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Abstract. In the present paper, we generalize the well-known Nadler’s
fixed point theorem (Nadler in Pac J Math 30:475–488, 1969), and one of
some Dhompongsa and Yingtaweesittikul type theorems for multi-valued
operators, see (Dhompongsa and Yingtaweesittikul in Fixed Point Theory
Appl, 2007). Also, we give an example showing that our result is a proper
generalization of some previous theorems.
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1. Introduction and Preliminaries

Banach contraction principle plays an important role in many branches of
mathematics. For instance, it has been used to study the existence of solu-
tions for nonlinear Volterra integral equations, nonlinear integro-differential
equations in Banach space and to prove the convergence of algorithms in com-
putational mathematics. Because of its importance for mathematical theory,
Banach contraction principle has been generalized by many authors in various
directions, see [3,4,6,7,13,14,27,28]. One such generalization is due to Meir
and Keeler [21]. In 1969, they proved the following very interesting fixed-point
theorem.

Theorem 1.1. (Meir and Keeler [21]) Let (X, d) be a complete metric space
and let T be a mapping on X. Assume that for every ε > 0, there exists δ > 0
such that

ε ≤ d (x, y) < ε + δ implies d (Tx, Ty) < ε,
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for x, y ∈ X. Then T has a unique fixed point.

In 2001, Lim [20] introduced the notion of an L-function and characterized
Meir-Keeler contractions (MKC, for short).

Definition 1.1. (Lim [20]) A function ϕ from [0,∞) into itself is called an L-
function if ϕ (0) = 0, ϕ (s) > 0 for s ∈ (0,∞), and for every s ∈ (0,∞) there
exists δ > 0 such that ϕ (t) ≤ s for all t ∈ [s, s + δ].

Theorem 1.2. (Lim [20]) Let (X, d) be a complete metric space and let T be a
mapping on X. Then T is an MKC if and only if there exists an (nondecreas-
ing, right continuous) L-functions ϕ such that

d (Tx, Ty) < ϕ (d (x, y))

for all x, y ∈ X with x �= y.

Another valuable generalization is due to Geraghty [16].

Theorem 1.3. (Geraghty [16]) Let (X, d) be a complete metric space and let
T : X → X be a mapping such that for each x, y ∈ X,

d (Tx, Ty) ≤ α (d (x, y)) d (x, y) ,

where α ∈ S, and S is the class of functions from [0,∞) into [0, 1) which
satisfy the simple condition α (tn) → 1 =⇒ tn → 0. Then T has a unique fixed
point z ∈ X, and {Tn (x)} converges to z, for each x ∈ X (T is a Picard
operator).

In 1969, Nadler [24] proved a fundamental fixed point theorem for multi-
valued maps. Given a metric space (X, d), by P (X) and CB (X) we will denote
the family of nonempty subsets of X and the family of all nonempty closed
and bounded subsets of X, respectively. It is obvious that, CB (X) ⊆ P (X).
For A, B ∈ CB (X), let

H (A,B) = max
{

sup
x∈A

D (x,B) , sup
y∈B

D (y,A)
}

,

where D (x,B) = inf {d (x, y) : y ∈ B}. Then H is a metric on CB (X), which
is called the Pompeiu-Hausdorff metric induced by d.

Theorem 1.4. (Nadler [24]) Let (X, d) be a complete metric space and let T
be a multi-valued map on X such that Tx is nonempty closed bounded subset
of X (Tx ∈ CB(X)) for any x ∈ X. If there exists c ∈ (0, 1) such that

H (Tx, Ty) ≤ c · d (x, y) ,∀x, y ∈ X,

then T has a fixed point in X (there exists z ∈ X such that z ∈ Tz ).

Since then, a lot of generalizations of the result of Nadler have been given
(see, for example, [1,2,8,9,11,12,15,17–19,22,23,26,29,30])

Gorgji et al. [17] introduced a notion called special multi-valued map and
for this type of multi-valued map they generalized the Geraghty’s fixed point
theorem.
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Definition 1.2. (Gorgji et al. [17]) Let (X, d) be a complete metric space. A
mapping T : X → CB(X) is called special multi-valued if

inf
y∈Tx

{d(x, y) + d(y, z)} = D(x, Tx) + D(z, Tx),

for all x, z ∈ X.

It is obvious that every single valued mapping is special multi-valued
mapping.

Theorem 1.5. (Gorgji et al. [17]) Let (X, d) be a complete metric space and
let T be special multi-valued mapping such that

H (Tx, Ty) ≤ α (d (x, y)) d (x, y) + β (d (x, y)) [D(x, Tx) + D(y, Ty)]
+ γ (d (x, y)) [D(x, Ty) + D(y, Tx)]

for all x, y ∈ X, where α, β, γ are mappings from [0,∞) into [0, 1) such that
α+β+γ
1−(β+γ) ∈ S and β (t) ≥ γ (t) for all t ∈ [0,∞). Then T has a fixed point.

Putting β = γ = 0 in Theorem 1.5, we have the following result, which can
be regarded as an extension of Geraghty’s fixed point theorem.

Corollary 1.1. (Gorgji et al. [17]) Let (X, d) be a complete metric space and
let T be special multi-valued mapping, α ∈ S such that

H (Tx, Ty) ≤ α (d (x, y)) d (x, y)

for all x, y ∈ X. Then T has a fixed point.

Proposition 1.1. Let (X, d) be a complete metric space and T : X → CB (X).
Then T is a special multi-valued mapping if and only if d (x, y) = D (x, Tx)
for every y ∈ Tx and x ∈ X.

Proof. Assume that T is a special multi-valued map. Taking z ∈ Tx, we have

inf
y∈Tx

{d(x, y) + d(y, z)} = D(x, Tx).

But

D(x, Tx) ≤ d(x, y) ≤ d(x, y) + d(y, z) for all y, z ∈ Tx,

hence d(x, y) = D(x, Tx) for all y ∈ Tx. Now, we suppose that d(x, y) =
D(x, Tx) for all y ∈ Tx and x ∈ X. Since

D (z, Tx) = inf
y∈Tx

d(y, z),

we have

inf
y∈Tx

{d(x, y) + d(y, z)} = inf
y∈Tx

{D(x, Tx) + d(y, z)}
= D(x, Tx) + inf

y∈Tx
d(y, z)

= D(x, Tx) + D (z, Tx) ,

so T is a special multi-valued map. �
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A metric space (X, d) is hyperconvex if for any family of points {xα} in
X and any family of positive numbers {rα} satisfying d (xα, xβ) ≤ rα + rβ , we
have

⋂
αB (xα, rα) �= ∅, where B (x, r) is the closed ball with center at x and

radius r. A subset E of X is said to be externally hyperconvex if for any of
those families {xα}, {rα} with d (xα, xβ) ≤ rα + rβ and D (xα, E) ≤ rα, we
have

⋂
αB (xα, rα)

⋂
E �= ∅. The class of all externally hyperconvex subsets of

X will be denoted by E (X) .
A selfmapping T on a metric space (X, d) is said to be asymptotically

regular (cf. [5]) if
lim
n

d
(
Tnx, Tn+1x

)
= 0

for each x ∈ X.

Theorem 1.6. (Proinov [25]) Let T be a continuous and asymptotically regular
selfmapping on a complete metric space satisfying the following conditions:
(i) there exists ϕ ∈ Φ1 (i.e., ϕ : [0,∞) → [0,∞) satisfying: for any ε > 0,

there exists δ > ε such that ε < t < δ implies ϕ (t) ≤ ε) such that
d (Tx, Ty) ≤ ϕ (M (x, y)) for all x, y ∈ X;

(ii) d (Tx, Ty) < M (x, y) for all x, y ∈ X with x �= y.
Then T is a Picard operator, where M (x, y) = d (x, y) + r [d (x, Tx) +

d (y, Ty)], r ≥ 0.

Dhompongsa and Yingtaweesittikul [10] proved a multivalued version of
Theorem 1.6 on the class of hyperconvex metric space.

Theorem 1.7. ([10]) Let (X, d) be a bounded hyperconvex metric space, and let
T : X → E (X) be asymptotically regular satisfying the following conditions:
(i) there exists ϕ ∈ Φ1 such that ϕ (x) ≤ x, ϕ (x + y) ≤ ϕ (x) + ϕ (y) for all

x, y ∈ [0,∞), ϕ (x) = 0 if and only if x = 0, and H(Tx, Ty) ≤ ϕ (d (x, y))
for all x, y ∈ X;

(ii) H (Tx, Ty) < d (x, y) for all x, y ∈ X with x �= y.
Then, if δ (Tnx) → 0 for each x ∈ X, T has a contractive fixed point,

that is, there exists a unique point ξ in X such that, for each x ∈ X, Tnx →
{ξ} = FixT .

(Here δ (A) := sup {d (x, y) : x, y ∈ A} is the diameter of A ⊂ X.)

In this paper, we generalize Theorems 1.4 and 1.7.

2. Main Results

We start our work with two lemmas.

Lemma 2.1. Let (X, d) be a complete metric space and T : X → CB (X). Then
for every x, y ∈ X we have

d (x, y) ≤ D (x, Tx) + H (Tx, Ty) + D (y, Ty) + δ (Ty) .
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Proof. Let ε > 0 be fixed and x, y ∈ X. Then there exists a ∈ Tx, b ∈ Ty
such that d (x, a) ≤ D (x, Tx)+ ε and d (y, b) ≤ D (y, Ty)+ ε. Also, for a ∈ Tx
there exists c ∈ Ty such that d (a, c) ≤ H (Tx, Ty) + ε. Therefore,

d (x, y) ≤ d (x, a) + d (a, c) + d (c, b) + d (b, y)
≤ D (x, Tx) + ε + H (Tx, Ty) + ε + δ (Ty) + D (y, Ty) + ε

= D (x, Tx) + H (Tx, Ty) + D (y, Ty) + δ (Ty) + 3ε.

Since ε is arbitrar we have that

d (x, y) ≤ D (x, Tx) + H (Tx, Ty) + D (y, Ty) + δ (Ty) .

Lemma 2.2. Let ϕ ∈ Φ1 such that ϕ (x) ≤ x, ϕ (x + y) ≤ ϕ (x) + ϕ (y) for all
x, y ∈ [0,∞), ϕ (x) = 0 if and only if x = 0. Then:

(a) ϕ (x) < x for every x > 0;
(b) for every sequence {dn} such that dn → d as n → ∞, dn ≥ d we have

lim supn→∞ϕ (dn) ≤ ϕ (d).

Proof. (a) Suppose there exists a > 0 such that ϕ (a) = a. Let x < a arbi-
trarly fixed. Then we have

a = ϕ (a) = ϕ (x + a − x) ≤ ϕ (x) + ϕ (a − x) ≤ x + a − x = a.

This implies ϕ (x) = x for every x ≤ a. Since ϕ ∈ Φ1, for ε = a
2 there

exists δ > a
2 such that ϕ (t) ≤ a

2 for every t ∈ (
a
2 , δ

)
. If t ∈ (

a
2 , δ

)∩ (
a
2 , a

)
we have ϕ (t) = t > a

2 , contradiction.
(b) Let the sequence {dn} such that dn → d as n → ∞, dn ≥ d. Then we

have

ϕ (dn) = ϕ (d + dn − d) ≤ ϕ (d) + ϕ (dn − d) ≤ ϕ (d) + dn − d

Therefore lim supn→∞ϕ (dn) ≤ ϕ (d) .

Theorem 2.1. Let (X, d) be a complete metric space and T : X → CB (X) such
that there exists ϕ ∈ Φ1 satisfying ϕ (x) ≤ x, ϕ (x + y) ≤ ϕ (x) + ϕ (y) for all
x, y ∈ [0,∞), ϕ (x) = 0 if and only if x = 0, and H (Tx, Ty) ≤ ϕ (d (x, y)) for
all x, y ∈ X. Then, if δ (Tnx) → 0 for each x ∈ X, T has a unique contractive
fixed point.

Proof. Let x0 ∈ X. If x0 ∈ Tx0 then x0 is a fixed point of T . Suppose that
x0 /∈ Tx0. Then there exists x1 ∈ Tx0 such that

d (x0, x1) < D (x0, Tx0) + 1

If x1 ∈ Tx1 then x1 is a fixed point of T . Suppose that x1 /∈ Tx1. From Lemma
2.2 and hypothesis we have D (x1, Tx1) ≤ H (Tx0, Tx1) ≤ ϕ (d (x0, x1)) <
d (x0, x1), so there exists x2 ∈ Tx1 such that

d (x1, x2) < D (x1, Tx1) +
1
2

and d (x1, x2) < d (x0, x1) .
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Therefore inductively, there exists a sequence {xn} such that xn+1 ∈ Txn and

d (xn, xn+1) < D (xn, Txn) +
1
n

and d (xn, xn+1) < d (xn−1, xn) .

Hence the sequence {d (xn, xn+1)} is strictly decreasing and there exists d ≥ 0
such that

dn = d (xn, xn+1) → d.

Since dn < D (xn, Txn) + 1
n ≤ dn + 1

n , we have that Dn = D (xn, Txn) → d
as n → ∞. But

Dn+1 = D (xn+1, Txn+1) ≤ H (Txn, Txn+1)
≤ ϕ (d (xn, xn+1)) ≤ d (xn, xn+1) = dn.

Letting n → ∞ we get limn ϕ (dn) = d.
From Lemma 2.2 we have limnϕ (dn) ≤ ϕ (d) ,hence d ≤ ϕ (d) ≤ d. Thus

ϕ (d) = d and from Lemma 2.2 we get d = 0. This means that H (Txn, Txn+1)
→ 0, dn → 0, Dn → 0.

Now we prove that {xn} is a Cauchy sequence. Suppose the contrary,
there exists ε > 0 and

{
xn(k)

}
,
{
xm(k)

}
two subsequences of {xn} such that

d
(
xn(k), xm(k)

) ≥ ε for all k, where n (k) > m (k) > k. We can choose n (k)
such that d

(
xn(k)−1, xm(k)

)
< ε for all k. Then

ε ≤ d
(
xn(k), xm(k)

) ≤ d
(
xn(k)−1, xm(k)

)
+ d

(
xn(k)−1, xn(k)

)
< ε + dn(k)−1.

Letting k → ∞ we have limk d
(
xn(k), xm(k)

)
= ε.

Since Txn(k) ⊂ Tn(k)+1x0 and δ (Tnx0) → 0 as n → ∞, then δ
(
Txn(k)

)
→ 0 as k → ∞.

From Lemma 2.1 and hypothesis we have

d
(
xn(k), xm(k)

) − D
(
xn(k), Txn(k)

) − D
(
xm(k), Txm(k)

) − δ
(
Txm(k)

)
≤ H

(
Txn(k), Txm(k)

) ≤ ϕ
(
d

(
xn(k), xm(k)

)) ≤ d
(
xn(k), xm(k)

)
for all k. Letting k → ∞ we get

lim
k

ϕ
(
d

(
xn(k), xm(k)

))
= ε.

But, from Lemma 2.2 limk ϕ
(
d

(
xn(k), xm(k)

)) ≤ ϕ (ε) < ε, so we have a
contradiction. Hence {xn} is a Cauchy sequence.

From the completeness of X, there exists x∗ ∈ X such that xn → x∗.
Since

D (x∗, Tx∗) ≤ d (x∗, xn+1) + D (xn+1, Tx∗) ≤ d (x∗, xn+1) + H (Txn, Tx∗)
≤ d (x∗, xn+1) + ϕ (d (xn, x∗)) ≤ d (x∗, xn+1) + d (xn, x∗) ,

letting n → ∞, we have D (x∗, Tx∗) = 0. Therefore x∗ ∈ Tx∗, by where
x∗ ∈ Tnx∗ for every n ≥ 1.



Vol. 72 (2017) A Generalization of Nadler’s Fixed Point Theorem 1531

Let y∗, x∗ ∈ Tx∗. There exists sequence {yn} , y1 ∈ Tx∗, yn ∈ Tyn−1, n ≥
2 such that d (yn, y∗) ≤ H (Tyn−1, Tx∗)+ 1

n . We have yn ∈ Tyn−1 ⊂ T 2yn−2 ⊂
. . . ⊂ Tn−1y1 ⊂ Tnx∗.

Then

d (x∗, y∗) ≤ d (x∗, yn) + d (yn, y∗) ≤ δ (Tnx∗) + H (Tyn−1, Tx∗) +
1
n

≤ δ (Tnx∗) + ϕ (d (yn−1, x
∗)) +

1
n

≤ δ (Tnx∗) + d (yn−1, x
∗) +

1
n

≤ δ (Tnx∗) + δ
(
Tn−1x∗) +

1
n

.

Letting n → ∞ we get d (x∗, y∗) = 0 , so Tx∗ = {x∗}.
Now suppose that there exists y∗ �= x∗ such that y∗ ∈ Ty∗. Since

d (y∗, x∗) = D (y∗, Tx∗) ≤ H (Ty∗, Tx∗) ≤ ϕ (d (y∗, x∗)) < d (y∗, x∗)

we have a contradiction. �

Example 2.2. Let X = [0,∞) and d (x, y) = |x − y|, then (X, d) is complete
metric space. Define a mapping T : X → CB (X) as:

Tx =
{ {0} , x = 0

[0, ln (1 + x)] , x > 0 .

Taking x = 0, y > 0, we have H (T0, T y) = ln (1 + y) and d (0, y) = y. Since
limy→0

ln(1+y)
y = 1, we get limy→0

H(T0,Ty)
d(0,y) = 1. This implies (�) c ∈ [0, 1) such

that H (Tx, Ty) ≤ cd (x, y) (∀) x, y ∈ X, hence T does not verify hypothesis
of Theorem 1.4.

Let ϕ : [0,∞) → [0,∞), ϕ (x) = ln (1 + x).
For ε > 0, arbitrary, we consider δ = eε − 1 > ε, obviously. For t ∈ (ε, δ)

we have ϕ (t) = ln (1 + t) < ln eε = ε, so ϕ ∈ Φ1.

It is clear that

(i) ϕ (x) = ln (1 + x) ≤ x, for every x ∈ X
(ii) ϕ (x) = 0 ⇔ x = 0

For (∀) x, y ∈ X we have

ϕ (x) + ϕ (y) = ln (1 + x) + ln (1 + y) = ln (1 + x + y + xy)
≥ ln (1 + x + y) = ϕ (x + y) .

For y > x ≥ 0 we have Tx ⊂ Ty, so

H (Tx, Ty) = sup {D (b, Tx) : b ∈ Ty}
= ln (1 + y) − ln (1 + x) = ln

1 + y

1 + x
.
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Since 0 ≤ x ≤ y we get x2 ≤ xy, and then

1 + y ≤ (1 + x) (1 + y − x) ⇔
1 + y

1 + x
≤ 1 + y − x ⇔

ln
1 + y

1 + x
≤ ln (1 + y − x) .

This implies
H (Tx, Ty) ≤ ϕ (d (x, y)) (1)

Let x0 ∈ X arbitrarly fixed and the sequence {xn}n≥0 such that

xn = ln (1 + xn−1) , (∀) n ≥ 1. (2)

It is clear that 0 ≤ xn ≤ xn−1, hence {xn} converges to a limit l ≥ 0. Taking
the limit as n → ∞ in (2), we get l = ln (1 + l) which implies l = 0.

On the other hand we have

Tx0 =
{{0} , x0 = 0

[0, ln (1 + x0)] = [0, x1] , x0 > 0

T 2x0 =
{{0} , x0 = 0

[0, x2] , x0 > 0

Inductively, we get

Tnx0 =
{{0} , x0 = 0

[0, xn] , x0 > 0

Thus δ (Tnx0) = xn → 0. Therefore T satisfies the hypothesis of Theorem 2.1.
(T0 = {0})

Let α : [0,∞) → [0, 1),

α (x) =
{

ln(1+x)
x , x > 0

0, x = 0
.

Since

lim
x→∞α (x) = 0

lim
x→0

α (x) = 1

lim
x→a

α (x) = α (a) ∈ (0, 1) , (∀) a ∈ (0,∞)

then α (tn) → 1 implies tn → 0 , hence α ∈ S.
Let (∀) x, y ∈ [0,∞) . If x = y we have H (Tx, Ty) = 0 ≤ α (d (x, y)) ·

d (x, y) = 0. If x �= y by (1) we have H (Tx, Ty) ≤ ϕ (d (x, y)) = ln (1 + d (x, y))
= α (d (x, y))·d (x, y). In conclusion H (Tx, Ty) ≤ α (d (x, y))·d (x, y) , (∀) x, y
∈ [0,∞), where T satisfies the inequality of Corollary 1.1. For x = e − 1 we
have d (e − 1, 0) = e − 1, T (e − 1) = [0, 1] and D (e − 1, T (e − 1)) = e − 2,
from where d (e − 1, 0) �= D (e − 1, T (e − 1)). Therefore, from Proposition 1.1,
T is not a special multi-valued mapping.
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In Theorem 1.7 (X, d) is a bounded hyperconvex metric space, but in our
example (X, d) is an unbounded metric space.
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