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Abstract. Using an identity due to Gessel and Stanton and some proper-
ties of the p-adic Gamma function, we establish a p-adic supercongruence
for truncated hypergeometric series 7F6. From it we deduce some related
supercongruences, which extend certain recent results and confirm a su-
percongruence conjecture.
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1. Introduction

Throughout this paper, let p denote an odd prime. Based on a result of Ahlgren
and Ono [1], Kilbourn proved [6] that

p−1
2∑

k=0

((
1
2

)
k

k!

)4

≡ ap (mod p3), (1.1)

where (x)k = x(x + 1) · · · (x + k − 1) and ap is the p-th coefficient of a weight
4 modular form

η(2z)4η(4z)4 := q
∏

n≥1

(1 − q2n)4(1 − q4n)4, q = e2πiz.

For more such supercongruences, one refers to Rodriguez-Villegas [13].
Motivated by Ramanujan-type formulas for 1/π, Zudilin [15] obtained

several supercongruences by using the WZ method. For example, he proved
that

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-017-0744-y&domain=pdf
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p−1
2∑

k=0

(−1)k(4k + 1)

((
1
2

)
k

k!

)3

≡ (−1)
p−1
2 p (mod p3), (1.2)

which was conjectured by van Hamme [14] and first confirmed by Mortenson
[12].

McCarthy and Osburn [9] proved another conjecture of van Hamme [14]:

p−1
2∑

k=0

(−1)k(4k + 1)

((
1
2

)
k

k!

)5

≡
⎧
⎨

⎩
− p

Γp( 3
4 )

4 (mod p3) if p ≡ 1 (mod 4),

0 (mod p3) if p ≡ 3 (mod 4),
(1.3)

where Γp(·) stands for the p-adic Gamma function recalled in next section.
Hypergeometric series are very important in many research fields, includ-

ing algebraic varieties, differential equations and modular forms. It is known
that some of the truncated hypergeometric series are related to the number of
rational points on certain algebraic varieties over finite fields and further to
coefficients of modular forms. For complex numbers ai, bj and z with none of
the bj being negative integers or zero, we define the truncated hypergeometric
series as

rFs

[
a1, a2, · · · , ar

b1, b2, · · · , bs
; z

]

n

=
n∑

k=0

(a1)k(a2)k · · · (ar)k

(b1)k(b2)k · · · (bs)k
· zk

k!
.

All of the left-hand sides of (1.1)–(1.3) can be rewritten as the truncated
hypergeometric series.

Using the Dougall’s formula and some properties of the p-adic Gamma
function, Long and Ramakrishna [8] proved that for any prime p ≥ 5,

7F6

[ 1
3 , 1

3 , 1
3 , 1

3 , 1
3 , 1

3 , 7
6

1, 1, 1, 1, 1, 1
6

; 1
]

p−1

≡
⎧
⎨

⎩

−pΓp

(
1
3

)9 (mod p6) if p ≡ 1 (mod 6),

− 10
27p4Γp

(
1
3

)9 (mod p6) if p ≡ 5 (mod 6),

which extends a result of van Hamme [14].
Some other interesting supercongruences for the truncated hypergeomet-

ric series were obtained by several authors, see, for example, [2,5,7,8,11].
Let 〈x〉p denote the least non-negative integer r with x ≡ r (mod p) and

�x� denote the greatest integer less than or equal to a real number x. The aim
of this paper is to establish the following supercongruence.
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Theorem 1.1. Let p ≥ 5 be a prime. For any p-adic integer α with 0 ≤ 〈α〉p ≤
�p/4�, we have

7F6

[ 1
2 , 1

2 , 1
2 , 1

4 , 7
6 , 1

2 + α, 1
4 − α

1, 1, 1, 1
6 , 1 + 2α, 1

2 − 2α
; 1

]

p−1
2

≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−1)
p+3
4 pΓp

(
1
2

)
Γp

(
1
4

)2 Γp (1 + α) Γp

(
3
4 − α

)

×Γp

(
1
2 + α

)3 Γp

(
1
4 − α

)3 (mod p3) if p ≡ 1 (mod 4),

0 (mod p3) if p ≡ 3 (mod 4).
(1.4)

Some related supercongruences for truncated hypergeometric series can
be deduced from (1.4).

Corollary 1.2. For any prime p ≥ 5, we have

5F4

[ 1
2 , 1

2 , 1
2 , 1

4 , 7
6

1, 1, 1, 1
6

;
1
4

]

p−1
2

≡
⎧
⎨

⎩

(−1)
p+3
4 pΓp

(
1
2

)
Γp

(
1
4

)2 (mod p3) if p ≡ 1 (mod 4),

0 (mod p3) if p ≡ 3 (mod 4).
(1.5)

Corollary 1.3. For any prime p ≥ 5, we have

6F5

[ 1
2 , 1

2 , 1
2 , 1

4 , 1
4 , 7

6

1, 1, 1, 1, 1
6

; 1
]

p−1
2

≡
⎧
⎨

⎩

−pΓp

(
1
4

)4 (mod p3) if p ≡ 1 (mod 4),

0 (mod p3) if p ≡ 3 (mod 4).
(1.6)

Supercongruences (1.5) and (1.6) extend some recent results of He [5,
Theorem 1.1], which stated the corresponding supercongruences hold mod p2.
It should be mentioned that the factor (−1)

p+3
4 was missing in the first case

of [5, (1.1)]. Supercongruence (1.5) confirms the second conjectural supercon-
gruence in [5, Conjecture 1.2].

In the next section, we first recall some properties of the Morita’s p-
adic Gamma function and a terminating hypergeometric series identity due to
Gessel and Stanton. The proof of Theorem 1.1 and Corollary 1.2 and 1.3 will
be given in Sect. 3

2. Some Lemmas

We first recall some basic properties of the Morita’s p-adic Gamma function.
For more details, one refers to [3, §11.6] and [10]. Let p be an odd prime and Zp
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denote the set of all p-adic integers. For x ∈ Zp, the Morita’s p-adic Gamma
function [3, Definition 11.6.5] is defined as

Γp(x) = lim
m→x

(−1)m
∏

0≤k<m
(k,p)=1

k,

where the limit is for m tending to x p-adically in Z≥0.

Lemma 2.1. Suppose p is an odd prime and x ∈ Zp. Then

Γp(1) = −1, (2.1)

Γp(x)Γp(1 − x) = (−1)ap(x), (2.2)

Γp(x + 1)
Γp(x)

=

{
−x if vp(x) = 0,
−1 if vp(x) > 0,

(2.3)

where ap(x) ∈ {1, 2, · · · , p} with x ≡ ap(x) (mod p) and vp(·) denotes the
p-order.

In fact, (2.2) can be extended as follows.

Lemma 2.2. (Long and Ramakrishna [8, (2.3)]) Let p ≥ 5 be a prime, y ∈ Cp

and x ∈ Q with vp(x) ≥ 0. Then

Γp(x + y)Γp(1 − x − y) = (−1)ap(x). (2.4)

Lemma 2.3. (Long and Ramakrishna [8, Lemma 17, (4)]) Let p be an odd
prime. If a ∈ Zp, n ∈ N such that none of a, a + 1, · · · , a + n − 1 in pZp, then

(a)n = (−1)n Γp(a + n)
Γp(a)

. (2.5)

The following lemma is a special case of the theorem due to Long and
Ramakrishna [8, Theorem 14].

Lemma 2.4. Suppose p ≥ 5 is a prime. If a ∈ Zp,m ∈ Cp satisfying vp(m) ≥ 0,
then

Γp(a + mp) ≡ Γp(a)
2∑

k=0

Gk(a)
k!

(mp)k (mod p3), (2.6)

where Gk(a) = Γ(k)
p (a)/Γp(a) ∈ Zp and Γ(k)

p (x) is the k-th derivative of Γp(x).

Lemma 2.5. (Gessel and Stanton [4, (1.8)]) If n is a non-negative integer, then

7F6

[
a, b, a − b + 1

2 , 1 + 2a
3 , 1 − 2d, 2a + 2d + n,−n

2a − 2b + 1, 2b, 2a
3 , a + d + 1

2 , 1 − d − n
2 , 1 + a + n

2

; 1
]

=

⎧
⎪⎪⎨

⎪⎪⎩

(
1
2

)
r
(b + d)r

(
d − b + a + 1

2

)
r
(a + 1)r(

b + 1
2

)
r

(
a + d + 1

2

)
r
(d)r (a − b + 1)r

if n = 2r,

0 if n = 2r + 1.

(2.7)
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3. Proof of (1.4)–(1.6)

Proof of (1.4). Let ω be any primitive 3th root of unity. Letting n = p−1
2 , a =

1
4 , b = 1

2 + α, d = 1+ω2p
4 in (2.7) and noting that 1 + ω + ω2 = 0, we obtain

7F6

[ 1−p
2 , 1−ωp

2 , 1−ω2p
2 , 1

2 + α, 1
4 − α, 1

4 , 7
6

1 + p
4 , 1 + ωp

4 , 1 + ω2p
4 , 1 + 2α, 1

2 − 2α, 1
6

; 1
]

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
1
2

)
p−1
4

(
5
4

)
p−1
4

(
4α+3+ω2p

4

)
p−1
4

(
2−4α+ω2p

4

)
p−1
4(

1+ω2p
4

)
p−1
4

(
4+ω2p

4

)
p−1
4

(1 + α) p−1
4

(
3
4 − α

)
p−1
4

if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4).
(3.1)

Since for 0 ≤ k ≤ p−1
2 and 0 ≤ 〈α〉p ≤ �p/4�,

(1 + 2α)k

(
1
2

− 2α

)

k

≡ (1 + 2〈α〉p)k

(
1
2

− 2〈α〉p

)

k


≡ 0 (mod p),

and
(

7
6

)
k
/
(

1
6

)
k

= 6k + 1, we conclude that none of the denominators on the
left-hand side of (3.1) contain a multiple of p. By the fact that

(u + vp)(u + vpω)(u + vpω2) = u3 + v3p3,

we have

(u + vp)k(u + vpω)k(u + vpω2)k ≡ (u)3k (mod p3),

and so

7F6

[ 1−p
2 , 1−ωp

2 , 1−ω2p
2 , 1

2 + α, 1
4 − α, 1

4 , 7
6

1 + p
4 , 1 + ωp

4 , 1 + ω2p
4 , 1 + 2α, 1

2 − 2α, 1
6

; 1
]

≡ 7F6

[ 1
2 , 1

2 , 1
2 , 1

4 , 7
6 , 1

2 + α, 1
4 − α

1, 1, 1, 1
6 , 1 + 2α, 1

2 − 2α
; 1

]

p−1
2

(mod p3). (3.2)

Combining (3.1) and (3.2), we conclude the proof of (1.4) for p ≡ 3
(mod 4). In order to prove the case p ≡ 1 (mod 4), it suffices to show that the
following holds mod p3:
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(
1
2

)
p−1
4

(
5
4

)
p−1
4

(
4α+3+ω2p

4

)
p−1
4

(
2−4α+ω2p

4

)
p−1
4(

1+ω2p
4

)
p−1
4

(
4+ω2p

4

)
p−1
4

(1 + α) p−1
4

(
3
4 − α

)
p−1
4

≡ (−1)
p+3
4 pΓp

(
1
2

)
Γp

(
1
4

)2

Γp (1 + α)

× Γp

(
3
4

− α

)
Γp

(
1
2

+ α

)3

Γp

(
1
4

− α

)3

. (3.3)

By (2.5), we have
(

5
4

)

p−1
4

= p

(
1
4

)

p−1
4

= (−1)
p−1
4 p

Γp

(
p
4

)

Γp

(
1
4

) , (3.4)

and
(1
2

)
p−1
4(

1+ω2p
4

)
p−1
4

(
4+ω2p

4

)
p−1
4

= (−1)
3(p−1)

4

Γp

(1+p
4

)
Γp

(
1+ω2p

4

)
Γp

(
1 + ω2p

4

)

Γp

(1
2

)
Γp

(−ωp
4

)
Γp

(3−ωp
4

)

= (−1)
3(p−1)

4

Γp

(1+p
4

)
Γp

(1+ωp
4

)
Γp

(
1+ω2p

4

)
Γp

(
1 + p

4

)
Γp

(
1 + ωp

4

)
Γp

(
1 + ω2p

4

)

Γp

(1
2

)
Γp

(
1 + p

4

)
Γp

(−ωp
4

)
Γp

(
1 + ωp

4

)
Γp

(3−ωp
4

)
Γp

(1+ωp
4

) ,

(3.5)

where we have utilized the fact that 1+ω +ω2 = 0 in the first step. Applying
(2.6) and the symmetry with respect to the 3th roots of unity, we get

Γp

(
1 + p

4

)
Γp

(
1 + ωp

4

)
Γp

(
1 + ω2p

4

)
Γp

(
1 +

p

4

)

Γp

(
1 +

ωp

4

)
Γp

(
1 +

ω2p

4

)
≡

(
Γp(1)Γp

(
1
4

))3

(mod p3)

= −Γp

(
1
4

)3

. (by (2.1)) (3.6)

Furthermore, by (2.4) we get

Γp

(−ωp

4

)
Γp

(
1 +

ωp

4

)
Γp

(
3 − ωp

4

)
Γp

(
1 + ωp

4

)

= (−1)ap(1)+ap( 1
4 )

= (−1)1+
3p+1

4

= (−1)
3(p−1)

4 . (3.7)
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Finally, combining (3.4)–(3.7) we obtain
(

1
2

)
p−1
4

(
5
4

)
p−1
4(

1+ω2p
4

)
p−1
4

(
4+ω2p

4

)
p−1
4

≡ (−1)
p+3
4 p

Γp

(
1
4

)2 Γp

(
p
4

)

Γp

(
1
2

)
Γp

(
1 + p

4

) (mod p3). (3.8)

From (2.4) and (2.3), we have

Γp

(
p
4

)

Γp

(
1 + p

4

) = −1, (3.9)

and

Γp

(
1
2

)2

= (−1)
p+1
2 = −1. (3.10)

Substituting (3.9) and (3.10) into (3.8) gives
(

1
2

)
p−1
4

(
5
4

)
p−1
4(

1+ω2p
4

)
p−1
4

(
4+ω2p

4

)
p−1
4

≡ (−1)
p+3
4 pΓp

(
1
2

)
Γp

(
1
4

)2

(mod p3). (3.11)

It is not hard to verify that for 0 ≤ 〈α〉p ≤ �p/4�, none of
(

4α + 3 + ω2p

4

)

p−1
4

,

(
2 − 4α + ω2p

4

)

p−1
4

, (1 + α) p−1
4

,

(
3
4

− α

)

p−1
4

contain a multiple of p. It follows from (2.5) that
(

4α+3+ω2p
4

)
p−1
4

(
2−4α+ω2p

4

)
p−1
4

(1 + α) p−1
4

(
3
4 − α

)
p−1
4

=
Γp

( 4α+2−ωp
4

)
Γp

( 1−4α−ωp
4

)
Γp (1 + α) Γp

( 3
4 − α

)

Γp

(
4α+3+ω2p

4

)
Γp

(
2−4α+ω2p

4

)
Γp

( 4α+3+p
4

)
Γp

( 2−4α+p
4

)

=
Γp

( 4α+2−ωp
4

)
Γp

( 2−4α+ωp
4

)
Γp

( 1−4α−ωp
4

)
Γp

( 4α+3+ωp
4

)
Γp (1 + α) Γp

( 3
4 − α

)

Γp

( 4α+3+p
4

)
Γp

( 4α+3+ωp
4

)
Γp

(
4α+3+ω2p

4

)
Γp

( 2−4α+p
4

)
Γp

( 2−4α+ωp
4

)
Γp

(
2−4α+ω2p

4

) ,

(3.12)

where we have used the fact that 1 + ω + ω2 = 0 in the first step.
By (2.4), we have

Γp

(
4α + 2 − ωp

4

)
Γp

(
2 − 4α + ωp

4

)
Γp

(
1 − 4α − ωp

4

)
Γp

(
4α + 3 + ωp

4

)

= (−1)ap( 1−2α
2 )+ap( 4α+3

4 ). (3.13)
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Using (2.6) and the symmetry with respect to the 3th roots of unity, we get

Γp

(
4α + 3 + p

4

)
Γp

(
4α + 3 + ωp

4

)
Γp

(
4α + 3 + ω2p

4

)

× Γp

(
2 − 4α + p

4

)
Γp

(
2 − 4α + ωp

4

)
Γp

(
2 − 4α + ω2p

4

)

≡ Γp

(
4α + 3

4

)3

Γp

(
1 − 2α

2

)3

(mod p3). (3.14)

Substituting (3.13) and (3.14) into (3.12) gives

(
4α+3+ω2p

4

)
p−1
4

(
2−4α+ω2p

4

)
p−1
4

(1 + α) p−1
4

(
3
4 − α

)
p−1
4

≡ (−1)ap( 1−2α
2 )+ap( 4α+3

4 ) Γp (1 + α) Γp

(
3
4 − α

)

Γp

(
4α+3

4

)3 Γp

(
1−2α

2

)3 (mod p3). (3.15)

By (2.4), we have

Γp

(
4α + 3

4

)3

Γp

(
1 − 4α

4

)3

= (−1)3ap( 4α+3
4 ), (3.16)

Γp

(
1 − 2α

2

)3

Γp

(
1 + 2α

2

)3

= (−1)3ap( 1−2α
2 ). (3.17)

Combining (3.15)–(3.17), we obtain

(
4α+3+ω2p

4

)
p−1
4

(
2−4α+ω2p

4

)
p−1
4

(1 + α) p−1
4

(
3
4 − α

)
p−1
4

≡ Γp (1 + α) Γp

(
3
4

− α

)
Γp

(
1
2

+ α

)3

Γp

(
1
4

− α

)3

(mod p3). (3.18)

Then the proof of (3.3) follows from (3.11) and (3.18). �

Proof of (1.5). Letting α → ∞ in (3.1) and noting that

lim
α→∞

(
1
2 + α

)
k

(
1
4 − α

)
k

(1 + 2α)k

(
1
2 − 2α

)
k

=
(

1
4

)k

,
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we obtain

5F4

[ 1−p
2 , 1−ωp

2 , 1−ω2p
2 , 1

4 , 7
6

1 + p
4 , 1 + ωp

4 , 1 + ω2p
4 , 1

6

;
1
4

]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1
2

)
p−1
4

(
5
4

)
p−1
4(

1+ω2p
4

)
p−1
4

(
4+ω2p

4

)
p−1
4

if p ≡ 1 (mod 4),

0 if p ≡ 3 (mod 4).

(3.19)

The proof of (1.5) follows from (3.11), (3.19) and the fact that

(u + vp)k(u + vpω)k(u + vpω2)k ≡ (u)3k (mod p3).

�
Proof of (1.6). Letting α = 0 in (1.4) reduces to

6F5

[ 1
2 , 1

2 , 1
2 , 1

4 , 1
4 , 7

6

1, 1, 1, 1, 1
6

; 1
]

p−1
2

≡
⎧
⎨

⎩

(−1)
p+3
4 pΓp

(
1
2

)4 Γp

(
1
4

)5 Γp

(
3
4

)
Γp (1) (mod p3) if p ≡ 1 (mod 4),

0 (mod p3) if p ≡ 3 (mod 4).
(3.20)

For p ≡ 1 (mod 4), by (2.1) and (2.4) we have
Γp (1) = −1.

Γp

(
1
2

)4

=
(
(−1)

p+1
2

)2

= 1,

Γp

(
1
4

)
Γp

(
3
4

)
= (−1)

p+3
4 .

Substituting the above equations into (3.20), we complete the proof of (1.6).
�
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