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Systems with Singularities and Semilinear
Growth
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Abstract. We are concerned with non-autonomous radially symmetric sys-
tems, with certain strong repulsive singularities near the origin and with
some semilinear growth near infinity. By use of topological degree theory,
we prove the existence of large-amplitude periodic solutions whose mini-
mal period is an integer multiple of T , and these solutions rotate exactly
once around the origin in their period time. The result in this paper shows
that both of the antiperiodic and the periodic eigenvalues play the same
role.
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1. Introduction

In recent few years, Fonda and his coworkers have studied the periodic, sub-
harmonic and quasi-periodic orbits for the radially symmetric system

ẍ + f(t, |x|) x

|x| = 0, x ∈ R
2\{0}, (1.1)

where f : R×R+ → R,R+ = (0,+∞), is continuous L1-Carathédory function
and T -periodic in the first variable, and exhibits a repulsive singularity near
the origin in the second variable. For details, see [13–18]. Setting r(t) = |x(t)|,
the study of these solutions involves the scalar singular equation

r̈ + f(t, r) = 0. (1.2)
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In particular, in the paper [15], Fonda and Toader proved the following
result.

Theorem 1.1. Let the following two assumptions hold.

(A1) There are an integer M and two constants α, β such that
(Mπ

T

)2

< α ≤ lim inf
r→+∞

f(t, r)
r

≤ lim sup
r→+∞

f(t, r)
r

≤ β <
( (M + 1)π

T

)2

(1.3)

holds uniformly for every t ∈ [0, T ];
(A2) There are a positive constant δ and a continuous function h : (0, δ] → R

such that

f(t, r) ≤ h(r), for every t ∈ [0, T ] and every r ∈ (0, δ],

and

lim
r→0+

h(r) = −∞,

∫ δ

0

h(r)dr = −∞.

Then, Eq. (1.2) has a T -periodic solution, and there exists a k1 ≥ 1 such
that, for every integer k ≥ k1, Eq. (1.1) has a periodic solution xk(t) with a
minimal period kT , which makes exactly one revolution around the origin in
the period time kT. Moreover, there is a constant R > 0 such that, for every
k ≥ k1

1
R

< |xk(t)| < R, for every t ∈ R,

and, if μk denotes the angular momentum associated to xk(t) then

lim
k→∞

μk = 0.

Roughly speaking, system (1.1) is singular at 0 means that f(t, r) be-
comes unbounded when r → 0+. We say that (1.1) is of repulsive type (at-
tractive type) if f(t, r) → −∞ (respectively f(t, r) → +∞) when r → 0+. As
mentioned in [16], such a type of singular systems appears in many problems
of applications. Such as, if we take f(t, r) = c/r2(c > 0), it is the famous
Newtonian equation

ẍ +
cx

|x|3 = 0, x ∈ R
2\{0},

which describes the motion of a particle subjected to the gravitational attrac-
tion of a sun that lies at the origin. If we take f(t, r) = c/r2(c < 0), (1.1)
may be used to model Rutherford’s scattering of α particles by heavy atomic
nuclei.

The question of existence of non-collision periodic orbits for scalar equa-
tions and dynamical systems with singularities has attracted much attention
of many researchers over many years, such as [3,5,11,19,25–28]. There are two
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main lines of research in this area. The first one is the variational approach
[1,31,32]. More general systems is the type

ẍ(t) + ∇x(t, x(t)) = 0,

where V ∈ C1(R × R
N\{0},R) is a singular potential. In relation with the

variational approach, a common hypothesis is the unboundedness of the ac-
tion function near the singularity to guarantee that its critical points have
no collision with the singularity. Usually, the proof requires some strong force
condition, which was first introduced by Gordon in [21]. Roughly, it establishes
a maximum rate of growth of the potential near the singularity. For example,
if we consider the system

ẍ =
1

|x|α + f(t),

the strong force condition corresponds to the case α ≥ 2.
Besides the variational approach, topological methods have been widely

applied, starting with the pioneering paper of Lazer and Solimini [22]. In par-
ticular, some classical tools have been used to study singular differential equa-
tions and dynamical systems in the literature, including the degree theory
[13,23,33–35], the method of upper and lower solutions [2,30], Schauder’s fixed
point theorem [20], some fixed point theorems in cones for completely contin-
uous operators [7,24] and a nonlinear Leray–Schauder alternative principle
[6,8]. Contrasting with the variational setting, the strong force condition plays
here a different role linked to repulsive singularities. A counterexample in the
paper of Lazer and Solimini [22] shows that a strong force assumption (un-
boundedness of the potential near the singularity) is necessary in some sense
for the existence of positive periodic solutions in the scalar case.

For the scalar singular equation (1.2), we recall the following results.
When f(t, r) = f(r)−g(t), where f ∈ C(R,R) is T -periodic and g ∈ C(R+,R)
satisfies the following strong force condition at r = 0,

lim
r→0+

f(r) = −∞ and lim
r→0+

∫ r

1

f(r)dr = +∞

and f(r) is superlinear at r = +∞,

lim
r→+∞

f(r)
r

= +∞,

Fonda et al. [12] used the Poincaré–Birkhoff theorem to obtain the existence of
positive periodic solutions, including all subharmonics. Similarity, when f(t, r)
is superlinear at r = +∞ and satisfies the following strong force condition at
r = 0: There are positive constants c, c′, υ such that υ ≥ 1 and

cr−υ ≤ −f(t, r) ≤ cr−υ (1.4)

for every t and every r sufficiently small, del Pino and Manásevich proved in
[9] the existence of infinitely many periodic solutions to (1.2).
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When f(t, r) is semilinear at r = +∞, del Pino et al. [10] proved the
existence of at least one positive T -periodic solution of (1.2) if f(t, r) satisfies
(1.4) near r = 0, and the following nonresonance conditions at r = +∞: There
exists k ∈ N such that

(
kπ

T

)2

< lim inf
r→+∞

f(t, r)
r

< lim sup
r→+∞

f(t, r)
r

≤
(

(k + 1)π
T

)2

. (1.5)

Their result, later improved by Yan and Zhang [33], the conditions (1.5) is
removed and the existence of at least one positive solutions under suitable
nonresonance conditions is obtain by using the topological degree theory.

In [24,25], we considered the behaviour under the first eigenvalue. Our
main motivation is to obtain by the above papers [14,15], we also prove the
existence of large-amplitude periodic orbits whose minimal period is an integer
multiple of T , and rotate exactly once around the origin in their period time.
Compared with Theorem 1.1, the main novelty in the paper is represented by
the conditions at infinity, which remind of a situation between the higher order
eigenvalue, but are more general since the comparison involves the “weighted”
eigenvalue associated with the functions controlling the ratio f(t, r)/r (where
r is the radial coordinate).

The rest of this paper is organized as follows. In Sect. 2, some preliminary
results will be given. In Sect. 3, by use of topological degree theory, we will
state and prove the main results.

2. Preliminaries

In this section, we present some results which will be needed in Sect. 3. Recall
that the L1− Carathéodory means

– t → f(t, r) is measurable and T−periodic, for every r > 0;
– r → f(t, r) is continuous, for almost every t ∈ [0, T ];
– for every compact interval [a, b] ⊂ (0,+∞), there exists a �a,b ∈ L1(0, T )

such that

|f(t, r)| ≤ �a,b(t) for a.e. t ∈ [0, T ] and every r ∈ [a, b].

We look for solutions x(t) ∈ R
2 which never attain the singularity, in the

sense that

x(t) 	= 0, for every t ∈ R.

Using the same idea in [15], we may write the solutions of (1.1) in polar
coordinates

x(t) = r(t)(cos ϕ(t), sin ϕ(t)).
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Then we have the collisionless orbits if r(t) > 0 for every t. Moreover, Eq. (1.1)
is equivalent to the following system

{
r̈ + f(t, r) − μ2

r3 = 0,
r2ϕ̇ = μ,

(2.1)

where μ is the angular momentum of x(t). Recall that μ is constant in time
along any solution. In the following, when considering a solution of (2.1) we
will always implicitly assume that μ ≥ 0 and r > 0.

If x(t) is a T -radially periodic, then r(t) must be T -periodic. We will look
for solutions for which r(t) is T -periodic. We thus consider the boundary value
problem

{
r̈ + f(t, r) = μ2

r3 ,
r(0) = r(T ), ṙ(0) = ṙ(T ).

(2.2)

Let μ = 0, (2.2) reduce to the T -periodic problem (1.2) and let X be a Banach
space of functions such that C1([0, T ]) ⊆ X ⊆ C([0, T ]), with continuous
immersions, and set X∗ = {r ∈ X : min

t
r(t) > 0}.

Define the space:

D(L) = {r ∈ W 2,1(0, T ) : r(0) = r(T ), ṙ(0) = ṙ(T )},

and the following two operators:

L : D(L) ⊂ X → L1(0, T ), (Lr)(t) = r̈(t),

N : X∗ → L1(0, T ) is the Nemyskii operator associated with f :

(Nr)(t) = −f(t, r(t)).

The Carathéodory condition implies N is continuous. Taking σ ∈ R not be-
longing to the spectrum of L, the T -periodic for Eq. (1.2) is thus equivalent
to the operator equation

Lr = Nr,

which is also can be translated to

r − (L − σI)−1(N − σI)r = 0,

since L − σI is invertible.
Recall that a set Ω ⊆ X is uniformly positively bounded below if there

is a constant δ > 0 such that min r ≥ δ for every r ∈ Ω. In order to prove the
main result of this paper, we need the following lemma, which was proved by
Fonda and Toader [13].

Lemma 2.1. Let Ω be an open bounded subset of X, uniformly positively bounded
below. Assume that there is no solution of (1.2) on the boundary ∂Ω, and that

deg(I − (L − σI)−1(N − σI),Ω, 0) 	= 0.
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Then, there exists a k2 ≥ 1 such that, for every integer k ≥ k2, system
(1.1) has a periodic solution xk(t) with minimal period kT , which makes exactly
one revolution around the origin in the period time kT . The function |xk(t)|
is T -periodic and, when restricted to [0, T ], it belongs to Ω. Moreover, if μk

denotes the angular momentum associated to xk(t), then

lim
k→∞

μk = 0.

3. Main Results

This section is dedicated to the main results. Let us first introduce some known
results on eigenvalues. Let q(t) be a T -periodic potential such that q ∈ L1(R).
Consider the eigenvalue problems of

r′′ + (λ + q(t))r = 0 (3.1)

subject to the periodic boundary condition:

r(0) − r(T ) = r′(0) − r′(T ) = 0, (3.2)

or, to the antiperiodic boundary condition:

r(0) + r(T ) = r′(0) + r′(T ) = 0. (3.3)

We use λD
1 (q) < λD

2 (q) < · · · < λD
n (q) < · · · to denote all eigenvalues of (3.1)

with the Dirichlet boundary condition:

r(0) = r(T ) = 0. (3.4)

These eigenvalues, as a whole, are called the characteristic values of (3.1), the
following are the standard results. See, e.g. Reference [29].

There exist two sequences {λn(q) : n ∈ Z
+} and {λ̄n(q) : n ∈ N} such

that
(E1) −∞ < λ0(q) < λ1(q) ≤ λ1(q) < λ2(q) ≤ λ2(q) < · · · < λn(q) ≤ λn(q) <

· · · and λn(q) → +∞, λn(q) → +∞ as n → +∞.
(E2) λ is an eigenvalue of (3.1)–(3.2) if and only if λ = λn(q) or λn(q) if n

is even; and λ is an eigenvalue of (3.1)–(3.3) if and only if λ = λn(q) or
λn(q) if n is odd.

(E3) The comparison results hold for all of these eigenvalues. If q1 ≤ q2 then

λn(q1) ≥ λn(q2), λn(q1) ≥ λn(q2), λD
n (q1) ≥ λD

n (q2)

for any n ≥ 1.
(E4) For any n ≥ 1,

λn(q) = min{λD
n (qt0) : t0 ∈ R}, λn(q) = max{λD

n (qt0) : t0 ∈ R}
where qt0(t) denotes the translation of q(t) : qt0(t) ≡ q(t + t0).

(E5) λ̄n(q), λn(q), and λD
n (q) are continuous in q in the L1-topology of L1(0, T ).

Remark 3.1. When q ≡ 0, λ̄0(0) = 0 and λM (0) = λ̄M (0) = Mπ
T for all M ∈ N.

These eigenvalues coincide with the constants in condition (1.3).
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Now we present our main result.

Theorem 3.1. Let the following assumptions hold.
(H1) There exist a constant l0 > 0 and a function h ∈ C((0,∞),R) such that

f(t, r) ≤ h(r)

for all t and all 0 < r ≤ l0, where h satisfies

lim
r→0+

h(r) = −∞
and

lim
r→0+

H(r) = +∞,

with the primitive function H(r) =
∫ r

h(s)ds;
(H2) There exist positive T -periodic continuous functions φ,Φ such that

φ(t) ≤ lim inf
r→+∞

f(t, r)
r

≤ lim sup
r→+∞

f(t, r)
r

≤ Φ(t)

uniformily in t. Moreover, φ(t) and Φ(t) satisfy

φ(t) ≤ a ≤ Φ(t),

for some constant a;
(H3) There exist k ∈ Z

+ such that

λ̄k−1(φ) < 0, λk(Φ) > 0.

Then, Eq. (1.2) has a T -periodic solution, and there exist a K1 ≥ 1
such that, for every integer k ≥ K1, system (1.1) has a periodic solution with
minimal period kT , which makes exactly one revolution around the origin in
the period time kT. Moreover, exist constant C̃ > 0 (independent of μ and k)
such that

1
C̃

< |xk(t)| < C̃, for every t ∈ R and every k ≥ K1,

and, if μk denotes the angular momentum associated to xk(t) then

lim
k→∞

μk = 0.

In order to apply Lemma 2.1, we consider the T -periodic problem (1.2).
We will prove that deg(I − (L − σI)−1(N − σI),Ω, 0) = 1 for some uniformly
positively bounded open set Ω. To this end, we deform (1.2) to a simpler
singular autonomous equation

r′′ + ar =
1
r
,

where a > 0 is as in the condition (H2). Consider the following homotopy
equation

r′′ + f(t, r; τ) = 0, τ ∈ [0, 1], (3.5)
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where

f(t, r; τ) = τf(t, r) + (1 − τ)
(

ar − 1
r

)
.

We need to find a priori estimates for the possible positive T -periodic solutions
of (3.5).

Note that f(t, r; τ) satisfies the conditions (H1) uniformly with respect
to τ ∈ [0, 1]. Moreover, for each τ ∈ [0, 1], f(t, r; τ) satisfies (H2) with φ =
φτ = τφ(t) + (1 − τ)a and Φ = Φτ = τΦ(t) + (1 − τ)a. Since φτ (t) ≥ φ(t) and
Φτ (t) ≤ Φ(t),

λ̄k−1(φτ ) ≤ λ̄k−1(φ) < 0, λk(Φτ ) ≥ λk(Φ) > 0,

thus (H3) is satisfied uniformly in τ ∈ [0, 1]. In order to simplify the notation,
we just give a priori estimates for all possible positive solutions to (1.2)–(3.2).
The usual Lp-norm is denoted by ‖ · ‖p, and the supremum norm of C[0, T ] is
denoted by ‖ · ‖∞.

From (H1), there is l1 > 0 such that

f(t, s) < 0, for all 0 < s ≤ l1 ≤ l0. (3.6)

Since φ(t) > 0 for all t, by (H2), there exists L1 > l1 such that

f(t, s) ≥ φ(t)s > 0, for all s ≥ L1. (3.7)

Suppose that r(t) is a positive solution of (1.2) and t0 is a critical point
of r(t). By (3.6) and (3.7), r′′(t0) = −f(t0, r(t0)) will be positive if r(t0) < l1
and will be negative if r(t0) ≥ L1. We thus conclude with the following.

Lemma 3.2. Let l1, L1 be as above, assume that f(t, r) satisfies (H1) and (H2)
and t0 is a critical point of r(t).

(i) If r(t0) ≤ l1, then r(t0) is necessarily an isolated local minimum.
(ii) If r(t0) ≥ L1, then r(t0) is necessarily an isolated local maximum.

From (H2) , we know that there are ε0,D > 0 such that

f(t, s) ≤ (Φ(t) + ε0)s + D < Cs + D for all t and all s > 0, (3.8)

here C := max
t

Φ(t) + ε0 is a positive constants.

The following result is called the elasticity property in literature.

Lemma 3.3. Let r(t) be a positive Tperiodic solution of Eq. (1.2), assume
that f(t, r) satisfies (H1) and (H2). Then there exist some constants l2 ∈
(0, l1], L2 ∈ [L1,+∞) and B ≥ A > 0 such that the following properties hold.

(i) If t0 is a critical point of r(t) such that r(t0) ≤ l2, then the next critical
point s0 > t0 of r(t) satisfies r(s0) ≥ L1 and

A ≤ r2(s0)(H(r(t0)))−1 ≤ B. (3.9)
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(ii) If s0 is a critical point of r(t) such that r(s0) ≥ L2, then the next critical
point t1 > s0 of r(t) satisfies r(t1) ≤ l1 and

A ≤ r2(s0)(H(r(t1)))−1 ≤ B.

Proof. Let us prove (i). We first assume that r(t0) < l1. By Lemma 3.2, t0 is
an isolated local minimum point. Since s0 > t0 is the next critical point of r(t),
then we have r′(t) > 0 for t ∈ (t0, s0). The inverse function of r(t)(t ∈ (t0, s0))
is denoted by ξ. Thus there exists t∗ ∈ (t0, s0) such that r(t∗) = l0. Multiplying
(1.2) by r′(t) and integrating from t0 to s0, we obtain

0 =
∫ t0

s0

−r′′(t)r′(t)dt =
∫ t0

s0

f(t, r(t))r′(t)dt

=
∫ t∗

t0

f(t, r(t))r′(t)dt +
∫ s0

t∗
f(t, r(t))r′(t)dt

=
∫ l0

r(t0)

f(ξ(s), s)ds +
∫ r(s0)

l0

f(ξ(s), s)ds. (3.10)

Note from (H1) that f(t, s) ≤ h(s) for all s ∈ (0, l0]. Using the fact (3.8), we
get from (3.10) that

0 ≤
∫ l0

r(t0)

h(s)ds +
∫ r(s0)

l0

(Cs + D)ds

= H(l0) − H(r(t0)) +
1
2
C(r2(s0) − l20) + D(r(s0) − l0)

≤ Cr2(s0) − H(r(t0)) + D′.

for some D′ > 0. Hence

Cr2(s0) ≥ H(r(t0)) − D′.

Since H(r) → +∞ as r → 0+, we can take some l′2 ∈ (0, l1] such that D′ ≤
H(r)
2 for all r ∈ (0, l′2].

Now, if r(t0) ≤ l′2, then

Cr2(s0) ≥ H(r(t0))
2

and

r2(s0) ≥ H(r(t0))
2C

=: AH(r(t0)).

Thus the left-hand inequality of (3.9) is proved.
By (3.7), one has some C ′ > 0 and D̃ > 0 such that

f(t, r) > C ′r − D̃

for all r ≥ l0.
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Now we get from (3.10) and f is an L1-Carathéodory function that

0 ≥
∫ l0

r(t0)

f(ξ(s), s)ds +
∫ r(s0)

l0

(C ′s − D̃)ds

≥ 1
2
C ′r2(s0) − D′′

for some D′′ > 0. Hence
1
2
C ′r2(s0) ≤ D′′.

Also since H(r) → +∞ as r → 0+, we can take some l′′2 ∈ (0, l1] such that
D′′ ≤ H(r) for all r ∈ (0, l′′2 ].

Now, if r(t0) ≤ l′′2 , then

1
2
C ′r2(s0) ≤ H(r(t0))

and

r2(s0) ≤ 2
C ′ H(r(t0)) =: BH(r(t0)).

Thus the right-hand inequality of (3.9) is proved.
We get from (3.9) that if r(t0) ≤ l′2 then r(s0) ≥ √

AH(r(t0)). If r(t0)
satisfies further that r(t0) ≤ H−1(L2

1/A), then r(s0) ≥ L1.
These show that if r(t0) satisfies

r(t0) ≤ min (l′2, l
′′
2 ,H−1(L2

1/A)),

then all conclusions in (i) have been proved. The proof of (ii) is similar. �

Remark 3.2. Let r(t) be a positive T -periodic solution of (1.2), from the fact
that H(r) → +∞ as r → 0+, we have, if max

t
r(t) is large then min

t
r(t) is

small, and vice versa.

Lemma 3.4. Let r(t) be any T -periodic solution of (1.2). There exist l3 ∈ (0, l2]
and L3 ∈ [L2,+∞). If either min

t
r(t) ≤ l3 or max

t
r(t) ≥ L3, then r(t) has

2N(N ∈ N) critical points in [t0, t0 + T ):

t0 < s0 < t1 < s1 < · · · < tN−1 < sN−1,

where t0 ∈ [0, T ), ti’s are local minimum points and si’s (i = 0, 1, . . . , N − 1)
are local maximum points.

Proof. We start with the first t0 ∈ [0, T ) such that r(t0) = m0 := min
t

r(t)

and will study all critical points of r(t) within [t0, t0 + T ). We assume that
m0 < l2. Let s0 > t0 be the next critical point of r(t). By Lemmas 3.2 and 3.3,
r(s0) ≥ L1, and t0, s0 are local minimal and maximal points respectively.



Vol. 72 (2017) Periodic Orbits for Radially Symmetric Systems 2001

We claim that s0 − t0 have a positive lower gap. To see this, we know
that r′(t) > 0 for t ∈ (t0, s0) and also let t∗ ∈ (t0, s0) be such that r(t∗) = l0.
From (3.8) we have, for t ∈ (t∗, s0),

−r′′(t) = f(t, r(t)) < Cr(t) + D

and

−r′′(t)r′(t) < (Cr(t) + D)r′(t).

Given t ∈ (t∗, s0), integrating the inequality above from t to s0, we have

1
2
(r′(t))2 =

∫ s0

t

−r′(t)r′′(t)dt <

∫ s0

t

(Cr(t) + D)r′(t)dt

=
C

2
(r2(s0) − r2(t)) + D(r(s0) − r(t))

≤ (Cr(s0) + D)(r(s0) − r(t)),

where the r(t) ≤ r(s0)(t ∈ (t∗, s0)) is used.
Let M0 = r(s0). We have

r′(t) ≤
√

2(CM0 + D)
√

M0 − r(t), t ∈ (t∗, s0).

Thus

s0 − t0 ≥ s0 − t∗ =
∫ s0

t∗
dt =

∫ M0

r0

1
r′(t)

dr(t)

≥
∫ M0

l0

dr(t)√
2(CM0 + D)

√
M0 − r(t)

=

√
2(M0 − l0)
CM0 + D

.

From

lim
y→+∞

√
2(y − l0)
Cy + D

=

√
2
C

,

there exists E0 > L2 such that if

M0 > E0, (3.11)

then

s0 − t0 ≥
√

1
C

=: V0.

Next, we consider the next critical point t1 > s0 of r(t). By Lemma 3.3,
m1 := r(t1) < l1 again. Note that r′(t) < 0 on (s0, t1). Let t∗ ∈ (s0, t1) be such
that r(t∗) = l0. For t ∈ (s0, t∗), from (3.8) we have

−r′′(t) = f(t, r(t)) < Cr(t) + D
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and

−r′′(t)r′(t) > (Cr(t) + D)r′(t).

Given t ∈ (s0, t∗), integrating the inequality above from s0 to t, we have

−1
2
(r′(t))2 >

∫ t

s0

(Cr(t) + D)r′(t)dt

≥ (r(t) − M0)
(

C(r(t) + M0)
2

+ D

)
.

Thus

−r′(t) <
√

2(CM0 + D)
√

M0 − r(t), t ∈ (s0, t∗).

Similarly,

t1 − s0 ≥ t∗ − s0 ≥
√

2(M0 − r0)
CM0 + D

.

Under (3.11), one has

t1 − s0 ≥ V0.

By the Lemma 3.3, these conditions will be verified when m0 ≤ l3, where
l3 ∈ (0, l2) is sufficiently small. Processing as above, we can find the next
critical point s1 − t1 > V0 and t2 − s1 > V0, this process will be terminated
after 2N steps to reach at the critical point t0 + T , where N > T/V0. This
completes the proof. �
Lemma 3.5. Let rn(t) be a sequence of positive T -periodic solutions of r′′

n +
f(t, rn) = 0 such that Mn := ‖rn‖∞ → +∞. Then zn = rn

Mn
has a subsequence

converging in C(R/TZ) to some z(t).

Proof. From Remark 3.2 we know Nn := min
t

rn(t) → 0 as n → ∞. By

Lemma 3.4, one knows that if n is large, there exists mn ∈ {1, 2, . . . , N} such
that rn has finitely many critical points

tn0 < sn
0 < tn1 < sn

0 < · · · < tnmn−1 < sn
mn−1,

and the next critical point will be tn0 + T, where tn0 ∈ [0, T ), tni ’s are local
minimum points and sn

i ’s are local maximum points of rn.
By passing to subsequence if necessary, we may assume that mn are the

same number m ∈ {1, 2, . . . , N}. Moreover, as n → ∞,

tni → ti, sn
i → si

for each i = 0, 1, . . . ,m − 1. From Lemma 3.4, as n → ∞, one has∫ rn

−1
s
ds = − ln rn(tni ) ≈ − ln Nn and rn(sn

i ) ≈ Mn, i = 0, 1, . . . , m − 1,

and

ln Nn ≈ M2
n.
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Note that for any n, ‖zn‖ = 1 and zn satisfies

z′′ + fn(t, z) = 0, (3.12)

where

fn(t, z) =
f(t,Mnz)

Mn
.

From (3.8)

fn(t, z) ≤ CMnz + D

Mn
= Cz +

D

Mn
.

Multiplying (3.12) by zn(t) and integrating by parts, we get
∫ T

0

| z′
n |2 dt =

∫ T

0

fn(t, zn(t))zn(t)dt

≤
∫ T

0

(
Czn(t) +

D

Mn

)
zn(t)dt

≤
∫ T

0

(
C‖zn‖2 +

D‖zn‖
Mn

)
dt

= T

(
C +

D

Mn

)
.

Thus {zn} is bounded in H1(0, T ). Passing to a subsequence if necessary, we
can assume that zn → z weakly in H1(0, T ) and zn → z strongly in C(0, T ).
Obviously, z(t) ≥ 0 for all t. As ‖zn‖ ≡ 1, ‖z‖ = 1 and z 	= 0. We will
prove that z(t) has only the isolated zeros ti(i = 0, 1, 2, . . . ,m) in the interval
[t0, t0 + T ]. See Lemma 3.6 below.

Let U = {t ∈ R : z(t) > 0}, which is an open subset of R. Take any
interval I = (α, β) from U . Let J be an arbitrary closed subinterval of I.
Define

qn(t) =
f(t, rn(t))

rn(t)
, t ∈ J.

Then zn satisfies

z′′
n + qn(t)zn = 0. (3.13)

By (H2), for any given ε > 0, we have

φ(t) − ε < qn(t) < Φ(t) + ε (3.14)

for all n sufficiently large and all t ∈ J . In particular the sequence {qn(t)} is
bounded in L2(J). We can assume, passing to a subsequence if necessary, that
qn(t) → qJ (t) weakly in L2(J) to some function qJ (t). From (3.14), one has

φ(t) − ε < qJ(t) < Φ(t) + ε

for a.e.t ∈ J . Since ε is arbitrary, we conclude that qJ satisfies

φ(t) < qJ (t) < Φ(t) a.e. t ∈ J. (3.15)
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As J is arbitrary, let us define the function qI : I → R by

qI(t) = qJ (t) whenever t ∈ J.

Note that qI(t) is well defined on I by the uniqueness of weak limits.
For any C1 function v whose support is contained in J , it follows from

(3.13) that ∫

J

z′
nv′dt =

∫

J

qn(t)zn(t)v(t)dt

because v = 0 on ∂J . Using the convergence results zn → z weakly in H1(0, T ),
qn → qI weakly in L2(J) and zn → z strongly in C(0, T ), we have∫

J

z′v′dt =
∫

J

qI(t)zn(t)v(t)dt

for all C1 function v with supports in J . As J is an arbitrary closed interval in
I, the regularity theory shows that z(t) is a classical solution of the following
linear equation

z′′ + qI(t)z = 0, t ∈ I. (3.16)

Note that z(t) > 0 for t ∈ I = (α, β). It is easy to verify from (3.16) that both
the limits limt→α+ z′(t) and limt→β− z′(t) exist and are nonzero. In fact, for
any t1, t2 ∈ I, one has

|z′(t2) − z′(t1)| =
∣∣∣∣
∫ t2

t1

qI(t)z(t)dt

∣∣∣∣ ≤ ‖Φ‖|t2 − t1|.

Thus the existence of limt→α+ z′(t) and limt→β− z′(t) follows from the Cauchy
theorem. Now (3.16) has a nonzero solution z(t) on [α, β]. Since z(α) = z(β) =
0, it is necessary that z′(α) 	= 0 and z′(β) 	= 0 by the uniqueness of solutions
of linear ODEs.

As I is an arbitrary interval contained in U and R\U contains only count-
able points, we can define a measurable T−periodic function q(t) by

q(t) = qI(t), whenever t ∈ I.

By (3.15), q(t) ∈ (φ,Φ). Moreover, z(t) satisfies for a.e. t ∈ R the following
equation

z′′(t) + q(t)z = 0. (3.17)

By Lemma 3.4, if n is large, there exists m ∈ {1, 2, . . . , N} such that
rn(t) has finitely many critical points

tn0 < sn
0 < tn1 < sn

1 < · · · < tnm−1 < sn
m−1

and the next critical point will be tn0 + T , where tn0 ∈ [0, T ), tni ’s are lo-
cal minimum points and sn

i ’s are local maximum points of rn(t). As n →
+∞, tni → ti, s

n
i → si for each i = 0, 1, . . . ,m − 1, the zeros of z(t) are

t0 < t1 < · · · < tm−1 < t0 + T =: tm. As all the limits limt→ti± z′(t) exist and
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are nonzero, one can then choose nonzero constants ξi so that the following
function

z̃(t) = ξiz(t), t ∈ [ti−1, si−1], i = 1, 2, . . . ,m,

is C1 on [t0, tm]. Obviously, z̃ satisfies z(t0) = z(t0 +T ) = 0. For such a choice
of t0 and φ(t) ≤ q(t) ≤ Φ(t), z̃ satisfies (3.17) for t ∈ [t0, tm]. Moreover, the
function z̃ can be extended to whole R according so that it satisfies (3.17) on
R. �

Lemma 3.6. The limiting function z(t) has only isolated zeros t0 < t1 < · · · <
tm−1 < t0 + T =: tm in [t0, tm].

Proof. First we know from (3.6) and (3.7) that

f(t, s) = 0 ⇒ s ∈ [l1, L1]. (3.18)

Now we study the changes of rn(t) for t ∈ In := [sn
0 , sn

1 ], where the
interval is spanned by two consecutive local maximum points of rn(t).

Note that r′′
n(sn

0 ) < 0 and r′′
n(tn1 ) > 0. Let un ∈ (sn

0 , tn1 ) be the first point
left to tn1 such that r′′

n(un) = 0. Similarly, let vn ∈ (tn1 , sn
1 ) be the first point

right to tn1 such that r′′
n(vn) = 0. Thus

f(t, rn(t)) < 0 for all t ∈ (un, vn). (3.19)

Since f(un, rn(un)) = f(vn, rn(vn)) = 0, we have from (3.18) that

rn(un), rn(vn) ∈ [l1, L1]. (3.20)

We claim that vn − un → 0 as n → ∞.
For t ∈ (tn1 , vn), we have r′′

n(t) > 0. As r′
n(tn1 ) = 0, r′

n(t) > 0 for all
t ∈ (tn1 , vn) and rn(t) is strictly increasing on [tn1 , vn]. We use ηn to denote the
inverse function of rn restricted to (tn1 , vn).

From condition (H1), one has,

−f(t, s) ≥ −h(s) for all 0 < s ≤ l0.

From

r′′
n(t)r′

n(t) = −f(t, rn(t))r′
n(t),

we integrate the equation from tn1 to t, (t ∈ (tn1 , vn)), and obtain

(r′
n(t))2 = −2

∫ t

tn1

f(t, rn(t))r′
n(t)dt = −2

∫ rn(t)

rn

f(ηn(s), s)ds,

where rn = rn(tn1 ). Note that rn → 0 as n → +∞.
For t ∈ (tn1 , r−1

n (l0)], one has

(r′
n(t))2 ≥ −2

∫ rn(t)

rn

h(s)ds = 2(H(rn) − H(rn(t))).
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For t ∈ (r−1
n (l0), vn], by noticing (3.19), we have

(r′
n(t))2 = −2

∫ rn(t)

l0

f(ηn(s), s)ds − 2
∫ l0

rn

f(ηn(s), s)ds

≥ −2
∫ l0

rn

f(ηn(s), s)ds ≥ −2
∫ l0

rn

h(s)ds

= 2(H(rn) − H(l0)).

Thus is,

r′
n(t) ≥

{√
2(H(rn) − H(rn(t))), if t ∈ (tn1 , r−1

n (l0)],√
2(H(rn) − H(l0)), if t ∈ (r−1

n (l0), vn]
(3.21)

By the intermediate value theorem, there exists ςn ∈ (rn, l0) such that

vn − tn1 =
∫ vn

tn1

dt =
∫ rn(v

n)

rn

1
r′(t)

dr(t) =
∫ l0

rn

1
r′ dr +

∫ rn(v
n)

l0

1
r′(t)

dr(t)

≤
∫ l0

rn

1√
2(H(rn)−H(rn(t)))

dr(t)+
∫ rn(v

n)

l0

1√
2(H(rn) − H(l0))

dr(t)

=
l0 − rn√

2(H(rn) − H(ςn(t)))
+

rn(vn) − l0√√
2(H(rn) − H(l0))

≤ l0 − rn√
2(H(rn) − H(ςn(t)))

+
L1√√

2(H(rn) − H(l0))
,

where (3.20) is used. Since rn → 0,H(r̄n) → +∞, it is easy to see that
vn − tn1 → 0, as n → +∞. Similarly tn1 − un → 0 as n → +∞. Thus the claim
has been proved. It is obvious that vn, un → t1.

From (3.21), for n large, we have some constant k > 0, z′
n(vn) ≥ k. Now

for t > t1, we have vn < t for n large,

zn(t) = zn(vn) + z′
n(vn)(t − vn) +

z′′
n(ζn)

2
(t − vn)2

= zn(vn) + z′
n(vn)(t − vn) − f(ζn, xn(ζn))

2Mn
(t − vn)2, (3.22)

where ζn ∈ (vn, t). Using the estimate (3.8), one has

−f(ζn, xn(ζn))
2Mn

≥ −Crn(ζn) + D

2Mn
≥ −C

for n large. By (3.22), if n is large,

zn(t) ≥ zn(vn) + z′
n(vn)(t − vn) − C(t − vn)2.

Taking the limit, we have

z(t) ≥ k(t − t1) − C(t − t1)2,
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for all t > t1. Similarly, we will have some constants k′ > 0 and C ′ > 0 such
that

z(t) ≥ k′(t − t1) − C ′(t − t1)2

for all t < t1. From these, we know that t1 is an isolated zero of z(t). The same
argument shows all ti(i = 2, 3, . . . , m) are isolated zeros of z(t).

As a final step, we prove that z(t) will be positive for all t ∈ (t0, t0 + T )
except t = ti, i = 1, 2, . . . ,m. For definiteness, let t ∈ (t0, t1). Note that tni → ti
and sn

i → si as n → ∞. Moreover, from the proof of Lemma 3.4, we know
that sn

0 − tn0 and tn1 − sn
0 have positive lower bounds. We can fix some interval

t ∈ [α, β] ⊂ (t0, t1) such that α − t0 is small, z(α) > 0 and t1 − β is small,
z(β) > 0. Moreover, for n large, one has

tn0 < α < sn
0 < β < tn1 .

Since rn(t) has only the critical points tni , sn
i on [tn0 , tn0 + T ), we know that

rn(t) is increasing on [tn0 , sn
0 ] and is decreasing on [sn

0 , tn1 ]. Hence, for n large,

rn(t) ≥ min(rn(α), rn(β)).

Thus

z(t) = lim
n→∞

rn(t)
Mn

≥ min
(

rn(α)
Mn

,
rn(β)
Mn

)

= min(z(α), z(β)) > 0.

We finish all proof of the lemma. �

For (3.1) with λ = 0, the Hill’s equations

r′′ + q(t)r = 0, (3.23)

and the corresponding Poincaré matrix is

MT =

(
ψ1(T ) ψ2(T )

ψ′
1(T ) ψ′

2(T )

)
,

where ψi(t)(i = 1, 2) are solutions of (3.23) satisfying ψ1(0) = ψ′
2(0) = 1 and

ψ′
1(0) = ψ2(0) = 0, respectively. The eigenvalues μ1,2 of MT are then called

the Floquet multipliers of (3.1). They satisfy μ1 · μ2 = 1. Equation (3.23) is
called elliptic if λ1 = λ̄2, |λ1| = 1, λ1 	= ±1. Let us clarify the meaning of (H3)
in Theorem 3.1.

Lemma 3.7 [33]. Let q(t) be an measurable T -periodic function satisfying φ(t) ≤
q(t) ≤ Φ(t). The condition (H3) is equivalent to each of the following asser-
tions.

(i) For any t0 ∈ R and n ∈ N, λD
n (qt0) 	= 0.

(ii) Equation (3.23) is elliptic.

Now we give a priori estimates on T -periodic solutions of (1.2).
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Lemma 3.8. Assume that (H1), (H2) and (H3) are satisfied. Then there exist
constants C1, C2 > 0 such that any positive T -periodic solutions r(t) of (1.2)
satisfies

C1 < r(t) < C2 for all t. (3.24)

Proof. We argue by contradiction. Assume that (1.2) has a sequence {rn} of
positive T -periodic solutions such that ‖rn‖∞ → ∞. It follows from Lemma 3.5
that one has some t0 and some non-zero function z̃ such that z′′(t)+ q(t)z = 0
and z(t0) = z(t0 + T ) = 0 are satisfied. Let now

y(t) = z̃(t + t0), t ∈ [0, T ].

Then y(t) 	= 0 satisfies

y′′ + qt0(t)y = 0, t ∈ [0, T ].

and the Dirichlet boundary condition (3.4). This implies that λD
n (qt0) = 0 for

some n, a contradiction to Lemma 3.7. The Lemma is thus proved. �

Lemma 3.9. There exist C3 > 0 such that any positive T -periodic solution r(t)
of (1.2)–(3.2) satisfies

‖r′(t)‖∞ < C3.

Proof. Integrating (1.2) from 0 to T , we get
∫ T

0

r′′(t)dt +
∫ T

0

f(t, r(t))dt = 0.

Thus
∫ T

0
f(t, r(t))dt = 0. From (3.8), we recall that there are ε0,D > 0 such

that

f(t, s) ≤ (Φ(t) + ε0)s + D

for all t and s > 0.
As

∫ T

0
f(t, r(t))dt = 0, thus ‖f(t, r(t))‖1 = 2‖f+(t, r(t))‖1. Since r(0) =

r(T ), there exists tf ∈ [0, T ] such that r′(tf ) = 0. Therefore

‖r′‖∞ = max
0≤t≤T

|r′(t)| = max
0≤t≤T

∣∣∣∣∣
∫ t

tf

r′′(s)ds

∣∣∣∣∣

≤
∫ T

0

|f(s, r(s))| ds = 2
∫ T

0

∣∣f+(s, r(s))
∣∣ ds

≤ 2
∫ T

0

∣∣(Φ+(s) + ε0)r(s) + D
∣∣ ds

≤ 2
(
(‖Φ+‖1 + Tε0)C2 + DT

)
:= C3.

where Φ+(t) = max{Φ(t), 0}, f+(t, r(t)) = max{f(t, r(t)), 0}. �
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Now we give the proof of Theorem 3.1. Consider the homotopy equation
(3.5), we can get a priori estimates as in Lemmas 3.8 and 3.9. That is, any
positive T -periodic solution of (3.5) satisfies

C ′
1 < r(t) < C ′

2, ‖r′‖∞ < C ′
3

for some positive constants C ′
1, C

′
2, C

′
3. Define C̃ = max{1/C ′

1, C
′
2, C

′
3} and let

the open bounded in X be

Ω = {r ∈ X :
1
C̃

< r(t) < C̃ and |r′(t)| < C̃ for all t ∈ [0, T ]}.

By the homotopy invariance of degree and the result of Capietto et al. [4],

deg(I − (L − σI)−1(N − σI),Ω, 0) = deg(ar − 1/r,Ω ∩ R, 0) = 1.

Thus (3.5), with τ = 1, has at least one solution in Ω, which is a positive
T -periodic solution of (1.2). By Lemma 2.1, the proof of Theorem 3.1 is thus
completed.

As a direct consequence of Theorem 3.1, we consider the system

ẍ +
(

6|x| − 1
|x|2

)
x

|x| = 0, x ∈ R
2\{0}, (3.25)

take h(r) = f(t, r) = 6r−1/r2, φ(t) = Φ(t) = 6, and λD
n (6) = (nπ/T )2 −6 	= 0

for all n ∈ N, then it is easy to see that (H1)− (H3) are satisfied, system (3.25)
has a family of periodic orbits {xk} with angular momentum {μk} satisfying
limk→∞ μk = 0.

Acknowledgements

This work is supported by the National Natural Science Foundation of China
(Grant Nos. 11461016 and 11601109), Hainan Natural Science Foundation
(Grant No. 117005), China Postdoctoral Science Foundation funded Project
(Grant No. 2017M612577), Young Foundation of Hainan University (Grant
No. hdkyxj201718).

References

[1] Ambrosetti, A., Coti Zelati, V.: Periodic Solutions of Singular Lagrangian Sys-
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