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Abstract. By establishing an identity between a sequence of Bernstein-
type operators and a sequence of Szász–Mirakyan operators, we prove that
the convergence of Bernstein-type operators is related to convergence with
respect to Szàsz–Mirakyan operators. As one application of this identity,
we prove that whenever the parameters are conveniently chosen, if f ∈
C[0, ∞) satisfies a growth condition of the form |f(t)| ≤ Ceαt(C, α ∈
R

+), then the classical Bernstein operators Bmn(f(nu), x/n) converge to
the Szàsz–Mirakyan operator Sm(f, x). This convergence generalizes the
classical result of De la Cal and Liquin to unbounded functions; moreover,
the rth derivative of Bmn(f(nu), x/n) converges to the rth derivative of
Sm(f, x). As another application of this identity, we derive Voronowskaja
type result for the general Lototsky–Bernstein operators.
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1. Introduction

The Bernstein approximation Bn(f) to a function f : [0, 1] → R is the poly-
nomial

Bn(f(u);x) :=
n∑

k=0

bn
k (x)f

(
k

n

)
, (1.1)

where bn
k (x) =

(
n
k

)
xk(1 − x)n−k denotes the Bernstein basis of the space of

polynomials of degree at most n. These operators Bn are now quite classical
and have been the object of intensive research (see [2,5]).
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In [10,21,29] independently the authors studied the so-called
Szász–Mirakjan operators defined as

Sn(f(u);x) :=
∞∑

k=0

e−nx (nx)k

k!
f

(
k

n

)
, (1.2)

for all functions f : [0,∞) → R for which the series at the right-hand side is
absolutely convergent. In particular, the operators Sn are well defined on the
space Eα[0,∞) of functions f ∈ C[0,∞) satisfying |f(t)| ≤ Ceαt(C,α ∈ R

+).
It is known (see [17,20]) that {Sn}n∈N is a sequence of positive linear operators
from Eα[0,∞) to C[0,∞) such that for all f ∈ Eα[0,∞)

lim
n→∞ Sn(f ;x) = f(x), (1.3)

uniformly on every interval [x1, x2], 0 ≤ x1 < x2 < ∞.

However, the Szàsz–Mirakjan operators are non-polynomial operators
which are represented by infinite series. In applications, a truncated version of
the operators Sn(f) is commonly used, and there are lots of papers that calcu-
late the truncation error (see [16,20,22,28,32,36]). Therefore, it is natural to
ask whether it is possible to approximate functions defined on the non-negative
x-axis by using Bernstein operators (polynomial operators)?

It is well known [26,31] that by taking the limit of the binomial distri-
bution with the parameter nx, we get the Poisson distribution. Therefore, the
Bernstein operators Bn are naturally related to the Szàsz–Mirakjan operators
Sn constructed by using the Poisson distribution. We can construct Bernstein-
type operators from Bn by choosing suitable parameters that can approxi-
mate functions defined on the non-negative x-axis. Explicitly, for f ∈ C[0,∞),
m ∈ N

+, n ≥ x ≥ 0

Vm,n(f ;x) := Bmn (f(nu);x/n) =
mn∑

k=0

(
mn

k

) (x

n

)k (
1 − x

n

)mn−k

f

(
k

m

)
,

(1.4)

where n ≥ x ≥ 0 guarantees the positivity of Bmn (f(nu), x/n). De la Cal and
Liquin [8] show that if f is a continuous and bounded real-valued function on
[0,∞), then

lim
n→∞ Bmn(f(nu);x/n) = Sm(f(u);x). (1.5)

However, the requirement of this boundedness constraint on f in (1.5) restricts
the computational usefulness of Eq. (1.5). In this paper, we shall remove the
boundedness constraint on f . We shall also discuss the convergence of the r
(r ≥ 1)th derivative of Bmn(f(nu), x/n).

On the other hand, from the binomial theorem, we can derive a generating
function for the classical Bernstein basis functions (see [11], and see also [[12],
Chapter 5, p. 299–306])
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(xw + (1 − x))n =
n∑

k=0

bn
k (x)wk. (1.6)

The Lototsky–Bernstein basis functions bn,k(x) (0 ≤ k ≤ n) are genealizations
of (1.6). Let {pi(x), 0 ≤ i ≤ n} denote a sequence of real-valued functions
defined on [0, 1]. Set

b0,0(x) = 1, b0,k(x) = 0, k > 0, (1.7)
n∏

j=1

(wpj(x) + 1 − pj(x)) =
n∑

k=0

bn,k(x)wk. (1.8)

By simple computations from (1.8) it is straightforward to confirm that

bn,k(x) =
∑

K
⋃

L={1,2,··· ,n}
|L|=n−k,|K|=k

∏

m∈L

(1 − pm(x))
∏

l∈K

pl(x), (1.9)

Throughout this paper, we always assume pi(x) ∈ C[0, 1], 0 < pi(x) < 1 for
x ∈ (0, 1) and pi(0) = 0, pi(1) = 1, for each i = 1, . . . , n. If all the pi(x) =
x (1 ≤ i ≤ n), then bn,k(x) (0 ≤ k ≤ n) reduce to the Bernstein basis
functions bn

k (x). Note that the functions bn,k(x) form a generalized binomial
probability distribution. The Lototsky–Bernstein operators Ln are defined for
each function f ∈ C[0, 1] by

Ln(f(u);x) =
n∑

k=0

bn,k(x)f
(

k

n

)
. (1.10)

Theses operators Ln were first introduced by King [18], and further studied by
Eisenberg and Wood [9]. Many other authors studied these general Lototsky–
Bernstein operators Ln under suitable restrictions on pi(x) (1 ≤ i ≤ n). More
precisely, whenever all the pi(x) are equal to a suitably chosen function r∗

n(x)
such that limn→∞ r∗

n(x) = x, then the operators Ln(f) turn into King-type
operators. For studies on King-type operators, see [1,3,4,13,14,19].

King [18] (see also Eisenberg and Wood [9]) derives the following conver-
gence result. If f ∈ C[0, 1], and lim

n→∞(p1(x) + · · · + pn(x))/n = x uniformly on

[0, 1], then

lim
n→∞ Ln(f ;x) = f(x), (1.11)

uniformly on [0, 1]. But King does not derive the general convergence of Ln(f, x)
without any restriction on pi(x) (1 ≤ i ≤ n). In this paper, we shall derive a
general convergence theorem with respect to pi(x) (1 ≤ i ≤ n) and even more
a Voronowskaja type result for the Lototsky–Bernstein operators Ln(f, x). Be-
cause the articles [9,18] (which are devoted to some basic convergence results
for the operators Ln(f, x)) are the only two papers we can find with respect
to the Lototsky–Bernstein operators, our present paper and our former paper
[35] fill a gap in the investigation of Lototsky–Bernstein operators.
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To study the operators Vn,m(f, x) and Ln(f, x) we shall adopt the frame-
work of semigroups by constructing an identity of Shorgin [26] between Bern-
stein type operators and Szàsz–Mirakyan operators.

We proceed in the following fashion. In Sect. 2, we introduce some func-
tion spaces and some concepts concerning semigroups of operators. In partic-
ular, we shall give a forward difference representation and a semigroup rep-
resentation for the operators Bn, Sn and Vn,m. In Sect. 3, we present some
useful lemmas, which shall be used in the proof of the main results. In Sect. 4,
we discuss the convergence of Vn,m(f, x) and show that the classical result
of De la Cal and Liquin [8] can be generalized to unbounded functions. We
also prove that for m ∈ N

+, the rth derivative of Vn,m(f, x) converges to the
rth derivative of Sm(f, x). Finally, in Sect. 5, we derive a general convergence
theorem and Voronowskaja type result for the Lototsky–Bernstein operators
Ln(f, x).

2. Semigroup Representations for Bernstein-Type Operators

In this section we introduce some function spaces that we shall deal with
throughout this paper. We shall also recall the representation of the sequence
of positive linear operators we quoted in the Introduction by use of difference
operators and semigroups.

To fix our notation, let J be a bounded or unbounded interval whose left
end point is 0. Denote by C[J ] the space of all real-valued continuous functions
on J and by CB [J ] the space of all real-valued bounded continuous functions
on J . As usual, CB [J ] is endowed with the sup-norm which, if no confusion
arises, will be denoted by ‖ · ‖—that is, ‖f‖ = supx∈J |f(x)| (f ∈ CB [J ]). We
also denote by

Cr
B [J ] := {f(x)|f (k)(x) ∈ CB [J ], 0 ≤ k ≤ r}.

In order to find a relationship between Bn(f ;x) (or Ln(f ;x)) and Sn(f ;x),
we shall introduce some concepts concerning C0− semigroups. Consider the
space of all bounded sequences

Ω := {c = (c0, c1, c2, . . .)|ck ∈ R, k ≥ 0}; (2.1)

Ω is endowed with the norm: ‖c‖ := supk≥0 |ck| (c ∈ Ω).
The linear shift operator B : Ω → Ω is defined by (Bc)k = ck+1 (k =

0, 1, 2, . . .), i.e., Bc = (c1, c2, . . .). For any operator D : Ω → Ω, define ‖D‖ :=

supc∈Ω

‖Dc‖
‖c‖ = sup‖c‖=1 ‖Dc‖, c ∈ Ω. Notice, in particular, that ‖B‖ = 1. To

define iteration for operators, let I : Ω → Ω denote the identity operator. For
each operator D : Ω → Ω, define Dk : Ω → Ω recursively by setting

D0 = I,Dk = D(Dk−1), eD :=
∞∑

k=0

Dk

k!
.
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It follows from the definition of the shift operator B that (Bkc)0 = ck.
Now define the difference operator A := B − I. Then the operator A is

the generator of the C0− convolution semigroup T (t) := etA(t ≥ 0), since for
any sequence c ∈ Ω

Ac = lim
t→0+

eAtc − Ic

t
. (2.2)

For more details on semigroups, refer to [23].
Now for each continuous function we are going to introduce a sequence

in Ω. For each f(x) ∈ C[J ], define ψ(f, n) := fn : C[J ] × N → Ω by

fn = (f(0/n), f(1/n), f(2/n), . . .), (2.3)

where f(i/n) = 0 if i/n /∈ J .
Thus the Bernstein operators Bn(f) can be represented by using the shift

operator B and the difference operator A as follows (see [33])

Bn(f ;x) = (((1 − x)I + xB)n
fn)0 = ((I + xA)n

fn)0 =: (I + xA)n
fn(0),

(2.4)

where fn(i) := (fn)i denotes the (i + 1)th coordinate of the sequence fn. Thus
Bn(f ;x) is the first coordinate of the sequence (I + xA)n

fn. Moreover, the
Szàsz–Mirakjan operators Sn(f ;x) can be represented as follows,

Sn(f ;x)=

(
e−nx

∞∑

k=0

(nx)k

k!
Bkfn

)

0

=(enx(B−I)fn)0 =(enxAfn)0 =: enxAfn(0).

(2.5)

Similarly, Sn(f ;x) is the first coordinate of the sequence enxAfn.
The representation (2.4) of Bernstein operators Bn(f ;x) can be general-

ized to the Lototsky–Bernstein operators. Indeed, by (1.8) with B in place of
w we get

n∏

i=1

(I + pi(x)A) =
n∏

i=1

((1 − pi(x))I + pi(x)B) =
n∑

k=0

bn,k(x)Bk.

Therefore since (Bkfn)0 = f( k
n ), we have

Ln(f ;x) =

(
n∏

i=1

((1 − pi(x))I + pi(x)B)fn

)

0

=

(
n∏

i=1

(I + pi(x)A)fn

)

0

=:
n∏

i=1

(I + pi(x)A)fn(0). (2.6)

Shorgin [26] derives an asymptotic expansion of the generalized bino-
mial distribution (1.9) in terms of convergence to the Poisson distribution
(Shorgin formula). Applying this formula, we can uncover the relationship be-
tween Bernstein-type operators and Szàsz–Mirakjan operators. This formula
has been widely studied in probability theory and in the theory of semigroups
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(see [6,7,26,31]). However, here is the first time, to our knowledge, for this
formula to be used to study positive linear operators. Therefore here we offer
a detailed introduction.

For any β1, β2, . . . , βn such that 0 ≤ βk ≤ 1 (1 ≤ k ≤ n), set

λ =
n∑

j=1

βj , λr =
n∑

j=1

βr
j , r ≥ 2. (2.7)

The Bernoulli operator is defined by
∏n

i=1(I + βiA), and the Poisson convolu-

tion semigroup operator is defined by eλA = eλ(B−I) = e−λ
∑∞

k=0

λk

k!
Bk. The

Shorgin formula is (see [6,7,26,31])

eλA −
n∏

k=1

(I + βkA) =
1
2
λ2A

2eλA −
∞∑

k=3

ak(−A)keλA, (2.8)

where ak is defined recursively by

ak = −1
k

(
λk +

k−2∑

i=2

aiλk−i

)
, k ≥ 4, (2.9)

with a2 = −1
2
λ2, a3 = −1

3
λ3.

If βk = x (1 ≤ k ≤ n), then λ(x) := λ = nx, λr(x) := λr = nxr (r ≥ 2)
and ak = bk(n)xk, where bk(n) is a polynomial of n. In this case the Bernoulli
operator reduces to the Bernstein operator, i.e.,

Bn(f ;x) = (I + xA)nfn(0)

= enxAfn(0)− 1
2
nx2(enxAA2)fn(0)+

∞∑

k=3

(−1)kbk(n)xk(enxAAk)fn(0),

(2.10)

= enxAfn(0) +
∞∑

k=2

(−1)kbk(n)xk(enxAAk)fn(0), (2.11)

where (2.11) holds since b2(n) = −1
2
n.

Moreover, it is straightforward to deduce that

Bmn (f(nu);x/n) =
(
I +

x

n
A

)mn

fm(0)

= emxAfm(0) − 1
2n

mx2emxAA2fm(0)

+
∞∑

k=3

(−1)k bk(mn)
nk

xkemxAAkfm(0), (2.12)

= emxAfm(0) +
∞∑

k=2

(−1)k bk(mn)
nk

xkemxAAkfm(0). (2.13)
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Let Δq
h(f, x) be qth forward difference with step h defined by

Δq
h(f, x) =

q∑

j=0

(−1)q−j

(
q

j

)
f(x + jh), h > 0, q ∈ N. (2.14)

It follows by induction on k that

Akfm(i) := (Akfm)i = Δk
1/m(f, i/m), i ∈ N, (2.15)

where fm ∈ Ω. Therefore by (2.5),(2.12), (2.13) and (2.14)

Bmn (f(nu);x/n) = Sm(f(u), x) − 1
2n

mx2Sm

(
Δ2

1/m(f, u), x
)

+
∞∑

k=3

(−1)kxk bk(mn)
nk

Sm

(
Δk

1/m(f, u), x
)

(2.16)

= Sm(f(u), x) +
∞∑

k=2

(−1)kxk bk(mn)
nk

Sm

(
Δk

1/m(f, u), x
)

.

(2.17)

On the other hand, if βk = pk(x) (1 ≤ k ≤ n), then λ(x) := λ =∑n
k=1 pk(x), λr(x) := λr =

∑n
k=1 pr

k(x) (r ≥ 2). Now the Lototsky–Bernstein
operators Ln(f ;x) can be represented in the following form

Ln(f ;x) = eλ(x)Afn(0) +
∞∑

k=2

ak(−A)keλ(x)Afn(0), (2.18)

where eλ(x)Afn(0) = e− ∑n
i=1 pi(x) · ∑∞

k=0[
∑n

i=1 pi(x)]k/k!f(k/n) = Sn(f ;∑n
i=1 pi(x)/n).

3. Preliminary Lemmas

The proofs of our main results are based on a number of lemmas.
First, we mention a basic fact about the norm of eλA, i.e., ‖eλA‖ ≤ 1.

Indeed, since ‖e−λI‖ = ‖∑∞
k=0

(−λ)k

k!
I‖ = e−λ and ‖eλB‖ ≤ ∑∞

k=0

λk

k!
‖B‖k ≤

eλ, it follows that

‖eλA‖ = ‖e−λI · eλB‖ ≤ ‖e−λI‖ · ‖eλB‖ ≤ 1.

Now we give two estimates concerning the norm of A in (2.8) and of
the coefficients in (2.9). Such estimates are derived by Shorgin [26], see also
[6,7,31].

Lemma 3.1. For k ∈ N
+, and with ak, λ(x), λ2(x) as in (2.18).

|ak| ≤
(

eλ2

k

)k/2

, k ≥ 2, (3.1)
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∥∥AkeλA
∥∥ ≤

√
e(1 +

√
π/2)

2

(
k

eλ

)(k+1)/2

, k ≥ 1. (3.2)

Remark 3.2. In some cases, we also use the estimate ‖A‖ = ‖B − I‖ ≤ ‖B‖+
‖I‖ ≤ 2. And if all the pk(x) = x (1 ≤ k ≤ n), then ak = bk(n)xk (see (2.10)).

Thus, |bk(n)xk| ≤
(

enx2

k

)k/2

⇒ |bk(n)| ≤
(en

k

)k/2

.

The general Taylor expansion of the semigroup operator stated in the
following result is well-known (see Lemma 4.1, [24], p. 276).

Lemma 3.3. Let T (v) = evA, v ≥ 0. For c ∈ Ω with ‖Alc‖ < ∞, l ≥ 1, and
arbitrary s, t ≥ 0

T (t)c − T (s)c =
l−1∑

k=1

(t − s)k

k!
T (s)Akc +

∫ t

s

(t − u)l−1

(l − 1)!
T (u)Alcdu. (3.3)

The proof of the following Lemma can be found in [33,34]. For the com-
pleteness of this paper and for later applications, we give an outline of the
proof.

Lemma 3.4. Let B be a linear contraction operator on a Banach space X.
The linear operator A = B − I generates a contraction semigroup T (ξ) = eξA

(ξ ≥ 0). Moreover for f ∈ X and n > ξ

‖T (mξ)f − (I + ξA/n)mnf‖ ≤ mξ2

2n
‖A2f‖. (3.4)

Proof. It is well-known that A = B − I generates a contraction semigroup.
Therefore, for ξ ≥ 0, both T (ξ) and (I + ξA/n) = (1 − ξ/n)I + ξB/n are
contractive operators. To prove (3.4), observe that for commuting contraction
operators U, V on the space X, one has

‖Unf − V nf‖ = ‖
n−1∑

k=0

(Un−kV kf − Un−k−1V k+1f)‖

≤
n−1∑

k=0

‖Un−k−1(U − V )V kf‖ ≤ n‖Uf − V f‖. (3.5)

Using inequality (3.5) and the identity T (mξ) = (T (ξ/n))mn yields

‖T (mξ)f − (I + ξA/n)mnf‖ ≤ mn · ‖T (ξ/n)f − (I + ξA/n)f‖. (3.6)

Now note that T ′(s) = T (s)A. Therefore invoking integration by parts yields
∫ ξ/n

0

(ξ/n − s)T (s)A2ds =
∫ ξ/n

0

(ξ/n − s)AdT (s)

= (ξ/n − s)AT (s)
∣∣ξ/n

0
+

∫ ξ/n

0

T (s)Ads
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= −ξA/n + T (s)
∣∣ξ/n

0
= T (ξ/n) − (I + ξA/n).

Hence

T (ξ/n) − (I + ξA/n) =
∫ ξ/n

0

(ξ/n − s)T (s)A2ds. (3.7)

Therefore, by (3.7) and the fact that ‖T (s)‖ ≤ 1

‖T (ξ/n)f − (I + ξA/n)f‖ ≤
∫ ξ/n

0

(ξ/n − s)‖T (s)A2f‖ds

≤ ‖A2f‖
∫ ξ/n

0

(ξ/n − s)ds

=
ξ2

2n2
‖A2f‖. (3.8)

Combining (3.6) and (3.8) yields (3.4). �

The proof of the following result can be found in (Corollary 3.4.4 and
(2.15), [5]).

Lemma 3.5. Let r, i,m ∈ N
+, and f ∈ Cr[0,∞). Then

Arfm(i) = f (r)(ξ)/mr, (3.9)

where i/m < ξ < (r + i)/m.

4. Convergence of Bmn(f(nu), x/n)

The Szász–Mirakjan operator Sm(f ;x) is the limit of Bernstein operators,
whenever the parameters are conveniently chosen. De la Cal and Liquin [8]
showed the following estimate between the Bernstein and the Szàsz–Mirakjan
operators. For m ∈ N

+, f ∈ CB [0,∞), the error bound

|Bmn (f(nu);x/n) − Sm(f(u);x)| ≤ 2mx2

n
‖f‖ , 0 ≤ x ≤ n, (4.1)

given in [8] shows that the rate of convergence is at least 1/n.
On the other hand, the asymptotic formula

lim
n→∞ n (Bmn (f(nu);x/n) − Sm(f(u);x)) = −1

2
mx2Sm(Δ2

1/m(f, u), x), (4.2)

due to the first author [33], shows that the rate of convergence is precisely 1/n
when the right hand side of (4.2) is non-zero.

Now we investigate two questions. First, may the restriction f ∈ CB [0,∞)
be relaxed to an unbounded function such as f ∈ Eα[0,∞)? Second, what is
the rate of convergence of the derivatives (Bmn(f(nu), x/n))(r) (r ≥ 1) as n
tends to infinity?

To answer the first question, we have the following
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Theorem 4.1. Let m ∈ N
+, f ∈ Eα[0,∞). Then for n ≥ x ≥ 0,

|Bmn (f(nu);x/n) − Sm(f(u);x)| ≤ C
2emx(eα/m−1)+1+2α/m · mx2

n

×
∞∑

k=2

(
4e1+2α/mmx2

nk

)(k−2)/2

. (4.3)

Moreover,
∣∣∣∣n((Bmn (f(nu);x/n) − Sm(f(u);x)) +

1
2
mx2Sm(Δ2

1/m(f, u);x)
∣∣∣∣

≤ C
8emx(eα/m−1)+3/2+3α/m · m

√
mx3

3
√

3n

∞∑

k=3

(
4e1+2α/mmx2

nk

)(k−3)/2

.

(4.4)

Proof. By the assumption that f ∈ Eα[0,∞), then |f(t)| ≤ Ceαt(C,α ∈ R
+).

First we estimate the following quantity for m ≥ 1, j ≥ 0

|Δk
1/m(f, j/m)| =

∣∣∣∣∣

k∑

i=0

(−1)k−i

(
k

i

)
f(j/m + i/m)

∣∣∣∣∣

≤ 2k max{|f(j/m)|, |f((j + 1)/m)|, . . . , |f((j + k)/m)|}
≤ C2k max{eαj/m, eα(j+1)/m, . . . , eα(j+k)/m} = C2keα(j+k)/m.

(4.5)

Therefore by (4.5)
∣∣∣Sm

(
Δk

1/m(f, u); x
)∣∣∣ =

∣∣∣∣∣e
−mx

∞∑

j=0

(mx)j

j!
Δk

1/m(f, j/m)

∣∣∣∣∣

≤ e−mx
∞∑

j=0

(mx)j

j!

∣∣∣Δk
1/m(f, j/m)

∣∣∣

≤ C2keαk/me−mx
∞∑

j=0

(mx)j

j!
eαj/m = C2keαk/mSm(eαu; x).

(4.6)

Moreover

Sm (eαu;x) = e−mx
∞∑

j=0

(mx)j

j!
eαj/m = e−mx+eα/mmx. (4.7)

Now using (2.17), Remark 3.2 with ak = bk(mn)xk and (4.6), (4.7), we
bound the remainder term

|Bmn (f(nu);x/n) − Sm(f(u);x)|

=

∣∣∣∣∣

∞∑

k=2

(−1)kxk bk(mn)
nk

Sm

(
Δk

1/m(f, u);x
)∣∣∣∣∣
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≤
∞∑

k=2

∣∣(−1)kxk/nk
∣∣ · |bk(mn)| ·

∣∣∣Sm

(
Δk

1/m(f, u);x
)∣∣∣

≤
∞∑

k=2

xk

nk

(emn

k

)k/2

· C2keαk/m · e−mx+eα/mmx

= Ce(eα/m−1)mx
∞∑

k=2

(
4e1+2α/mmx2

nk

)(k−2)/2 (
4e1+2α/mmx2

nk

)

≤ C
4e(eα/m−1)mx+1+2α/mmx2

2n

∞∑

k=2

(
4e1+2α/mmx2

nk

)(k−2)/2

,

which is precisely (4.3).
Along the same lines, we can prove (4.4). Indeed, by (2.16)

∣∣∣∣n((Bmn (f(nu);x/n) − Sm(f(u);x)) +
1
2
mx2Sm(Δ2

1/m(f, u);x)
∣∣∣∣

=

∣∣∣∣∣

∞∑

k=3

(−1)kxkbk(mn)/nk−1Sm

(
Δk

1/m(f, u);x
)∣∣∣∣∣

≤
∞∑

k=3

xk

nk−1

(emn

k

)k/2

C2keαk/m · e−mx+eα/mmx

= Cne(eα/m−1)mx
∞∑

k=3

(
4e1+2α/mmx2

nk

)(k−3)/2 (
4e1+2α/mmx2

nk

)3/2

≤ C
8emx(eα/m−1)+3/2+3α/m · m

√
mx3

3
√

3n

∞∑

k=3

(
4e1+2α/mmx2

nk

)(k−3)/2

, (4.8)

which is precisely (4.4). �

It is straightforward from (4.3) and (4.4) that

Corollary 4.2. Let m ∈ N
+, f ∈ Eα[0,∞). Then

lim
n→∞ Bmn (f(nu);x/n) = Sm(f(u);x), (4.9)

and

lim
n→∞ n (Bmn (f(nu);x/n) − Sm(f(u);x)) = −1

2
mx2Sm(Δ2

1/m(f, u);x).

(4.10)

uniformly on every interval [x1, x2], 0 ≤ x1 < x2 < ∞.

To answer the second question, we have the following two theorems.

Theorem 4.3. Let m be a fixed integer and suppose that n ≥ x ≥ 0. Then for
every r ≥ 1 and mn > r
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(i). If f ∈ CB [0,∞), then
∣∣∣B(r)

mn (f(nu);x/n) − S(r)
m (f(u);x)

∣∣∣

≤ (2m)r+1

n

(
x2 +

rx

m − r/n
+

r2x2

(mn − r)2

)
‖f‖

+
(2m)r−1r(r − 1)

n
‖f‖ . (4.11)

(ii). If f ∈ Cr
B [0,∞), then

∣∣∣B(r)
mn (f(nu);x/n) − S(r)

m (f(u);x)
∣∣∣≤ 2mx

n

(
x+

r

m − r/n
+

r2x

(mn − r)2

)
‖f (r)‖

+
r(r − 1)

2mn
‖f (r)‖. (4.12)

(iii). If f ∈ Eα[0,∞), then
∣∣∣B(r)

mn (f(nu);x/n) − S(r)
m (f(u);x)

∣∣∣

≤ C
e1+(2+r)α/m+(eα/m−1)mx(4m)r+1 max{1, x2}

2n

×
∞∑

k=2

(
4e1+2α/mm max{1, x2}

nk

)(k−2)/2

· kr. (4.13)

In addition, Voronovskaya’s formula can be differentiated:

Theorem 4.4. Let m, r ∈ N
+ and f ∈ Eα[0,∞). Then

lim
n→∞ n

(
B(r)

mn

(
f(nu);

x

n

)
− S(r)

m (f(u);x)
)

= −1
2

dr

dxr
{mx2Sm(Δ2

1/m(f, u);x)},

(4.14)

uniformly on every interval [x1, x2], 0 ≤ x1 < x2 < ∞. Thus the rth derivative
of Bmn (f(nu);x/n) converges at the rate 1/n when the right hand side of
(4.14) is non-zero.

To prove Theorems 4.3 and 4.4, we shall need the following lemma.

Lemma 4.5. Let r ∈ N
+. Then

S(r)
m (f(u);x) = mremxAArfm(0), (4.15)

and

B(r)
mn (f(nu);x/n) = m(m − 1

n
) · · · (m − r − 1

n
)
(
I +

x

n
A

)mn−r

Arfm(0)

(4.16)

= mremxAArfm(0) +
∞∑

k=2

(−1)k bk(mn)
nk

r∑

j=0

(
r

j

)
(k)jx

k−j
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I{k≥j}mr−jemxAAk+r−jfm(0) (4.17)

= S(r)
m (f(u);x) +

∞∑

k=2

(−1)k bk(mn)
nk

r∑

j=0

(
r

j

)
(k)jx

k−j

I{k≥j}mr−jSm

(
Δk+r−j

1/m (f, u);x
)

(4.18)

= S(r)
m (f(u);x) − 1

2n

dr

dxr

(
mx2Sm(Δ2

1/m(f, u);x)
)

+
∞∑

k=3

(−1)k bk(mn)
nk

r∑

j=0

(
r

j

)
(k)jx

k−j
I{k≥j}mr−jSm

(
Δk+r−j

1/m (f, u);x
)

. (4.19)

where (k)j = k(k − 1) · · · (k − j + 1) is the falling factorial power, and I{k≥j}
denotes the indicator function for {k ≥ j}.
Proof. The proof of (4.15) is straightforward by differentiating (2.5). We can
prove (4.16)–(4.19) in the following fashion. From the proof of (4.3) and the
fact that n ≥ x ≥ 0 for k ≥ 2 it follows that∣∣∣∣(−1)kxk bk(mn)

nk
Sm

(
Δk

1/m(f, u);x
)∣∣∣∣

≤ C
2emx(eα/m−1)+1+2α/m · mx2

n

(
4e1+2α/mmx2

nk

)(k−2)/2

≤ C2emx(eα/m−1)+1+2α/m · mn

(
4e1+2α/mmn

k

)(k−2)/2

. (4.20)

Since it is immediate that the infinite series
∑∞

k=2

(
4e1+2α/mmn

k

)(k−2)/2

con-

verges, the infinite series (2.13) converges uniformly. Thus by differentiating
Eq. (2.13) [notice also (2.16) and (2.17)] r times and using Leibniz’s rule to-
gether with (2.15), we can deduce (4.16)–(4.19). �
Proof of Theorem 4.3. To prove (4.11) and (4.12), begin by observing that [see
(4.15) and (4.16)]

B(r)
mn (f(nu);x/n) − S(r)

m (f(u);x)

= m

(
m− 1

n

)
· · ·

(
m− r − 1

n

)(
I+

x

n
A

)mn−r

Arfm(0) − mremxAArfm(0)

= m

(
m − 1

n

)
· · ·

(
m − r − 1

n

)[(
I +

x

n
A

)mn−r

− emxA

]
Arfm(0)

(4.21)

+
[
m

(
m − 1

n

)
· · ·

(
m − r − 1

n

)
− mr

]
emxAArfm(0). (4.22)
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First, we handle the term in (4.21) by using Lemma 3.3. Setting gm := Arfm

and T (t) = etA, we find that
∣∣∣∣
(
I +

x

n
A

)mn−r

gm(0) − emxAgm(0)
∣∣∣∣

≤ (mn − r)
∥∥∥∥
(
I +

x

n
A

)
gm − T

(
mx

mn − r

)
gm

∥∥∥∥

≤ (mn − r)
∥∥∥T

(x

n

)
gm −

(
I +

x

n
A

)
gm

∥∥∥ + (mn − r)
∥∥∥∥T

(
mx

mn − r

)
gm − T

(x

n

)
gm

∥∥∥∥

≤ (mn − r)x2

2n2

∥∥A2gm

∥∥ + (mn − r)
∥∥∥∥∥

rx

n(mn − r)
T

(x

n

)
Agm +

∫ mx/(mn−r)

x/n

(
mx

mn − r
− u

)
T (u)A2gmdu

∥∥∥∥∥

≤ (mn − r)
(

x2

2n2

∥∥A2gm

∥∥ +
rx

n(mn − r)
‖Agm‖ +

r2x2

2n2(mn − r)2
∥∥A2gm

∥∥
)

= (mn − r)
(

x2

2n2

∥∥Ar+2fm

∥∥ +
rx

n(mn − r)

∥∥Ar+1fm

∥∥

+
r2x2

2n2(mn − r)2
∥∥Ar+2fm

∥∥
)

, (4.23)

where the first inequality follows by (3.5). The third inequality follows by using
(3.8) and applying the general Taylor’s expansion T (t)−T (s) = (t−s)T (s)A+∫ t

s
(t − u)T (u)A2du (see Lemma 3.3 with l = 2). The fourth inequality can

be derived from ‖T (x/n)‖ ≤ 1 and by an almost verbatim extension of the
reasoning given in deriving (3.8).

Moreover, the second term, i.e., the term in (4.22), can be dealt with as
follows:

∣∣∣∣

[
m(m − 1

n
) · · · (m − r − 1

n
) − mr

]
emxAArfm(0)

∣∣∣∣

≤ mr

∣∣∣∣(1 − 1
mn

) · · · (1 − r − 1
mn

) − 1
∣∣∣∣ · ∣∣emxAArfm(0)

∣∣ (4.24)

≤ mr r(r − 1)
2mn

‖Arfm‖ =
mr−1r(r − 1)

2n
‖Arfm‖ , (4.25)

where the last inequality follows from the generalized Bernoulli inequality:
1 − (1 − x1)(1 − x2) · · · (1 − xn) ≤ x1 + x2 + · · · + xn, 0 < xi < 1 (1 ≤ i ≤ n).

Summing (4.21), (4.22) together with (4.23), (4.25) and noting that m(m−
1/n) · · · (m − r/n) ≤ mr+1 yields



Vol. 73 (2018)Applications of the Shorgin Identity to Bernstein Type Operators Page 15 of 26 2

∣∣∣B(r)
mn (f(nu);x/n) − S(r)

m (f(u);x)
∣∣∣

≤ mr+1

2n

(
x2

∥∥Ar+2fm

∥∥ +
2rx

m − r/n

∥∥Ar+1fm

∥∥ +
r2x2

(mn − r)2
∥∥Ar+2fm

∥∥
)

+
mr−1r(r − 1)

2n
‖Arfm‖ . (4.26)

By Remark 3.2, ‖A‖ ≤ 2, so ‖Ak‖ ≤ 2k (k ∈ N). Therefore, (4.11) follows
from (4.26). To derive (4.12), observe from (3.9) that ‖Arfm‖ ≤ ‖f (r)‖/mr.
Now (4.12) follows since ‖Ar+2fm‖ ≤ ‖A2‖ · ‖Arfm‖ ≤ 4‖f (r)‖/mr and
‖Ar+1fm‖ ≤ ‖A‖ · ‖Arfm‖ ≤ 2‖f (r)‖/mr.

Next, we shall prove (4.13). Note that by (2.5) and the definition of
divided difference together with (4.6) and (4.7), for 0 ≤ j ≤ r

∣∣emxAAk+r−jfm(0)
∣∣ =

∣∣∣Sm

(
Δk+r−j

1/m (f, u);x
)∣∣∣

≤ C2k+r−jeα(k+r−j)/mSm(eαu;x)

≤ C2k+reα(k+r)/me(eα/m−1)mx. (4.27)

By invoking (4.18), Lemmas 3.1 and (4.27), we estimate that
∣∣∣B(r)

mn (f(nu);x/n) − S(r)
m (f(u);x)

∣∣∣

=

∣∣∣∣∣∣

∞∑

k=2

(−1)k bk(mn)
nk

r∑

j=0

(
r

j

)
(k)jx

k−j
I{k≥j}mr−jSm

(
Δk+r−j

1/m (f, u);x
)
∣∣∣∣∣∣

≤
∞∑

k=2

1
nk

|bk(mn)|
r∑

j=0

(
r

j

)
(k)jx

k−j
I{k≥j}mr−j

∣∣∣Sm

(
Δk+r−j

1/m (f, u);x
)∣∣∣

≤
∞∑

k=2

1
nk

(emn

k

)k/2

· kr · max{1, x}k · 2r · mr · C2k+reα(k+r)/me(eα/m−1)mx

= C(4m)reαr/me(eα/m−1)mx
∞∑

k=2

(
4e1+2α/mm max{1, x2}

nk

)k/2

· kr

≤ C
e1+(2+r)α/m+(eα/m−1)mx(4m)r+1 max{1, x2}

2n
∞∑

k=2

(
4e1+2α/mm max{1, x2}

nk

)(k−2)/2

· kr,

where in the second inequality we apply these inequalities: for 0 ≤ j ≤ r,
mr−j ≤ mr, (k)j ≤ kr, xk−j ≤ max{1, x}k (x ≥ 0) and

∑r
j=0

(
r
j

)
= 2r. This

complete the proof of (iii). �

Remark 4.6. Originally, we proved inequality (4.12). But we notice that if
higher smoothness of f is assumed, then (4.26) implies stronger estimates
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than (4.12). Next we present two cases. Note that ‖Ar+1fm‖ ≤ ‖fr+1‖/mr+1,
‖Ar+2fm‖ ≤ ‖A‖ · ‖Ar+1fm‖ ≤ 2‖fr+1‖/mr+1 for f ∈ Cr+1[0,∞) and
‖Ar+2fm‖ ≤ ‖fr+2‖/mr+2 for f ∈ Cr+2[0,∞). Therefore it follows from
(4.26) that

(ii)-a. If f ∈ Cr+1
B [0,∞), then

∣∣∣B(r)
mn (f(nu);x/n) − S(r)

m (f(u);x)
∣∣∣ ≤ x

n

(
x+

r

m − r/n
+

r2x

(mn − r)2

)
‖f (r+1)‖

+
r(r − 1)

2mn
‖f (r)‖. (4.28)

(ii)-b. If f ∈ Cr+2
B [0,∞), then∣∣∣B(r)

mn (f(nu);x/n) − S(r)
m (f(u);x)

∣∣∣

≤ x

2mn

(
x‖f (r+2)‖ +

2r

1 − r/mn
‖f (r+1)‖ +

r2x

(mn − r)2
‖f (r+2)‖

)

+
r(r − 1)

2mn
‖f (r)‖. (4.29)

Proof of Theorem 4.4. By reasoning as in the proof of Theorem 4.3 and taking
(4.19) into account, we have∣∣∣∣n

(
B(r)

mn

(
f(nu);

x

n

)
− S(r)

m (f(u);x)
)

+
1
2

dr

dxr

(
mx2Sm(Δ2

1/m(f, u);x)
)∣∣∣∣

=

∣∣∣∣∣∣

∞∑

k=3

(−1)k bk(mn)
nk−1

r∑

j=0

(
r

j

)
(k)jx

k−j
I{k≥j}mr−jSm

(
Δk+r−j

1/m (f, u);x
)
∣∣∣∣∣∣

≤ Cn(4m)reαr/me(eα/m−1)mx
∞∑

k=3

(
4e1+2α/mm max{1, x2}

nk

)k/2

· kr

≤ C
22r+3mr+3/2e3/2+(3+r)α/m+(eα/m−1)mx max{1, x3}

3
√

3n
∞∑

k=3

(
4e1+2α/mm max{1, x2}

nk

)(k−3)/2

· kr.

�
The actual computation of the operators Sm(f, x) requires estimating

infinite series, which restricts in practice the usefulness of these operators.
Many authors suggest using a partial sum of Sm(f, x) to approximate f(x)
(see [16,20,22,28,32,36]). For example, Grof [16] introduces and investigates
the operator

Sn,m(f ;x) = e−nx
m∑

k=0

(nx)k

k!
f

(
k

n

)
, (4.30)

for which one has
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Theorem 4.7. Let m(n) be a sequence of positive integers with lim
n→∞ m(n)/n =

∞, and let f ∈ Eα[0,∞). Then

lim
n→∞ Sn,m(n)(f ;x) = f(x). (4.31)

Later, Lehnhoff proves that if m(n) = n, then limn→∞ Sn,n(f, x) =
f(x), f ∈ C[0, 1] ([20] Theorem 5). He also asks what happens if the sequence
m(n)/n does not tend to infinity. Lehnhoff proves the following theorem [20]

Theorem 4.8. Let m = [n(x + δ)], where δ = δ(n) is a sequence of positive
numbers with limn→∞ n1/2δ(n) = ∞. Then {Sn,m}n∈N is a sequence of positive
linear operators from Eα[0,∞) to C[0,∞) such that for f ∈ Eα[0,∞)

lim
n→∞ Sn,m(f ;x) = f(x), (4.32)

uniformly on every interval [x1, x2], 0 ≤ x1 < x2 < ∞.

Theorem 4.8 was later refined by Omey [22] and Xie [32]. However, from
Theorems 4.3 and 4.4 we have seen that the operators Bmn(f(nu), x/n) can be
used as another finite sum replacement for Sm(f, x). Moreover Bmn(f(nu), x/n)
is easier to handle than Sm,n(f, x). Indeed, by using the Korovkin’s theorem
it is straightforward to prove that limm→∞ Bmn(f(nu), x/n) = f(x), f(x) ∈
C[0, n]. Thus, we have derived the following results:

Bmn(f(nu);x/n) →
{

Sm(f ;x), n → ∞, f(x) ∈ Eα[0,∞),
f(x), m → ∞, f(x) ∈ C[0, n].

Moreover,

Corollary 4.9. Let m := m(n) be a sequence of positive integers with limn→∞
m(n) = ∞ and limn→∞ m(n)/n = 0. Then for f ∈ Eα[0,∞)

lim
n→∞ Bm(n)n(f(nu);x/n) = f(x), (4.33)

uniformly on every interval [x1, x2], 0 ≤ x1 < x2 < ∞.

Proof. Clearly

Bm(n)n(f(nu);x/n) − f(x) = Bm(n)n(f(nu);x/n) − Sm(n)(f(u);x)

+ Sm(n)(f(u);x) − f(x), (4.34)

Taking the limit of both sides of (4.34) as n → ∞, and involving (4.3) and
(1.3) yields the desired result. �

Moreover, Sun [27] (corollary 1) derives

Theorem 4.10 [27]. Let r ∈ N
+. Then for f ∈ Eα[0,∞)

lim
n→∞ S(r)

n (f ;x) = f (r)(x), (4.35)

uniformly on every interval [x1, x2], 0 ≤ x1 < x2 < ∞.
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Therefore, by Theorem 4.3 [see (4.13)] and Theorem 4.10, we conclude
that

Corollary 4.11. Let r ∈ N
+ and let m := m(n) be a sequence of positive integers

with limn→∞ m(n) = ∞ and limn→∞ mr+1(n)/n = 0. Then for f ∈ Eα[0,∞)

lim
n→∞ B

(r)
m(n)n(f(nu);x/n) = f (r)(x), (4.36)

uniformly on every interval [x1, x2], 0 ≤ x1 < x2 < ∞.

5. Convergence of Ln(f, x)

Lototsky–Bernstein operators Ln(f ;x) were first introduced by King in [18],
where he discusses conditions on the sequence of real-valued functions pj(x)
which ensure that Ln(f ;x) converges uniformly to f(x). Later, Eisenberg and
Wood [9] discuss uniform approximation of analytic functions by means of
the Lototsky–Bernstein operators Ln(f, x). These articles [9,18] are the only
two papers we can find that are devoted to the convergence of Ln(f, x). Re-
cently, the authors of this paper discuss shape preserving properties of the
operators Ln(f, x). In [35], many interesting properties, such as fixed points,
iteration, and total positivity of Lototsky–Bernstein bases {bn,k(x)}, as well
as monotonicity preservation and convexity preservation, are systematically
investigated. At the same time, we find that for any strictly increasing func-
tion p(x) ∈ C[0, 1] with p(0) = 0 and p(1) = 1, there exist Lototsky–Bernstein
operators Ln(f, x) (by choosing suitable pj(x), 1 ≤ j ≤ n) that satisfy the
following two properties:

(i) Ln(f, x) preserve the constant function 1 and p(x),
(ii) limn→∞ Ln(f, x) = f(x) uniformly on [0, 1] for all f ∈ C[0, 1].
In this section, we shall use the difference representation (2.6) and the

semigroup representation (2.18) to further study the convergence of the oper-
ators Ln(f, x). Our first theorem [35] concerns convergence of the operators
Ln(f, x) without any additional restrictions on pi(x) (1 ≤ i ≤ n) except the
assumptions that for all i, 0 < pi(x) < 1 for x ∈ (0, 1) and pi(0) = 0, pi(1) = 1.
In this Section, we fix once and for all the notation λ(x) =

∑n
k=1 pk(x), λ2(x) =∑n

k=1 p2
k(x).

The following theorem has been proved in [35].

Theorem 5.1 [35]. Suppose that pi(x) ∈ C[0, 1], 0 < pi(x) < 1 for x ∈ (0, 1)
and pi(0) = 0, pi(1) = 1 (i ≥ 1). If (p1(x) + · · · + pn(x))/n converges, then
for f ∈ C[0, 1] the positive sequence {Ln(f ;x)}∞

n=1 converges to a bounded
function L∞(f ;x), where

L∞(f ;x) = lim
n→∞ Ln(f ;x) = f

(
lim

n→∞
p1(x) + · · · + pn(x)

n

)
. (5.1)

Moreover, if limn→∞(p1(x)+ · · ·+pn(x))/n converges uniformly on [0, 1], then
the convergence in (5.1) is uniform on [0, 1].
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Conversely, if for some strictly monotone function f0 ∈ C[0, 1], the posi-
tive sequence {Ln(f0;x)}∞

n=1 converges, then (p1(x)+ · · · + pn(x))/n also con-
verges.

Let e1(x) = x and e2(x) = x2. Then it is straightforward using (2.6) (see
also [18]) to derive that

Ln(e1;x) =
n∑

i=1

pi(x)/n,

Ln(e2;x) =

(
n∑

i=1

pi(x)

)2

/n2 −
n∑

i=1

p2
i (x)/n2 +

n∑

i=1

pi(x)/n2. (5.2)

Remark 5.2. Let {L∗
n}n≥1 be a sequence of positive linear operators on C[0, 1],

and let ei(x) = xi, i ≥ 1. Wang [30] (Theorem 2 in [30]) shows that if {L∗
n}n≥1

satisfy the following two conditions:
(a) the sequence {L∗

n(e2)} converges to a function L∗
∞(e2) in C[0, 1],

(b) {L∗
n}n≥1 satisfies L∗

n(f) ≥ L∗
n+1(f) for every convex function f ,

then there exists a bounded function L∗
∞(f, x) such that limn→∞ L∗

n(f, x) =
L∗

∞(f, x).
Now if (p1(x) + · · · + pn(x))/n converges, then from (5.2) we find that

Ln(e2) → L∞(e2) := (limn→∞(p1(x)+· · ·+pn(x))/n)2. However, we can show
by example that the inequality Ln(f, x) ≥ Ln+1(f) does not generally hold for
every convex function f and every x ∈ [0, 1]. Indeed, note that the inequality

Ln(e1) − Ln+1(e1) =
n∑

k=1

(pk(x) − pn+1(x))/(n(n + 1)) ≥ 0,

does not hold for pk(x) = xk (1 ≤ k ≤ n), pn+1(x) =
√

x. Therefore, Wang’s
Theorem [30] fails to guarantee convergence of the operators Ln(f, x) for gen-
eral pi(x) (1 ≤ i ≤ n).

Corollary 5.3 [18]. Under the same hypotheses and with the same notation as
in Theorem 5.1: If limn→∞(p1(x)+ · · ·+pn(x))/n = x uniformly on [0, 1], then

lim
n→∞ Ln(f ;x) = f(x) (5.3)

uniformly on [0, 1].

Like the classical Bernstein operators, we have a Voronovskaja type the-
orem for the Lototsky–Bernstein operators.

In order to derive a Voronovskaja type theorem for the classical Bernstein-
type operators, we usually follow Davis [5] (p. 117–118), beginning with the
sums

Tn,r(x) =
n∑

k=0

(k − nμ(x))rbn,k(x) = nr
r∑

i=0

(
r

i

)
(−μ(x))r−iLn(ei;x). (5.4)
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By (2.6)

Ln(ei;x) =
n∏

k=1

(I + pi(x)A)(ei)n(0) =
i∑

j=0

σj(p1(x), · · · , pn(x))Aj(ei)n(0),

(5.5)

where σj(u1, . . . , un) is the jth elementary symmetric function in the variables
u1, . . . , un (see [35]). Also by (2.14) and (2.15)

Aj(ei)n(0) = Δj
1/n(ei, 0) =

j∑

k=0

(−1)j−k

(
j

k

)
(k/n)i = j!S(i, j)/ni, (5.6)

where S(i, j) is the Stirling number of the second kind. Combining (5.4), (5.5)
and (5.6)

Tn,r(x) =
r∑

i=0

i∑

j=0

(
r

i

)
(−μ(x))r−ij!S(i, j)nr−iσj(p1(x), . . . , pn(x)). (5.7)

Along Davis’s line, we are concerned with the dependence of Tn,6(x) on n.
Davis’s proof is valid only when we can prove |Tn,6(x)| ≤ cn4 for x ∈ [0, 1].
However, since the pi(x) are mutually independent, it is quite hard to derive a
bound on Tn,6(x) in terms of powers of n. Instead, we will use (2.18) to achieve
our purpose.

Recall the classical Voronovskaja type theorem for Szász–Mirakjan oper-
ators [15,17]

lim
n→∞ n(Sn(f ;x) − f(x)) =

1
2
xf ′′(x), f ∈ Eα[0,∞). (5.8)

This result will be used in the proof of the following theorem, where we will
also use the modulus of continuity of f defined by

ω(f, t) := sup
|x−y|≤t,x,y∈[0,1]

|f(x) − f(y)|.

Theorem 5.4. Suppose that pi(x) ∈ C[0, 1], 0 < pi(x) < 1 for x ∈ (0, 1) and
pi(0) = 0, pi(1) = 1 (i ≥ 1). If the following three limits exist

μ(x) := lim
n→∞ λ(x)/n, (5.9)

ν(x) =: lim
n→∞ λ2(x)/n, (5.10)

η(x) =: lim
n→∞(λ(x) − nμ(x)), (5.11)

then for any f ∈ C2[0, 1], the rate of convergence of the positive linear sequence
of Lototsky–Bernstein operators is governed by

lim
n→∞ n(Ln(f ;x) − f(μ(x))) =

1
2
(μ(x) − ν(x))f ′′(μ(x)) + η(x)f ′(μ(x)).

(5.12)
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Proof. By (2.18)

Ln(f ;x) − f(μ(x))

= eλ(x)Afn(0) − f(μ(x)) − 1
2
λ2(x)eλ(x)AA2fn(0) +

∞∑

k=3

ak(−A)keλ(x)Afn(0)

=
[
eλ(x)Afn(0) − enμ(x)Afn(0)

]
+

[
enμ(x)Afn(0) − f(μ(x))

]

− 1
2
λ2(x)eλ(x)AA2fn(0) +

∞∑

k=3

ak(−A)keλ(x)Afn(0) =: I1 + I2 + I3 + I4.

(5.13)

By Lemma 3.3, I1 can be handled as follows:

I1 = eλ(x)Afn(0) − enμ(x)Afn(0)

= (λ(x) − nμ(x))enμ(x)AAfn(0) +
∫ λ(x)

nμ(x)

(λ(x) − u)euAA2fn(0)du. (5.14)

Now we deal with the integral part in (5.14) by using (3.9) and the contraction
of the operator T (u) = euA (‖euA‖ ≤ 1)

∣∣∣∣∣

∫ λ(x)

nμ(x)

(λ(x) − u)euAA2fn(0)du

∣∣∣∣∣ ≤
∥∥∥∥∥

∫ λ(x)

nμ(x)

(λ(x) − u)euAA2fndu

∥∥∥∥∥

≤
∫ λ(x)

nμ(x)

(λ(x) − u)
∥∥euAA2fn

∥∥ du

≤ ‖A2fn‖
∫ λ(x)

nμ(x)

(λ(x) − u)du ≤ (λ(x) − nμ(x))2

2n2
‖f ′′‖. (5.15)

To analyze the first term on the right-hand side of (5.14), consider Taylor
expansion

Afn(k) = f((k + 1)/n) − f(k/n)

= f ′(k/n)/n + f ′′(ξk)/(2n2), k/n < ξk < (k + 1)/n, k ≥ 0. (5.16)

Thus by (1.7) and (1.3) as n → ∞

nenμ(x)AAfn(0) = ne−nμ(x)
∞∑

k=0

(nμ(x))k

k!
(5.17)

[f ′(k/n)/n + f ′′(ξk)/(2n2)] → f ′(μ(x)). (5.18)

Combining (5.14)–(5.18), we conclude that

lim
n→∞ nI1 = η(x)f ′(μ(x)). (5.19)

By (5.8), it is obvious that

lim
n→∞ nI2 = lim

n→∞ n(Sn(f, μ(x)) − f(μ(x))) =
1
2
μ(x)f ′′(μ(x)). (5.20)
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To analyze I3, observe that as in (5.14) and (5.15), we have

n
[
eλ(x)AA2fn(0) − enμ(x)AA2fn(0)

]
= O(1/n). (5.21)

Moreover, using (3.9) yields

A2fn(k) = f((k + 2)/n) − 2f((k + 1)/n) + f(k/n)

= f ′′(ςk)/n2, k/n < ςk < (k + 2)/n, k ≥ 0, (5.22)

so

n2enμ(x)AA2fn(0) = e−nμ(x)
∞∑

k=0

(nμ(x))k

k!
f ′′(ςk)

= e−nμ(x)
∞∑

k=0

(nμ(x))k

k!
f ′′(k/n) + e−nμ(x)

×
∞∑

k=0

(nμ(x))k

k!
[f ′′(ςk) − f ′′(k/n)]. (5.23)

However, since 0 < ςk − k/n < 2/n
∣∣∣∣∣e

−nμ(x)
∞∑

k=0

(nμ(x))k

k!
[f ′′(ςk) − f ′′(k/n)]

∣∣∣∣∣

≤ e−nμ(x)
∞∑

k=0

(nμ(x))k

k!
|f ′′(ςk) − f ′′(k/n)|

≤ e−nμ(x)
∞∑

k=0

(nμ(x))k

k!
ω(f ′′, 2/n) = ω(f ′′, 2/n) → 0, n → ∞. (5.24)

Now (5.23) and (5.24) together with (1.7) and (1.3) yields

n2enμ(x)AA2fn(0) → f ′′(μ(x)). (5.25)

Therefore, by (5.21) and (5.25)

nI3 = −1
2
λ2(x)neλ(x)AA2fn(0)

= −1
2
λ2(x)n

[
eλ(x)AA2fn(0) − enμ(x)AA2fn(0)

]

− 1
2
λ2(x)/n · n2enμ(x)AA2fn(0)

→ −1
2
ν(x)f ′′(μ(x)). (5.26)

Finally, we need to estimate the remainder term I4. By (3.2) and (3.9), for
0 ≤ x < 1
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|I4| =

∣∣∣∣∣

∞∑

k=3

ak(−A)keλ(x)Afn(0)

∣∣∣∣∣ =

∣∣∣∣∣

∞∑

k=3

ak(−A)k−2eλ(x)AA2fn(0)

∣∣∣∣∣

≤
∞∑

k=3

|ak| ·
∥∥∥(−A)k−2eλ(x)A

∥∥∥ · ‖A2fn‖ ≤ c0

∞∑

k=3

(
eλ2(x)

k

)k/2 (
(k − 2)
eλ(x)

)(k−1)/2

‖f ′′‖/n2

≤ c0

∞∑

k=3

(
λ2(x)
λ(x)

)(k−1)/2 (
eλ2(x)

nk

)1/2

‖f ′′‖/n3/2

≤ c0‖f ′′‖
n3/2

(e

3

)1/2 λ2(x)/λ(x)
1 − √

λ2(x)/λ(x)
, (5.27)

where c0 =
√

e(1 +
√

π/2)
2

. Thus, from (5.27), for 0 ≤ x < 1

lim
n→∞ nI4 = 0. (5.28)

Combining (5.13),(5.19),(5.20),(5.26) and (5.28), we have derived the desired
result (5.12) for 0 ≤ x < 1. Since Ln(f ; 1) = f(1), the case x = 1 is immediate.

�

Corollary 5.5. Under the same hypotheses and with the same notation as in
Theorem 5.4: Let μ(x) = x, then

lim
n→∞ n (Ln(f ;x) − f(x)) =

1
2
(x − ν(x))f ′′(x) + η(x)f ′(x). (5.29)

Corollary 5.6. Under the same hypotheses and with the same notation as in
Theorem 5.4: If pi(x) = un(x) (1 ≤ i ≤ n) and limn→∞ un(x) = x, then

lim
n→∞ n(Ln(f ;x) − f(x)) =

1
2
(x − x2)f ′′(x) + η(x)f ′(x). (5.30)

Remark 5.7. If pi(x) = un(x) (1 ≤ i ≤ n), then the Lototsky–Bernstein oper-
ators Ln(f, x) reduce to King-type operators (see [1,3,4,13,14,19]). Therefore,
Theorem 5.4 is a generalization of the corresponding results for King-type op-
erators. For more details, see Theorem 2 in [1], Section 3.3 in [3] and Theorem
5.1 in [14].
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(2017)

[3] Cárdenas-Morales, D., Garrancho, P., Muñoz-Delgado, F.J.: Shape preserving
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Oszt. Közl. 20, 35–44 (1971)
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