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Abstract. Let R be the set of real numbers, (G,+) be a commutative
group and d be a complete ultrametric on G that is invariant (i.e., d(x+
z, y+ z) = d(x, y) for x, y, z ∈ G). Under some weak natural assumptions
on the function γ : R2 → [0, ∞), we study the generalised hyperstability
results when f : R → G satisfy the following radical cubic inequality

d
(
f( 3

√
x3 + y3), f(x) + f(y)

) ≤ γ(x, y), x, y ∈ R\{0},

with x �= −y. The method is based on a quite recent fixed point theo-
rem (cf. Brzdęk and Cieplińnski in Nonlinear Anal 74:6861–6867, 2011,
Theorem 1) in some functions spaces.
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1. Introduction

In this paper, N and R denote the sets of all positive integers, and real numbers,
respectively; we put N0:=N ∪ {0}, R0 = R\{0} and R+ = [0,∞). Moreover,
E1 and E2 always stand for normed spaces.

Let us recall that a metric d on a nonempty set M is said to be non-
Archimedean (or an ultrametric) provided d(x, z) ≤ max{d(x, y), d(y, z)} for
x, y, z ∈ M. One of important examples of the ultrametric spaces is a non-
Archimedean normed space (see, for instance, [24]).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-017-0716-2&domain=pdf
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Definition 1.1. By a non-Archimedean field, we mean a field K equipped with
a function(valuation) |.| : K → [0,∞) such that for all r, s ∈ K, the following
conditions hold:
(1) |r| = 0 if and only if r = 0;
(2) |rs| = |r||s|;
(3) |r + s| ≤ max(|r|, |s|) for all r, s ∈ K.

Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. The function |.| is
called the trivial valuation if |r| = 1, ∀r ∈ K, r �= 0, and |0| = 0.

Definition 1.2. Let E be a vector space over a scalar field K with a non-
Archimedean non-trivial valuation |.|. A function ‖.‖ : E → R+ is non-
Archimedean norm (valuation) if it satisfies the following conditions:
(1) ‖x‖ = 0 if and only if x = 0;
(2) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ E;
(3) ‖x + y‖ ≤ max(‖x‖, ‖y‖) for all x, y ∈ E.

Then, (E, ‖.‖) is called a non-Archimedean space or an ultrametric normed
space. Due to the fact that

‖xm − xn‖ ≤ max{‖xj+1 − xj‖ : m ≤ j ≤ n − 1},

in which n > m, the sequence {xn} is Cauchy if and only if {xn+1 − xn}
converges to zero in a non-Archimedean normed space. In a complete non-
Archimedean space, every Cauchy sequence is convergent.

Clearly, if E is a non-Archimedean normed space, then the formula d(x, y)
:=‖x−y‖ defines an ultrametric d in E, that is invariant (i.e., d(x+z, y+z) =
d(x, y) for every x, y, z ∈ E).

The first example of a non-Archimedean field was provided by Hensel in
[21], where he gave a description of the p-adic numbers [for each fixed prime
number p and any nonzero rational number x, there exists a unique integer
nx such that x = (a/b)pnx , where a and b are integers not divisible by p; then
|x|p:=p−nx defines a non-Archimedean valuation on Q (the set of rational
numbers)]. The completion of Q with respect to the metric d(x, y) = |x − y|p
is denoted by Qp, and it is called the p-adic number field.

The next definition describes the notion of hyperstability that we apply
here (AB denotes the family of all functions mapping a set B �= ∅ into a set
A �= ∅).

Definition 1.3. Let A �= ∅ be a nonempty set, (Z, d) be a metric space, γ :
An → R+, B ⊂ An be nonempty, and F1,F2 map a nonempty D ⊂ ZA into
ZAn

. We say that the conditional equation
F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn), (x1, . . . , xn) ∈ B, (1.1)

is γ-hyperstable provided every ϕ0 ∈ D, satisfying
d
(
F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn)

)
≤ γ(x1, . . . , xn), (x1, . . . , xn) ∈ B,

(1.2)
is a solution to (1.1).
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That notion is strictly connected with the well know issue of Ulam’s
stability for various (e.g., difference, differential, functional, integral, operator)
equations. Let us recall that the study of such problems was motivated by the
following question of Ulam (cf. [22,34]) asked in 1940.

Ulam’s question. Let (G1, ∗), (G2, �) be two groups and ρ : G2 × G2 →
[0,∞) be a metric. Given δ > 0, does there exist ε > 0 such that if a function
g : G1 → G2 satisfies the inequality

ρ(g(x ∗ y), g(x) � g(y)) ≤ δ

for all x, y ∈ G1, then there is a homomorphism h : G1 → G2 with

ρ(g(x), h(x)) ≤ ε

for all x ∈ G ?

In 1941, Hyers [22] published the first answer to it, in the case of Banach
space. The following theorem is the most classical result concerning Ulam’s
stability of the Cauchy equation

f(x + y) = f(x) + f(y), x, y ∈ E1. (1.3)

Theorem 1.1. Let f : E1 → E2 satisfy the inequality

‖f(x + y) − f(x) − f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (1.4)

for all x, y ∈ E1\{0}, where θ and p are real constants with θ > 0 and p �= 1.
Then the following two statements are valid.

(a) If p ≥ 0 and E2 is complete, then there exists a unique solution T : E1 →
E2 of (1.3) such that

‖f(x) − T (x)‖ ≤ θ

|1 − 2p−1| ‖x‖p , x ∈ E1\{0}. (1.5)

(b) If p < 0, then f is additive, i.e., (1.3) holds.

Note that Theorem 1.1 reduces to the first result of stability due to
Hyers [22] if p = 0, Aoki [2] for 0 < p < 1 (see also [31]). Afterward, Gajda [19]
obtained this result for p > 1 and gave an example to show that Theorem 1.1
fails whenever p = 1. Further, Rassias [32] has noticed that a similar result
is valid also for p < 0 (see [33, page 326] and [6]). Now, it is well-known
that the statement (b) is valid, i.e., f must be additive in that case, which
has been proved for the first time in [25] and next in [10] on the restricted
domain. Also, the stability of some functional equations in the framework of
non-Archimedean normed spaces and other spaces has been established (see
e.g., [1,11,14,17,18,23,27–29]).

Recently, interesting results concerning radical cubic functional equation

f( 3
√

x3 + y3) = f(x) + f(y), x, y ∈ R (1.6)

have been obtained in [1].
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The hyperstability term was used for the first time probably in [26];
however, it seems that the first hyperstability result was published in [5] and
concerned the ring homomorphisms. For further information concerning the
notion of hyperstability we refer to the survey paper [9] (for recent related
results see, e.g., [3,4,8,12,15,16,20]). For somewhat different approach to such
terminology we refer to [30].

Let (G,+) be a commutative group and d be an ultrametric on G that is
invariant. We say that a function f : R → G fulfils the radical cubic equation
(1.6) on R0 (or is a solution to (1.6) on R0) provided

f( 3
√

x3 + y3) = f(x) + f(y), x, y ∈ R0, x �= −y. (1.7)

We consider functions f : R → G fulfilling (1.7) approximately, i.e.,
satisfying the inequality

d
(
f( 3

√
x3 + y3), f(x) + f(y)

)
≤ γ(x, y), x, y ∈ R\{0}, (1.8)

with x �= −y and γ : R2 → R+ is a given mapping. Under some additional
assumptions on γ, we prove that the conditional functional equation (1.7) is γ-
hyperstable in the class of functions f : R → G, i.e., each f : R → G satisfying
inequality (1.8) with such γ must fulfil equation (1.7). The method based on
a fixed point result that can be easily derived from [7] and patterned on the
ideas provided in [11].

2. Auxiliary Result

The main tool in the proofs of the main theorems of this paper is a fixed point
result that can be derived from [7, Theorem 1]. We will use the following three
hypotheses:
(H1) W is a nonempty set and (M,d) stands for a complete non-Archimedean
metric space.
(H2) Λ : RW

+ → R
W
+ is a non-decreasing operator satisfying

lim
n→∞ Λδn(x) = 0 for every sequence (δn)n∈N ∈ R

W
+ and x ∈ W

with lim
n→∞ δn(x) = 0 for x ∈ W.

(We say that an operator Λ : RW
+ → R

W
+ is non-decreasing if it satisfies the

condition Λδ1(x) ≤ Λδ2(x) for all δ1, δ2 ∈ R
W
+ and x ∈ W with δ1(x) ≤ δ2(x)

for all x ∈ W ).
(H3) T : MW → MW is an operator satisfying the inequality

d
(
T ξ(x), T μ(x)

)
≤ Λ(Δ(ξ, μ))(x), for all ξ, μ ∈ MW , x ∈ W,

where Δ(ξ, μ)(x):=d(ξ(x), μ(x)) for all x ∈ W.

Now we are in a position to present the mentioned fixed point result.
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Theorem 2.1. Assume that hypotheses (H1)–(H3) are satisfied. Suppose that
there are functions ε : W → R+ and ϕ : W → M such that

d
(
T ϕ(x), ϕ(x)

)
≤ ε(x), x ∈ W,

and

lim
n→∞ Λnε(x) = 0, x ∈ W,

then for every x ∈ W the limit

ψ(x) = lim
n→∞ T nϕ(x)

exists and the function ψ ∈ MW , defined in this way, is a fixed point of T with

d(ϕ(x), ψ(x)) ≤ sup
n∈N0

(Λnε)(x), x ∈ W. (2.1)

Moreover, if

Λ( sup
n∈N0

(Λnε))(x) ≤ sup
n∈N0

(Λn+1ε)(x), x ∈ W,

then ψ is the unique fixed point of T satisfying (2.1).

3. New Hyperstability Results for Eq. (1.7)

The following two theorems are the main results in this paper and concern the
γ–hyperstability of (1.7). Namely, for

γ(x, y) = h1(x3)h2(y3),

with h1, h2 : R → R+ are two functions and

γ(x, y) = h(x3) + h(y3),

with h : R → R+ is a function, under some additional assumptions on the
functions h, h1, h2, we show that the conditional functional equation (1.7) is
γ-hyperstable in the class of functions f : R → G. The method of proof that
we present here can be easily adjusted for various other examples of function
γ.

In the remaining part of the paper, (G,+) is a commutative group, d is
a complete ultrametric in G which is invariant (i.e., d(x + z, y + z) = d(x, y)
for x, y, z ∈ G), and Nm0 denotes the set of all positive integers greater than
or equal to a given m0 ∈ N.

Theorem 3.1. Let h1, h2 : R → R+ be two functions such that

M0:=
{
n ∈ N2 : an:= max{s1(n3)s2(n3), s1(1−n3)s2(1−n3)} < 1

}
�= ∅, (3.1)

where si(±n):= inf{t ∈ R+ : hi(±nx3) ≤ thi(x3) for all x ∈ R} for i = 1, 2
and n ∈ N2, such that

lim
n→∞ s1(n)s2(−n) = 0.
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Suppose that f : R → G satisfies the inequality

d(f( 3
√

x3 + y3), f(x) + f(y)) ≤ h1(x3)h2(y3), x, y ∈ R0, (3.2)

where x �= −y, then (1.7) holds.

Proof. Replacing (x, y) by (mx,− 3
√

m3 − 1x), where m ∈ N2, in (3.2), we get

d
(
f(x), f(mx) + f(− 3

√
m3 − 1x)

)
≤ h1(m3x3)h2((1 − m3)x3) (3.3)

for all x ∈ R0. For each m ∈ N2, we will define the operators Tm : GR0 → GR0

and Λm : RR0
+ → R

R0
+ by

Tmξ(x) := ξ(mx) + ξ(− 3
√

m3 − 1x), ξ ∈ GR0 , x ∈ R0

Λmδ(x) = max
{
δ(mx), δ(− 3

√
m3 − 1x)

}
, δ ∈ R

R0
+ , x ∈ R0.

Then Λm:=Λ satisfies hypothesis (H2). Further, observe that

εm(x) : = h1(m3x3)h2((1 − m3)x3)

≤ s1(m3)s2(1 − m3)h1(x3)h2(x3) (3.4)

for all x ∈ R0 and m ∈ N2.Then the inequality (3.3) takes the form

d(Tmf(x), f(x)) ≤ εm(x), x ∈ R0, m ∈ N2.

Moreover, for every ξ, μ ∈ GR0 , m ∈ N2 and x ∈ R0, we obtain

d
(
Tmξ(x), Tmμ(x)

)
= d

(
ξ(mx) + ξ(− 3

√
m3 − 1x), μ(mx) + μ(− 3

√
m3 − 1x)

)

≤ max
{
d
(
ξ(f1(x)), μ(f1(x))

)
, d

(
ξ(f2(x)), μ(f2(x))

)}

= max
1≤i≤2

d
(
ξ(fi(x)), μ(fi(x))

)

= max
1≤i≤2

Δ(ξ, μ)
(
fi(x)

)

= ΛmΔ(ξ, μ)(x),

where

f1(x) = mx, and f2(x) = − 3
√

m3 − 1x, x ∈ R0.

So, (H3) is valid for Tm with m ∈ N2.
By using mathematical induction, we will show that for each x ∈ R0 we

have

Λn
mεm(x) ≤ s1(m3)s2(1 − m3)an

mh1(x3)h2(x3), (3.5)

for all n ∈ N0 and m ∈ M0. From (3.4), we obtain that the inequality (3.5)
holds for n = 0. Next, we will assume that (3.5) holds for n = l, where l ∈ N0.
Then we have
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Λl+1
m εm(x) =Λm(Λl

mεm(x))

= max
{
Λl
mεm(mx),Λl

mεm(− 3
√

m3 − 1x)
}

≤max
{
s1(m3)s2(1 − m3)al

mh1(m3x3)h2(m3x3),

s1(m3)s2(1 − m3)al
mh1((1 − m3)x3)h2((1 − m3)x3)

}

=s1(m3)s2(1 − m3)al
m max

{
h1(m3x3)h2(m3x3),

h1((1 − m3)x3)h2((1 − m3)x3)
}

≤s1(m3)s2(1 − m3)al
mh1(x3)h2(x3)

max
{
s1(m3)s2(m3), s1(1 − m3)s2(1 − m3)

}

=s1(m3)s2(1 − m3)al+1
m h1(x3)h2(x3).

This shows that (3.5) holds for n = l + 1. Now we can conclude that the
inequality (3.5) holds for all n ∈ N0. Therefore, by (3.5), we obtain that

lim
n→∞ Λn

mεm(x) = 0,

for all x ∈ R0 and m ∈ M0. Further, for each n ∈ N0, m ∈ M0 and x ∈ R0

we have

sup
n∈N0

Λn
mεm(x) = Λ0

mεm(x) = εm(x),

sup
n∈N0

Λn+1
m εm(x) = Λmεm(x) = Λm( sup

n∈N0

Λn
mεm)(x).

Thus, according to Theorem 2.1, for each m ∈ M0 the mapping Cm : R0 → G,
given by Cm(x) = limn→∞ T n

mf(x) for x ∈ R0, is a unique fixed point of Tm,
i.e,

Cm(x) = Cm(mx) + Cm(− 3
√

m3 − 1x)

for all x ∈ R0; moreover

d
(
f(x), Cm(x)

)
≤ sup

n∈N0

Λn
mεm(x), x ∈ R0, m ∈ M0.

Now we show that

d
(
T n
mf( 3

√
x3 + y3), T n

mf(x) + T n
mf(y)

)
≤ an

mh1(x3)h2(y3), (3.6)

for every n ∈ N0, m ∈ M0 and x, y ∈ R0 with x �= −y.
Clearly, if n = 0, then (3.6) is simply (3.2). So, fix n ∈ N0 and suppose

that (3.6) holds for n and every x, y ∈ R0 with x �= −y. Then, for every
x, y ∈ R0 with x �= −y,
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d
(
T n+1
m f( 3

√
x3 + y3), T n+1

m f(x) + T n+1
m f(y)

)

= d
(
T n
mf(m 3

√
x3 + y3) + T n

mf(− 3
√

m3 − 1 3
√

x3 + y3), T n
mf(mx)

+ T n
mf(− 3

√
m3 − 1x) + T n

mf(my) + T n
mf(− 3

√
m3 − 1y)

)

≤max
{

d
(
T n
mf(m 3

√
x3 + y3), T n

mf(mx) + T n
mf(my)

)
,

d
(
T n
mf(− 3

√
m3 − 1 3

√
x3 + y3), T n

mf(− 3
√

m3 − 1x)

+ T n
mf(− 3

√
m3 − 1y)

)}

≤max
{

an
mh1(m3x3)h2(m3y3), an

mh1((1 − m3)x3)h2((1 − m3)y3)
}

≤ an
mh1(x3)h2(y3)max

{
s1(m3)s2(m3), s1(1 − m3)s2(1 − m3)

}

= an+1
m h1(x3)h2(y3).

Thus, by induction, we have shown that (3.6) holds for all x, y ∈ R0 such that
x �= −y and for all n ∈ N0. Letting n → ∞ in (3.6), we obtain that

Cm( 3
√

x3 + y3) = Cm(x) + Cm(y) (3.7)

for every x, y ∈ R0 with x �= −y.
In this way, for each m ∈ M0, we obtain a function Cm such that (3.7)

holds for x, y ∈ R0 with x �= −y and

d
(
f(x), Cm(x)

)
≤ sup

n∈N0

Λn
mεm(x) ≤ s1(m3)s2(1 − m3)h1(x3)h2(x3)

for all x ∈ R0 and m ∈ M0.
Since

lim
m→∞ s1(m)s2(−m) = 0,

it follows, with m → ∞, that f fulfils (1.7). �

Remark 1. The Theorem 3.1 remains true if we replace (3.1) by

N0:=
{
n ∈ N : max{s1(n3)s2(n3), s1(n3 + 1)s2(n3 + 1)} < 1

}
�= ∅,

where si(n):= inf{t ∈ R+ : hi(nx3) ≤ thi(x3) for all x ∈ R} for n ∈ N and
i = 1, 2, such that

lim
n→∞ s1(n) = 0 or lim

n→∞ s2(n) = 0.

Theorem 3.2. Let h : R → R+ be a function such that

M0:=
{
n ∈ N2 : bn:= max{s(n3), s(1 − n3)} < 1

}
�= ∅, (3.8)

where s(±n):= inf{t ∈ R+ : h(±nx3) ≤ th(x3) for all x ∈ R} for n ∈ N2,
such that

lim
n→∞ s(n) = lim

n→∞ s(−n) = 0.
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Suppose that f : R → G satisfies the inequality

d(f( 3
√

x3 + y3), f(x) + f(y)) ≤ h(x3) + h(y3), x, y ∈ R0, (3.9)

where x �= −y, then (1.7) holds.

Proof. Replacing (x, y) by (mx,− 3
√

m3 − 1x), where m ∈ N2, in (3.9), we get

d
(
f(x), f(mx) + f(− 3

√
m3 − 1x)

)
≤ h(m3x3) + h((1 − m3)x3) (3.10)

for all x ∈ R0. For each m ∈ N2, we will define operator Tm : GR0 → GR0 by

Tmξ(x):=ξ(mx) + ξ(− 3
√

m3 − 1x),

for every ξ ∈ GR0 and x ∈ R0. Further put

εm(x) : = h(m3x3) + h((1 − m3)x3)

≤
(
s(m3) + s(1 − m3)

)
h(x3) (3.11)

for all m ∈ N2 and x ∈ R0. Then the inequality (3.10) takes the form

d(Tmf(x), f(x)) ≤ εm(x), x ∈ R0, m ∈ N2.

Let Λm : RR0
+ → R

R0
+ be an operator which is defined by

Λmη(x) = max
{

η(mx), η(− 3
√

m3 − 1x)
}

for all x ∈ R0, m ∈ N2 and η ∈ R
R0
+ . Then it is easily seen that Λm:=Λ satisfies

hypothesis (H2).
Moreover, for every ξ, μ ∈ GR0 , m ∈ N2 and x ∈ R0, we obtain

d
(
Tmξ(x), Tmμ(x)

)
= d

(
ξ(mx) + ξ(− 3

√
m3 − 1x), μ(mx) + μ(− 3

√
m3 − 1x)

)

≤ max
{
d
(
ξ(f1(x)), μ(f1(x))

)
, d

(
ξ(f2(x)), μ(f2(x))

)}

= max
1≤i≤2

Δ(ξ, μ)
(
fi(x)

)

= ΛmΔ(ξ, μ)(x),

where

f1(x) = mx, and f2(x) = − 3
√

m3 − 1x, x ∈ R0.

Consequently, for each m ∈ N2, also (H3) is valid for Tm.
Next, it easily seen that, by induction on n, from (3.11) we obtain

Λn
mεm(x) ≤

(
s(m3) + s(1 − m3)

)
bnmh(x3), (3.12)

for all n ∈ N0 and m ∈ M0. Therefore, by (3.12), we obtain that

lim
n→∞ Λn

mεm(x) = 0,
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for all x ∈ R0 and m ∈ M0. Further, for each n ∈ N0, m ∈ M0 and x ∈ R0

we have

sup
n∈N0

Λn
mεm(x) = Λ0

mεm(x) = εm(x),

sup
n∈N0

Λn+1
m εm(x) = Λmεm(x) = Λm( sup

n∈N0

Λn
mεm)(x).

Thus, according to Theorem 2.1, for each m ∈ M0 the mapping Cm : R0 → G,
given by Cm(x) = limn→∞ T n

mf(x) for x ∈ R0, is a unique fixed point of Tm,
i.e,

Cm(x) = Cm(mx) + Cm(− 3
√

m3 − 1x)

for all x ∈ R0; moreover

d
(
f(x), Cm(x)

)
≤ sup

n∈N0

Λn
mεm(x), x ∈ R0, m ∈ M0.

Now we show that

d
(
T n
mf( 3

√
x3 + y3), T n

mf(x) + T n
mf(y)

)
≤ bnm(h(x3) + h(y3)), (3.13)

for every n ∈ N0, m ∈ M0 and x, y ∈ R0 with x �= −y.
Clearly, if n = 0, then (3.13) is simply (3.9). So, fix n ∈ N0 and suppose

that (3.13) holds for n and every x, y ∈ R0 with x �= −y. Then, for every
x, y ∈ R0 with x �= −y,

d
(
T n+1
m f( 3

√
x3 + y3), T n+1

m f(x) + T n+1
m f(y)

)

= d
(
T n
mf(m 3

√
x3 + y3) + T n

mf(− 3
√

m3 − 1 3
√

x3 + y3), T n
mf(mx)

+ T n
mf(− 3

√
m3 − 1x) + T n

mf(my) + T n
mf(− 3

√
m3 − 1y)

)

≤max
{

d
(
T n
mf(m 3

√
x3 + y3), T n

mf(mx) + T n
mf(my)

)
,

d
(
T n
mf(− 3

√
m3 − 1 3

√
x3 + y3), T n

mf(− 3
√

m3 − 1x) + T n
mf(− 3

√
m3 − 1y)

)}

≤max
{

bnm
(
h(m3x3) + h(m3y3)

)
, bnm

(
h((1 − m3)x3) + h((1 − m3)y3)

)}

≤ bnm
(
h(x3) + h(y3)

)
max

{
s(m3), s(1 − m3)

}

= bn+1
m

(
h(x3) + h(y3)

)
.

Thus, by induction, we have shown that (3.13) holds for all x, y ∈ R0 such
that x �= −y and for all n ∈ N0. Letting n → ∞ in (3.13), we obtain that

Cm( 3
√

x3 + y3) = Cm(x) + Cm(y) (3.14)

for every x, y ∈ R0 with x �= −y.
In this way, for each m ∈ M0, we obtain a function Cm such that (3.14)

holds for x, y ∈ R0 with x �= −y and

d
(
f(x), Cm(x)

)
≤ sup

n∈N0

Λn
mεm(x) ≤

(
s(m3) + s(1 − m3)

)
h(x3)
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for all x ∈ R0 and m ∈ M0.
Since

lim
m→∞ s(m) = lim

m→∞ s(−m) = 0,

it follows, with m → ∞, that f fulfils (1.7). �

Remark 2. The Theorems 3.1 and 3.2 also provide γ-hyperstability results in
the case where the control function is γ(x, y) = h(x3) (or γ(x, y) = h(y3)).

By using Theorems 3.1 and 3.2 and the same technique we get the fol-
lowing hyperstability results for the inhomogeneous radical cubic functional
equation.

Corollary 3.1. Let h1, h2 : R → R+ be two functions such that (3.1) is an
infinite set, where si(±n):= inf{t ∈ R+ : hi(±nx3) ≤ thi(x3) for all x ∈ R}
for i = 1, 2 and n ∈ N2, with

lim
n→∞ s1(n)s2(−n) = 0.

Let f : R → G and F : R2 → G be two functions such that

d
(
f( 3

√
x3+y3), f(x) + f(y) + F (x, y)

)
≤ h1(x3)h2(y3), x, y ∈ R0, x �= −y.

Assume that the functional equation

f( 3
√

x3 + y3) = f(x) + f(y) + F (x, y), x, y ∈ R0, x �= −y (3.15)

admits a solution f0 : R0 → G. Then f is a solution of (3.15).

Proof. Let f1(x):=f(x) − f0(x) for x ∈ R0. Then

d
(
f1(

3
√

x3 + y3), f1(x) + f1(y)
)

= d
(
f( 3

√
x3 + y3) − f0(

3
√

x3 + y3), f(x) − f0(x) + f(y)

+ F (x, y) − f0(y) − F (x, y)
)

≤ max
{

d
(
f( 3

√
x3 + y3), f(x) + f(y) + F (x, y)

)
,

d
(
f0(

3
√

x3 + y3), f0(x) + f0(y) + F (x, y)
)
}

= d
(
f( 3

√
x3 + y3), f(x) + f(y) + F (x, y)

)

≤ h(x3)h(y3), x, y ∈ R0, x �= −y.

It follows from Theorem 3.1 with f replaced by f1 that f1 satisfies the radical
cubic functional equation (1.7). Therefore,

f( 3
√

x3 + y3) − f(x) − f(y) − F (x, y) = f1(
3
√

x3 + y3) − f1(x) − f1(y)

+ f0(
3
√

x3 + y3) − f0(x) − f0(y) − F (x, y) = 0

for all x, y ∈ R0 with x �= −y. �
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Analogously we prove the following.

Corollary 3.2. Let h : R → R+ be a function such that (3.8) is an infinite set,
where s(±n):= inf{t ∈ R+ : h(±nx3) ≤ th(x3) for all x ∈ R} for n ∈ N2,
with

lim
n→∞ s(n) = lim

n→∞ s(−n) = 0.

Let f : R → G and F : R2 → G be two functions such that

d
(
f( 3

√
x3 + y3), f(x) + f(y) + F (x, y)

)
≤ h(x3) + h(y3),

x, y ∈ R0, x �= −y.

Assume that the functional equation

f( 3
√

x3 + y3) = f(x) + f(y) + F (x, y), x, y ∈ R0, x �= −y (3.16)

admits a solution f0 : R0 → G. Then f is a solution of (3.16).

4. Some Particular Cases

According to Theorems 3.1, 3.2 and Corollaries 3.1, 3.2 with G = X is a
non-Archimedean Banach space over a field K with respect to the ultrametric
d(x, y):=‖x − y‖d for all x, y ∈ X, h(x):=c|x|p, hi(x):=ci|x|pi for all x ∈ R0

where c, p, ci, pi ∈ R for i = 1, 2, we derive some particular cases from our
main results.

Corollary 4.1. Let X be an ultrametric Banach space and c, p, q ∈ R with c ≥ 0
and p + q < 0. If f : R → X satisfies the inequality

‖f( 3
√

x3 + y3) − f(x) − f(y)‖d ≤ c|x|p|y|q, x, y ∈ R0, x �= −y,

then (1.7) holds.

Corollary 4.2. Let X be an ultrametric Banach space, F : R
2 → X be a

function and c, p, q ∈ R with c ≥ 0 and p+ q < 0. Let f : R → X be a function
such that

‖f( 3
√

x3 + y3) − f(x) − f(y) − F (x, y)‖d ≤ c|x|p|y|q, x, y ∈ R0, x �= −y.

Assume that the functional equation

f( 3
√

x3 + y3) = f(x) + f(y) + F (x, y), x, y ∈ R0, x �= −y (4.1)

admits a solution f0 : R0 → X. Then f is a solution of (4.1).

Corollary 4.3. Let X be an ultrametric Banach space and c, p ∈ R with c ≥ 0
and p < 0. If f : R → X satisfies the inequality

‖f( 3
√

x3 + y3) − f(x) − f(y)‖d ≤ c(|x|p + |y|p), x, y ∈ R0, x �= −y,

then (1.7) holds.
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Corollary 4.4. Let X be an ultrametric Banach space, F : R
2 → X be a

function and c, p ∈ R with c ≥ 0 and p < 0. Let f : R → X be a function such
that

‖f( 3
√

x3 + y3) − f(x) − f(y) − F (x, y)‖d ≤ c(|x|p + |y|p),
x, y ∈ R0, x �= −y.

Assume that the functional equation

f( 3
√

x3 + y3) = f(x) + f(y) + F (x, y), x, y ∈ R0, x �= −y (4.2)

admits a solution f0 : R0 → X. Then f is a solution of (4.2).
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