuk, I.A.: Theory of Uniform Approximation of Functions
by Polynomials. Walter de Gruyter, Berlin (2008)

[13] Gavrea, 1., Ivan, M.: The Bernstein Voronovskaja-type theorem for positive lin-
ear approximation operators. J. Approx. Theory 192, 291-296 (2015)

[14] Gonska, H.H.: On the degree of approximation in Voronovskaja’s theorem. Stud.
Univ. Babesg Bolyai Math. 52(3), 103115 (2007)

[15] Gonska, H., Paltanea, R.: General Voronovskaya and asymptotic theorems in
simultaneous approximation. Mediterr. J. Math. 7, 37-49 (2010)

[16] Gonska, H.H., Raga, I.: The limiting semigroup of the Bernstein iterates: degree
of convergence. Acta Math. Hung. 111, 119-130 (2006)

[17] Kopotun, K., Leviatan, D., Shevchuk, I.A.: New moduli of smoothness: weighted
DT moduli revisited and applied. Constr. Approx. 42, 129-159 (2015)

[18] Kopotun, K., Leviatan, D., Shevchuk, I.A.: New moduli of smoothness. Publ.
Math. Inst. 96(110), 169-180 (2014)

[19] Kopotun, K., Leviatan, D., Shevchuk, I.A.: On weighted approximation with
Jacobi weights (2017). arXiv:1710.05059

[20] Lorentz, G.G.: Bernstein Polynomials, 2nd edn. Chelsea Publishing Company,
New York (1986)

[21] Tachev, G.T.: The complete asymptotic expansion for Bernstein operators. J.
Math. Anal. Appl. 385, 1179-1183 (2012)

[22] Tachev, G.: New estimates in Voronovskaja’s theorem. Numer. Algorithms 59,
119-129 (2012)

[23] Voronovskaya, E.: Détermnation de la forme asymptotice 'approximation des
fonctions par les polynomes de M. Bernstein. Dokl. Akad. Nauk 4, 79-85 (1932)


http://arxiv.org/abs/1710.05059

Vol. 73 (2018) Voronovskaya estimates

Borislav R. Draganov and Ivan Gadjev
Department of Mathematics and Informatics
University of Sofia

5 James Bourchier Blvd.

1164 Sofia

Bulgaria

e-mail: bdraganov@fmi.uni-sofia.bg

Ivan Gadjev
e-mail: gadjevivan@hotmail.com

Borislav R. Draganov

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

bl. 8 Acad. G. Bonchev Str.

1113 Sofia

Bulgaria

Received: June 12, 2017.
Accepted: January 22, 2018.

Page 21 of 21

11



	Direct and Converse Voronovskaya Estimates for the Bernstein Operator
	Abstract
	1. Main Results
	2. Basic Properties of Dn
	3. Proofs of the Main Theorems
	References




