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Fueter’s Theorem for Monogenic Functions
in Biaxial Symmetric Domains

Dixan Peña Peña, Irene Sabadini, and Franciscus Sommen

Abstract. Fueter’s theorem discloses a remarkable connection existing be-
tween holomorphic functions and monogenic functions in R

m+1 when m

is odd. It states that Δ
k+m−1

2
m+1

[(
u(x0, |x|) + x

|x| v(x0, |x|))Pk(x)
]

is mono-

genic if u + iv is holomorphic and Pk(x) is a homogeneous monogenic
polynomial in R

m. Eelbode et al. (AIP Conf Proc 1479:340–343, 2012)
proved that this statement is still valid if the monogenicity condition on
Pk(x) is dropped. To obtain this result, the authors used representation
theory methods but their result also follows from a direct calculus we
established in our paper Peña Peña and Sommen (J Math Anal Appl
365:29–35, 2010). In this paper we generalize the result from Eelbode
et al. (2012) to the case of monogenic functions in biaxially symmetric
domains. In order to achieve this goal we first generalize Peña Peña and
Sommen (2010) to the biaxial case and then derive the main result from
that.
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1. Introduction

Let Rm be the real Clifford algebra generated by the standard basis {e1, . . . , em}
of the Euclidean space Rm (see [2,17]). The multiplication in this associative al-
gebra is determined by the relations: e2j = −1, ejek +ekej = 0, 1 ≤ j �= k ≤ m.
Any Clifford number a ∈ Rm may thus be written as

a =
∑

A

aAeA, aA ∈ R,

where the basis elements eA = ej1 . . . ejk are defined for every subset A =
{j1, . . . , jk} of {1, . . . ,m} with j1 < · · · < jk (for A = ∅ one puts e∅ = 1).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-017-0732-2&domain=pdf
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Observe that R
m+1 may be naturally embedded in Rm by associating

to any element (X0,X1, . . . , Xm) ∈ R
m+1 the paravector X0 + X = X0 +∑m

j=1 Xjej . Furthermore, by the above multiplication rules it follows that
X2 = −|X|2 = −∑m

j=1 X2
j .

The even and odd subspaces R
+
m, R−

m are defined as

R
+
m =

{

a ∈ Rm : a =
∑

|A| even
aAeA

}

, R
−
m =

{

a ∈ Rm : a =
∑

|A| odd
aAeA

}

,

where |A| = j1 + · · · + jk. The subspace R
+
m is also a subalgebra and we have

that

Rm = R
+
m ⊕ R

−
m.

Consider the Dirac operator ∂X in R
m given by

∂X =
m∑

j=1

ej∂Xj
,

which provides a factorization of the Laplacian, i.e. ∂2
X = −ΔX = −∑m

j=1 ∂2
Xj

.
Functions in the kernel of ∂X are known as monogenic functions (see [1,7,10,
13,14]).

Definition 1. A function F : Ω → Rm defined and continuously differentiable in
an open set Ω ⊂ R

m is said to be (left) monogenic in Ω if ∂XF (X) = 0, X ∈ Ω.
In a similar way one defines monogenicity with respect to the generalized
Cauchy-Riemann operator ∂X0 + ∂X in R

m+1.

It is clear that monogenic functions are harmonic. Furthermore, for the
particular case m = 1 the equation (∂X0 + ∂X)F (X0,X) = 0 is nothing but
the classical Cauchy-Riemann system for holomorphic functions. This is not
the only connection existing between holomorphic and monogenic functions as
the following result shows (see [28]).

Theorem 1 (Fueter’s theorem). Let w(z) = u(x, y)+ iv(x, y) be a holomorphic
function in the open subset Ξ of the upper half-plane and assume that PK(X)
is a homogeneous monogenic polynomial of degree K in R

m. If m is odd, then
the function

(
∂2

X0
+ ΔX

)K+m−1
2

[(
u(X0, |X|) +

X

|X| v(X0, |X|)
)

PK(X)
]

(1)

is monogenic in Ω =
{
(X0,X) ∈ R

m+1 : (X0, |X|) ∈ Ξ
}
.

The idea of using holomorphic functions to construct monogenic functions
was first presented by Fueter [12] in the setting of quaternionic analysis (m = 3,
K = 0) and for that reason Theorem 1 bears his name. In 1957 Sce [26]
extended Fueter’s idea to Clifford analysis by proving the validity of the above
result for the case K = 0, m odd. Forty years later Qian [23] showed that a
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similar result holds when m is even. In the last years several articles have been
published on this topic (see e.g. [3–6,9,11,16,20,25]). For more information we
refer the reader to the survey article [24].

Consider the biaxial decomposition R
m = R

p ⊕ R
q, p + q = m. In this

way, for any X ∈ R
m we may write

X = x + y,

where x =
∑p

j=1 xjej and y =
∑q

j=1 xp+jep+j . We shall denote by Rp and Rq

the real Clifford algebras constructed over R
p and R

q respectively, i.e.

Rp = Alg
R

{
e1, . . . , ep}, Rq = Alg

R

{
ep+1, . . . , em}.

In this paper we further investigate the following generalization of Fueter’s
theorem to the biaxial case (see [19,21,25]). We note that in this setting there
is a slight change regarding the initial function w. Namely, w will be assumed
to be antiholomorphic, i.e. a solution of ∂zw = 0, where ∂z = 1

2 (∂x − i∂y).

Theorem 2. Let w(z) = u(x, y) + iv(x, y) be an antiholomorphic function in
an open subset of {(x, y) ∈ R

2 : x, y > 0}. Suppose that Pk(x) : Rp → Rp and
P�(y) : Rq → Rq are homogeneous monogenic polynomials. If p and q are odd,
then the functions

Ft+p,q

[
w(z), Pk(x), P�(y)

]
(X)

= Δk+�+m−2
2

X

[(
u(|x|, |y|) +

x y

|x||y| v(|x|, |y|)
)

Pk(x)P�(y)
]

Ft−p,q

[
w(z), Pk(x), P�(y)

]
(X)

= Δk+�+m−2
2

X

[(
x

|x| u(|x|, |y|) +
y

|y| v(|x|, |y|)
)

Pk(x)P�(y)
]

are monogenic.

It is remarkable that Theorem 1 is still true if PK(X) is replaced by a
homogeneous monogenic polynomial PK(X0,X) in R

m+1 (see [22]), or if the
monogenicity condition on PK(X) is dropped. The latter result was proved in
[11] with the help of representation theory, but it can also be derived using
the results obtained in [22].

Motivated by [11] and using similar methods as in [22], we prove in this
paper that Theorem 2 also holds if Pk(x) and P�(y) are assumed to be only
homogeneous polynomials.

2. A Higher Order Version of Theorem 2

The goal in this section is to generalize Theorem 2 to a larger class of initial
functions. More precisely, we shall assume that w(z, z) = u(x, y) + iv(x, y) is
a solution of the equation
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∂zΔμ
x,yw(z, z) = 0, Δx,y = ∂2

x + ∂2
y , μ ∈ N0. (2)

In particular, poly-antiholomorphic functions of order μ + 1 (i.e. solutions of
∂μ+1

z w(z, z) = 0) clearly satisfy Eq. (2).
It is possible to compute in explicit form the monogenic function produced

by Theorem 1 using the differential operators
(

x−1 d

dx

)n

,

(
d

dx
x−1

)n

, n ≥ 0. (3)

Namely, function (1) equals

(2K + m − 1)!!
(

(
R−1∂R

)K+m−1
2 u(X0, R)

+
X

R

(
∂R R−1

)K+m−1
2 v(X0, R)

)
PK(X),

where R = |X| (see [19,20]).
The differential operators in (3) possess interesting properties (see [9,19,

20]) and in this paper we shall use the following.

Lemma 1. If f : R → R is a infinitely differentiable function, then

(i)
d2

dx2

(
x−1 d

dx

)n

f(x) =
(

x−1 d

dx

)n
d2

dx2
f(x) − 2n

(
x−1 d

dx

)n+1

f(x),

(ii)
d2

dx2

(
d

dx
x−1

)n

f(x) =
(

d

dx
x−1

)n
d2

dx2
f(x) − 2n

(
d

dx
x−1

)n+1

f(x),

(iii)
(

d

dx
x−1

)n
d

dx
f(x) =

d

dx

(
x−1 d

dx

)n

f(x),

(iv)
(

x−1 d

dx

)n
d

dx
f(x) − d

dx

(
d

dx
x−1

)n

f(x) = 2nx−1

(
d

dx
x−1

)n

f(x).

Due to the decomposition R
m = R

p ⊕ R
q it is convenient to split ∂X and ΔX

as

∂X = ∂x + ∂y =
p∑

j=1

ej∂xj
+

q∑

j=1

ep+j∂xp+j
,

ΔX = Δx + Δy =
p∑

j=1

∂2
xj

+
q∑

j=1

∂2
xp+j

.

Furthermore, for any x ∈ R
p and y ∈ R

q we put

ω = x/r, r = |x|,
ν = y/ρ, ρ = |y|.

In this section, like in Theorem 2, we assume that Pk(x) : R
p → Rp and

P�(y) : Rq → Rq are homogeneous monogenic polynomials. It is convenient to
make a few observations about these polynomials.
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Remark 1. First, note that Pk(x) can be uniquely written in the form Pk(x) =
P+

k (x)+P−
k (x), where P+

k (x), P−
k (x) take values in R

+
p , R−

p respectively. Since
∂xP+

k (x) ∈ R
−
p , ∂xP−

k (x) ∈ R
+
p for x ∈ R

p, one can conclude that Pk(x) is
monogenic if and only if both components P+

k (x) and P−
k (x) are monogenic.

Of course, a similar remark holds for P�(y).

Let Δ2 = ∂2
r + ∂2

ρ be the two-dimensional Laplacian in the variables (r, ρ) and
recall the definition of a multinomial coefficient(

n

j1, j2, . . . , js

)
=

n!
j1! j2! · · · js!

.

Consider the function D : N0 × N0 → Z satisfying

D(0, 0) = 1, D(j1, j2) = D(j1, 0)D(0, j2), j1, j2 ≥ 1

D(j, 0) =
j∏

s=1

(
2k + p − (2s − 1)

)
, D(0, j) =

j∏

s=1

(
2� + q − (2s − 1)

)
, j ≥ 1.

Lemma 2. Suppose that h : R2 → R is an infinitely differentiable function in
an open subset of {(x, y) ∈ R

2 : x, y > 0}. Then for n ∈ N and s1, s2 ∈ {0, 1}
it holds that

Δn
X

(
h(r, ρ)ωs1νs2Pk(x)P�(y)

)

=

⎛

⎜
⎜
⎝

∑

j1+j2≤n
j1,j2≥0

(
n

j1, j2, n − j1 − j2

)
D(j1, j2)W

s1,s2
j1,j2

(r, ρ)

⎞

⎟
⎟
⎠ ωs1νs2Pk(x)P�(y),

(4)

where

W 0,0
j1,j2

(r, ρ) =
(
r−1∂r

)j1 (
ρ−1∂ρ

)j2 Δn−j1−j2
2 h(r, ρ),

W 1,0
j1,j2

(r, ρ) =
(
∂r r−1

)j1 (
ρ−1∂ρ

)j2 Δn−j1−j2
2 h(r, ρ),

W 0,1
j1,j2

(r, ρ) =
(
r−1∂r

)j1 (
∂ρ ρ−1

)j2 Δn−j1−j2
2 h(r, ρ),

W 1,1
j1,j2

(r, ρ) =
(
∂r r−1

)j1 (
∂ρ ρ−1

)j2 Δn−j1−j2
2 h(r, ρ).

Proof. We shall prove the case s1 = s2 = 0 using induction. The other cases
can be proved similarly. First, note that

∂xh =
p∑

j=1

ej∂xj
h =

p∑

j=1

ej

(
∂rh

)(
∂xj

r
)

= ω ∂rh

and hence

Δxh = −∂2
xh = −∂x

(
ω ∂rh

)
= −ω2∂2

rh − (
∂x ω

)(
∂rh

)

= ∂2
rh +

p − 1
r

∂rh.
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From this equality and using Euler’s theorem for homogeneous functions we
obtain

Δx

(
hPk

)
=

(
Δxh

)
Pk + 2

p∑

j=1

(
∂xj

h
)(

∂xj
Pk

)
+ h

(
ΔxPk

)

=
(

∂2
rh +

p − 1
r

∂rh

)
Pk + 2

∂rh

r

p∑

j=1

xj∂xj
Pk

=
(

∂2
rh +

2k + p − 1
r

∂rh

)
Pk.

In a similar way one also get

Δy

(
hP�

)
=

(
∂2

ρh +
2� + q − 1

ρ
∂ρh

)
P�.

These equalities then yield

ΔX

(
hPkP�

)
=

(
Δ2h +

2k + p − 1
r

∂rh +
2� + q − 1

ρ
∂ρh

)
PkP�. (5)

It is clear that the assertion is true in the case n = 1. Assume now that the
identity holds for some natural number n. We thus get

Δn+1
X

(
hPkP�

)
=

∑

j1+j2≤n
j1,j2≥0

(
n

j1, j2, n − j1 − j2

)
D(j1, j2)

×ΔX

((
r−1∂r

)j1 (
ρ−1∂ρ

)j2 Δn−j1−j2
2 hPkP�

)
.

By statement (i) of Lemma 1 we obtain

Δ2

(
r−1∂r

)j1 (
ρ−1∂ρ

)j2 Δn−j1−j2
2 h =

(
r−1∂r

)j1 (
ρ−1∂ρ

)j2 Δn+1−j1−j2
2 h

−2j1
(
r−1∂r

)j1+1 (
ρ−1∂ρ

)j2 Δn−j1−j2
2 h−2j2

(
r−1∂r

)j1 (
ρ−1∂ρ

)j2+1
Δn−j1−j2

2 h.

This equality and (5) imply that

D(j1, j2)ΔX

((
r−1∂r

)j1 (
ρ−1∂ρ

)j2 Δn−j1−j2
2 hPkP�

)

=
(

D(j1, j2)
(
r−1∂r

)j1 (
ρ−1∂ρ

)j2 Δn+1−j1−j2
2 h

+D(j1 + 1, j2)
(
r−1∂r

)j1+1 (
ρ−1∂ρ

)j2 Δn−j1−j2
2 h

+D(j1, j2 + 1)
(
r−1∂r

)j1 (
ρ−1∂ρ

)j2+1
Δn−j1−j2

2 h

)
PkP�.

Therefore
Δn+1

X

(
hPkP�

)
=

(
T1 + T2 + T3

)
PkP�, (6)
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where

T1 =
∑

j1+j2≤n
j1, j2≥0

( n

j1, j2, n − j1 − j2

)
D(j1, j2)

(
r−1∂r

)j1 (
ρ−1∂ρ

)j2 Δn+1−j1−j2
2 h,

T2 =
∑

j1+j2≤n+1
j1≥1, j2≥0

( n

j1 − 1, j2, n+1−j1−j2

)
D(j1, j2)

(
r−1∂r

)j1 (
ρ−1∂ρ

)j2 Δn+1−j1−j2
2 h,

T3 =
∑

j1+j2≤n+1
j1≥0, j2≥1

( n

j1, j2 − 1, n+1−j1 − j2

)
D(j1, j2)

(
r−1∂r

)j1 (
ρ−1∂ρ

)j2 Δn+1−j1−j2
2 h.

Observe that set {(j1, j2) : j1 + j2 ≤ n+1, j1, j2 ≥ 0} can be expressed as the
union of the disjoint sets {(0, 0)}, {(n+1, 0)}, {(0, n+1)}, {(j, 0) : 1 ≤ j ≤ n},
{(0, j) : 1 ≤ j ≤ n}, {(j, n + 1 − j) : 1 ≤ j ≤ n} and {(j1, j2) : j1 + j2 ≤
n, j1, j2 ≥ 1}. Taking this into account it is easy to verify that (6) equals⎛

⎜
⎜
⎝

∑

j1+j2≤n+1
j1,j2≥0

( n + 1

j1, j2, n + 1 − j1 − j2

)
D(j1, j2)

(
r−1∂r

)j1 (
ρ−1∂ρ

)j2 Δn+1−j1−j2
2 h

⎞

⎟
⎟
⎠ PkP�.

Thus proving the assertion for n + 1. �

Remark 2. Theorem 2 yields biaxial monogenic functions, i.e. monogenic func-
tions of the form

(
A(r, ρ) + ω ν B(r, ρ)

)
Pk(x)P�(y)

or
(
ω C(r, ρ) + ν D(r, ρ)

)
Pk(x)P�(y),

where A, B, C, D are R-valued continuously differentiable functions in R
2 (see

[8,15,18,27]). A direct computation shows that the pairs (A,B) and (C,D)
satisfy the following Vekua-type systems
⎧
⎪⎪⎨

⎪⎪⎩

∂rA + ∂ρB = −2� + q − 1

ρ
B

∂ρA − ∂rB =
2k + p − 1

r
B,

⎧
⎨

⎩
∂rC + ∂ρD = −2k + p − 1

r
C − 2� + q − 1

ρ
D

∂ρC − ∂rD = 0.

We now come to our first main result that generalizes [22] to the biaxial case.

Theorem 3. Suppose that w(z, z) = u(x, y) + iv(x, y) is a C-valued function
satisfying the Eq. (2) in the open set Ξ ⊂ {(x, y) ∈ R

2 : x, y > 0}. If p and q
are odd, then the functions

Ftμ,+
p,q

[
w(z, z), Pk(x), P�(y)

]
(X)

= Δμ+k+�+m−2
2

X

[(
u(r, ρ) + ω ν v(r, ρ)

)
Pk(x)P�(y)

]
,

Ftμ,−
p,q

[
w(z, z), Pk(x), P�(y)

]
(X)

= Δμ+k+�+m−2
2

X

[(
ω u(r, ρ) + ν v(r, ρ)

)
Pk(x)P�(y)

]
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are monogenic in Ω =
{
X =

(
x, y

) ∈ R
m : (r, ρ) ∈ Ξ

}
.

Proof. We use Lemma 2 to compute Ftμ,+
p,q in closed form. First, note that

function w also satisfies the equation Δμ+1
2 w = 0, thus

Δμ+k+�+m−2
2 −j1−j2

2 w = 0 for j1 + j2 ≤ k + � + (m − 4)/2.

Since p and q are odd we also have that D(j1, j2) = 0 for j1 ≥ k + (p + 1)/2
or j2 ≥ � + (q + 1)/2. It follows that for n = μ + k + � + (m − 2)/2 the only
term in (4) which does not vanish corresponds to the case j1 = k + (p − 1)/2,
j2 = � + (q − 1)/2. Therefore

Ftμ,+
p,q

[
w(z, z), Pk(x), P�(y)

]
(X) = (2k + p − 1)!!(2� + q − 1)!!

×
(

μ + k + � + m−2
2

k + p−1
2 , � + q−1

2 , μ

)
(
A(r, ρ) + ω ν B(r, ρ)

)
Pk(x)P�(y),

with

A =
(
r−1∂r

)k+ p−1
2

(
ρ−1∂ρ

)�+ q−1
2 Δμ

2u,

B =
(
∂r r−1

)k+ p−1
2

(
∂ρ ρ−1

)�+ q−1
2 Δμ

2v.

It thus remains to prove that (A,B) fulfills the first system of Remark 2. Using
statement (iii) of Lemma 1 and the fact that w satisfies (2) we obtain

∂rA =
(
∂r r−1

)k+ p−1
2

(
ρ−1∂ρ

)�+ q−1
2 ∂rΔ

μ
2u

= − (
∂r r−1

)k+ p−1
2

(
ρ−1∂ρ

)�+ q−1
2 ∂ρΔ

μ
2v.

Hence we get

∂rA + ∂ρB = − (
∂r r−1

)k+ p−1
2

(
(
ρ−1∂ρ

)�+ q−1
2 ∂ρΔ

μ
2v

−∂ρ

(
∂ρ ρ−1

)�+ q−1
2 Δμ

2v

)

= −2� + q − 1
ρ

(
∂r r−1

)k+ p−1
2

(
∂ρ ρ−1

)�+ q−1
2 Δμ

2v,

where we have also used statement (iv) of Lemma 1. In a similar fashion, it
can be shown that

∂ρA − ∂rB =
2k + p − 1

r

(
∂r r−1

)k+ p−1
2

(
∂ρ ρ−1

)�+ q−1
2 Δμ

2v.

The proof of Ftμ,−
p,q goes along the same lines as that of Ftμ,+

p,q . Indeed, it follows
from Lemma 2 that

Ftμ,−
p,q

[
w(z, z), Pk(x), P�(y)

]
(X) = (2k + p − 1)!!(2� + q − 1)!!

×
(

μ + k + � + m−2
2

k + p−1
2 , � + q−1

2 , μ

)
(
ω C(r, ρ) + ν D(r, ρ)

)
Pk(x)P�(y),
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with

C =
(
∂r r−1

)k+ p−1
2

(
ρ−1∂ρ

)�+ q−1
2 Δμ

2u,

D =
(
r−1∂r

)k+ p−1
2

(
∂ρ ρ−1

)�+ q−1
2 Δμ

2v.

One can check, using statements (iii) and (iv) of Lemma 1 as well as equation
(2), that (C,D) satisfies the second system of Remark 2. �

3. Fueter’s Theorem with General Homogeneous Factors

We arrive at the third and last section of the paper where we shall prove
our main result. In the proof we use Theorem 3 and the well-known Fischer
decomposition (see [10]):

Theorem 4 (Fischer decomposition). Every homogeneous polynomial HK(X)
of degree K in R

m admits the following decomposition

HK(X) =
K∑

n=0

XnPK−n(X),

where each PK−n(X) is a homogeneous monogenic polynomial.

Theorem 5. Let w(z) = u(x, y) + iv(x, y) be an antiholomorphic function in
the open set Ξ ⊂ {(x, y) ∈ R

2 : x, y > 0}. Suppose that Hk(x) : Rp → Rp and
H�(y) : Rq → Rq are homogeneous polynomials. If p and q are odd, then the
functions

Ft+p,q

[
w(z),Hk(x),H�(y)

]
(X) and Ft−p,q

[
w(z),Hk(x),H�(y)

]
(X)

are monogenic in Ω =
{
X =

(
x, y

) ∈ R
m : (r, ρ) ∈ Ξ

}
.

Proof. We only prove the statement for function Ft+p,q since the proof for Ft−p,q

is similar. Note that the Fischer decomposition ensures the existence of homo-
geneous monogenic polynomials Pk−n1(x) and P�−n2(y) such that

Hk(x)H�(y) =
k∑

n1=0

�∑

n2=0

xn1Pk−n1(x) yn2P�−n2(y).

This gives

Ft+p,q

[
w(z),Hk(x),H�(y)

]
(X)

=
k∑

n1=0

�∑

n2=0

Δk+�+m−2
2

X

[(
u(r, ρ) + ω ν v(r, ρ)

)
xn1Pk−n1(x) yn2P�−n2(y)

]
.

It will thus be sufficient to prove the monogenicity of each term in the previous
sum. On account of Remark 1 we may assume without loss of generality that
Pk−n1(x) takes values in R

+
p and hence

xn1Pk−n1(x) yn2P�−n2(y) = xn1yn2Pk−n1(x)P�−n2(y).
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It is easy to verify that if n1 + n2 is even, then

Δk+�+m−2
2

X

[(
u(r, ρ) + ω ν v(r, ρ)

)
xn1yn2Pk−n1(x)P�−n2(y)

]

= Ftn1+n2,+
p,q

[
w(z)h+(x, y), Pk−n1(x), P�−n2(y)

]
(X),

where h+(x, y) =

{
(−1)

n1+n2
2 xn1yn2 for n1, n2 even

(−1)
n1+n2−2

2 i xn1yn2 for n1, n2 odd.

Similarly, if n1 + n2 is odd, then

Δk+�+m−2
2

X

[(
u(r, ρ) + ω ν v(r, ρ)

)
xn1yn2Pk−n1(x)P�−n2(y)

]

= Ftn1+n2,−
p,q

[
w(z)h−(x, y), Pk−n1(x), P�−n2(y)

]
(X),

where h−(x, y) =

{
(−1)

n1+n2−1
2 xn1yn2 for n1 odd, n2 even

(−1)
n1+n2−1

2 i xn1yn2 for n1 even, n2 odd.

Clearly, h± satisfies ∂n1+n2+1
z h± = 0 and for that reason

∂n1+n2+1
z

(
w(z)h±(x, y)

)
= w(z)∂n1+n2+1

z h±(x, y) = 0.

Consequently, the functions w(z)h±(x, y) are solutions of (2) for μ = n1 + n2.
The result now follows from Theorem 3. �

We conclude with some examples involving the homogeneous polynomials
Hk(x) = 〈x, t〉k, H�(y) = 〈y, s〉�, where t ∈ R

p and s ∈ R
q are arbitrary

fixed vectors. In order to avoid too long computations we have chosen the
cases p = q = 3, k = 1, 2 and � = 1.

Ft+3,3

[
z5, 〈x, t〉, 〈y, s〉] (X) =

10

r3
〈x, t〉〈y, s〉 +

6 x y

r5
〈x, t〉〈y, s〉 − 2 t y

r3
〈y, s〉

+
(5r2 + 3ρ2)x s

r5
〈x, t〉 − (5r2 + ρ2)t s

r3

Ft+3,3

[
z8, 〈x, t〉, 〈y, s〉] (X) = 10〈x, t〉〈y, s〉 − 2 t y〈y, s〉 + 2 x s〈x, t〉 + (r2 − ρ2)t s

Ft+3,3

[
z10, 〈x, t〉, 〈y, s〉] (X) = 140(r2 − ρ2)〈x, t〉〈y, s〉 − 56 x y〈x, t〉〈y, s〉

−4(7r2 − 5ρ2)t y〈y, s〉 + 4(5r2 − 7ρ2)x s〈x, t〉
+(5r4 − 14r2ρ2 + 5ρ4)t s

Ft−3,3

[
iz6, 〈x, t〉, 〈y, s〉] (X) =

2 x

ρ3
〈x, t〉〈y, s〉 − (3r2 + 5ρ2)y

ρ5
〈x, t〉〈y, s〉

+
(r2 + 5ρ2)

ρ3

(
t〈y, s〉 + s〈x, t〉)

Ft−3,3

[
z9, 〈x, t〉, 〈y, s〉] (X) = 2(x − y)〈x, t〉〈y, s〉 + (r2 − ρ2)

(
t〈y, s〉 + s〈x, t〉)

Ft−3,3

[
z11, 〈x, t〉2, 〈y, s〉] (X) = 8

(
5x − 7y

) 〈x, t〉2〈y, s〉 − 4(7r2 − 5ρ2)|t|2y〈y, s〉
+4(5r2 − 7ρ2)

(
2t〈x, t〉〈y, s〉 + |t|2x〈y, s〉 + s〈x, t〉2)

+(5r4 − 14r2ρ2 + 5ρ4)|t|2s
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