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Abstract. In the present paper, we generalize the well-known Nadler’s
fixed point theorem (Nadler in Pac J Math 30:475-488, 1969), and one of
some Dhompongsa and Yingtaweesittikul type theorems for multi-valued
operators, see (Dhompongsa and Yingtaweesittikul in Fixed Point Theory
Appl, 2007). Also, we give an example showing that our result is a proper
generalization of some previous theorems.
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1. Introduction and Preliminaries

Banach contraction principle plays an important role in many branches of
mathematics. For instance, it has been used to study the existence of solu-
tions for nonlinear Volterra integral equations, nonlinear integro-differential
equations in Banach space and to prove the convergence of algorithms in com-
putational mathematics. Because of its importance for mathematical theory,
Banach contraction principle has been generalized by many authors in various
directions, see [3,4,6,7,13,14,27,28]. One such generalization is due to Meir
and Keeler [21]. In 1969, they proved the following very interesting fixed-point
theorem.

Theorem 1.1. (Meir and Keeler [21]) Let (X, d) be a complete metric space
and let T be a mapping on X . Assume that for every e > 0, there exists § > 0
such that

e <d(z,y) <e+0 implies d(Tz,Ty) < ¢,
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for x,y € X. Then T has a unique fixed point.

In 2001, Lim [20] introduced the notion of an L-function and characterized
Meir-Keeler contractions (MKC, for short).

Definition 1.1. (Lim [20]) A function ¢ from [0, c0) into itself is called an L-
function if ¢ (0) =0, ¢ (s) > 0 for s € (0,00), and for every s € (0,00) there
exists d > 0 such that ¢ () < s for all ¢t € [s,s+ d].
Theorem 1.2. (Lim [20]) Let (X, d) be a complete metric space and let T be a
mapping on X. Then T is an MKC' if and only if there exists an (nondecreas-
ing, right continuous) L-functions ¢ such that

d(Tz,Ty) < ¢ (d(z,y))
for all x,y € X with x # y.

Another valuable generalization is due to Geraghty [16].

Theorem 1.3. (Geraghty [16]) Let (X, d) be a complete metric space and let
T:X — X be a mapping such that for each x,y € X,

d(Tz,Ty) < a(d(z,y))d(z,y),

where a € S, and S is the class of functions from [0,00) into [0,1) which
satisfy the simple condition « (t,) — 1 = t,, — 0. Then T has a unique fized
point z € X, and {T™ (x)} converges to z, for each v € X (T is a Picard
operator).

In 1969, Nadler [24] proved a fundamental fixed point theorem for multi-
valued maps. Given a metric space (X, d), by P (X) and CB (X) we will denote
the family of nonempty subsets of X and the family of all nonempty closed
and bounded subsets of X, respectively. It is obvious that, CB(X) C P (X).
For A, B € CB(X), let

H (A, B) = max {supD (z,B), supD (y,A)} ,
z€A yeB
where D (x, B) = inf {d (z,y) : y € B}. Then H is a metric on CB (X), which
is called the Pompeiu-Hausdorff metric induced by d.
Theorem 1.4. (Nadler [24]) Let (X, d) be a complete metric space and let T

be a multi-valued map on X such that Tx is nonempty closed bounded subset
of X (Tx € CB(X)) for any x € X. If there exists ¢ € (0,1) such that

H(Tz,Ty) <c-d(z,y),Vz,y € X,
then T has a fized point in X (there exists z € X such that z € Tz ).

Since then, a lot of generalizations of the result of Nadler have been given
(see, for example, [1,2,8,9,11,12,15,17-19,22,23,26,29,30])

Gorgji et al. [17] introduced a notion called special multi-valued map and
for this type of multi-valued map they generalized the Geraghty’s fixed point
theorem.
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Definition 1.2. (Gorgji et al. [17]) Let (X, d) be a complete metric space. A
mapping T : X — CB(X) is called special multi-valued if

inf {d(z,y) +d(y,2)} = D(z,Tw) + D(z,Tz),
yel'x
for all z,z € X.
It is obvious that every single valued mapping is special multi-valued
mapping.

Theorem 1.5. (Gorgji et al. [17]) Let (X, d) be a complete metric space and
let T be special multi-valued mapping such that

H(Tz,Ty) < a(d(z,y))d(z,y) + B (d(z,y)) [D(z,Tx) + D(y, Ty)]
+v(d(z,y)) [D(z,Ty) + D(y, Tx)]

for all x,y € X, where a, 3, v are mappings from [0,00) into [0,1) such that
atﬁﬂ €S and B (t) > (t) for allt € [0,00). Then T has a fized point.

Putting 8=+ =0 in Theorem 1.5, we have the following result, which can
be regarded as an extension of Geraghty’s fixed point theorem.

Corollary 1.1. (Gorgji et al. [17]) Let (X, d) be a complete metric space and
let T' be special multi-valued mapping, o € S such that

H (Tz,Ty) < a(d(z,y))d(z,y)
for all x,y € X. Then T has a fized point.

Proposition 1.1. Let (X, d) be a complete metric space and T : X — CB (X).
Then T is a special multi-valued mapping if and only if d(x,y) = D (z,Tx)
for everyy € Tx and x € X.
Proof. Assume that T is a special multi-valued map. Taking z € Tz, we have

inf {d(z,y)+d(y,2)} = D(z,Tx).

yeTx
But

D(z,Tz) < d(z,y) < d(x,y) +d(y, 2) for all y,z € T'x,

hence d(x,y) = D(x,Tx) for all y € Tx. Now, we suppose that d(x,y) =
D(z,Tz) for all y € Tx and = € X. Since

D (xTa) = inf dly,2).

we have
int {d(w.y) +d(y.2)} = inf (D, Ta) +d(y,2)}
= D(z, T inf d
(@.T2) + inf d(y.2)
= D(x,Tx) + D (2,Tx),

so T is a special multi-valued map. ]
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A metric space (X, d) is hyperconvex if for any family of points {z,} in
X and any family of positive numbers {r,} satisfying d (zq,zg) < ro +7g, we
have (), B (zq,7a) # 0, where B (z,r) is the closed ball with center at = and
radius 7. A subset E of X is said to be externally hyperconvex if for any of
those families {xq}, {ro} With d(za,23) < 7o + 73 and D (24, E) < rq, we
have (), B (a,7a) () E # 0. The class of all externally hyperconvex subsets of
X will be denoted by E (X).

A selfmapping T on a metric space (X,d) is said to be asymptotically
regular (cf. [5]) if

lirlln d (T”:c, T"H:):) =0

for each x € X.

Theorem 1.6. (Proinov [25]) Let T be a continuous and asymptotically regular
selfmapping on a complete metric space satisfying the following conditions:
(i) there exists p € @y (i.e., ¢ : [0,00) — [0,00) satisfying: for any € > 0,
there exists 0 > e such that € < t < § implies ¢ (t) < €) such that
d(Tz,Ty) < ¢ (M (z,y)) for all z,y € X;
(i) d(Tx,Ty) < M (x,y) for all x,y € X with © # y.
Then T is a Picard operator, where M (x,y) = d(x,y) + r[d(x,Tx)+
d(y,Ty)], r = 0.

Dhompongsa and Yingtaweesittikul [10] proved a multivalued version of
Theorem 1.6 on the class of hyperconvex metric space.

Theorem 1.7. ([10]) Let (X,d) be a bounded hyperconvex metric space, and let
T:X — E(X) be asymptotically regular satisfying the following conditions:
(i) there exists o € ®1 such that ¢ () <z, p(x+y) < @ (x) + ¢ (y) for all
x,y € [0,00), ¢ () =0 if and only if t =0, and HTz,Ty) < ¢ (d(z,y))
forallxz,y € X;
(i) H(Txz,Ty) < d(x,y) for all x,y € X with x # y.

Then, if § (T"x) — 0 for each x € X, T has a contractive fized point,
that is, there exists a unique point & in X such that, for each x € X, T"x —
{&{} = FiaT.

(Here § (A) :=sup{d (z,y) : x,y € A} is the diameter of A C X.)

In this paper, we generalize Theorems 1.4 and 1.7.

2. Main Results

We start our work with two lemmas.

Lemma 2.1. Let (X,d) be a complete metric space andT : X — CB (X). Then
for every x,y € X we have

d(z,y) < D(z,Tx)+ H (Tz,Ty) + D (y,Ty) + 6 (Ty) .
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Proof. Let € > 0 be fixed and z,y € X. Then there exists a € Tz, b € Ty
such that d (z,a) < D (z,Tx)+¢c and d(y,b) < D (y,Ty) +¢. Also, for a € Tz
there exists ¢ € T'y such that d(a,c¢) < H (Tx,Ty) + . Therefore,
d(z,y) < d(z,a) +d(a,c) +d(c,b) + d (b,y)
<D(z,Tx)+e+H Tz, Ty)+e+6(Ty)+D(y,Ty) +¢
=D (z,Tx)+ H (Tz,Ty) + D (y,Ty) + 0 (Ty) + 3e.
Since ¢ is arbitrar we have that
d(z,y) <D (x,Tx) + H(Tz,Ty) + D (y, Ty) + 6 (Ty) -
Lemma 2.2. Let ¢ € ®; such that ¢ (z) <z, ¢ (x+y) < ¢ (z) + ¢ (y) for all
x,y € [0,00), ¢ (x) =0 if and only if x = 0. Then:
(a) ¢ (x) <z for every x > 0;
(b) for every sequence {d,} such that d, — d as n — oo, d,, > d we have
hm Supn—m)o@ (dn) S ¥ (d)
Proof. (a) Suppose there exists a > 0 such that ¢ (a) = a. Let < a arbi-
trarly fixed. Then we have

a=¢a)=pzt+a—-2z)<p@)+pla—z)<zr4+a—z=a.

This implies ¢ (z) = x for every = < a. Since ¢ € ®q, for ¢ = £ there
exists 0 > % such that ¢ (£) < & for every t € (£,6). If t € (£,6) N (%,a)
we have ¢ (1) =t > g, contradiction.

(b) Let the sequence {d,,} such that d,, — d as n — oo, d,, > d. Then we
have

¢(dn) =¢(d+d,—d) <@(d)+¢(dn—d) <p(d)+dy—d
Therefore limsup,, ,.® (d,) < ¢ (d).

[ V)

Theorem 2.1. Let (X, d) be a complete metric space andT : X — CB (X)) such
that there exists ¢ € @1 satisfying v (z) <z, ¢ (x+y) < @ (x) + ¢ (y) for all
z,y €[0,00), p(x) =0 if and only if t =0, and H (Tz,Ty) < ¢ (d (z,y)) for
allz,y € X. Then, if 6 (T"x) — 0 for each x € X, T has a unique contractive
fixed point.

Proof. Let zg € X. If g € Txzg then z is a fixed point of T'. Suppose that
xo ¢ Txp. Then there exists z1 € Tz such that

d(xo,xl) <D ($07T.%‘0) +1

If 1 € Ty then 1 is a fixed point of T'. Suppose that 1 ¢ Tz1. From Lemma
2.2 and hypothesis we have D (z1,Tz1) < H (Tzo,Tz1) < @ (d(x0,21)) <
d (xg, 1), so there exists xo € Txy such that

1
d(z1,22) < D(x1,T21) + 3 and d (z1,z2) < d(x9,21) .



1530 O. Popescu and G. Stan Results Math

Therefore inductively, there exists a sequence {z,,} such that z,; € T, and
1
d(xn, Tnt1) < D (z, Ty) + - and d(2n, Tpi1) < d(Tp—1,Tn).
Hence the sequence {d (z,, n4+1)} is strictly decreasing and there exists d > 0
such that
dp, = d(Tp, Tpi1) — d.

<d,+ L, we have that D,, = D (z,,,Tx,) — d

n

Since d,, < D (2, Txp) +
as n — 0o0. But

1
n

Dn+1 =D (anrlyTanrl) <H (T-Tn>Txn+1)
< (d (:En, xn+l)) < d(mn7$n+1) =d,.
Letting n — oo we get lim,, ¢ (d,) = d.

From Lemma 2.2 we have lim,, ¢ (d,,) < ¢ (d) ;hence d < ¢ (d) < d. Thus
¢ (d) = d and from Lemma 2.2 we get d = 0. This means that H (Tz,, T2p11)
—0,d, — 0, D, — 0.

Now we prove that {x,} is a Cauchy sequence. Suppose the contrary,
there exists € > 0 and {xn(k)}, {zm(k)} two subsequences of {x,} such that
d (Tn(k)s Tm(r)) = € for all k, where n (k) > m (k) > k. We can choose n (k)
such that d (mn(k),l,xm(k)) < ¢ for all k. Then

£ <d (@), Tm)) < d(Tn)—1, Tm)) + A (Tn) -1, Tnk)) < €+ dnry—1-

Letting kK — oo we have limy, d (:cn(k), :cm(k)) =ec.

Since Twyx) C T+ 25 and 6 (T"x¢) — 0 as n — oo, then § (Txn(k))
— 0 as k — .

From Lemma 2.1 and hypothesis we have

A (Tngys Tm@r)) = D (@nr)s Tnr)) = D (Tm@ys TTmr)) — 0 (Tmr))
< H (Tongy, Temy) < @ (d (Tnr)s Tmmy)) < 4 (Tnk)s Tm(r))
for all k. Letting £ — oo we get

liin ® (d (xn(k)axm(k))) =&

But, from Lemma 2.2 limy, ¢ (d (xn(k),xm(k))) < p(e) < g, so we have a
contradiction. Hence {z,} is a Cauchy sequence.

From the completeness of X, there exists z* € X such that z,, — x*.

Since

D (x*,Tx*) < d(z",2p41) + D (nt1, T2") < d(z",2p41) + H (Tay, Tx™)

d(z" 2pi1) + @ (d(zn,27)) <d (27, 2ng1) +d (20, 27),
letting n — oo, we have D (z*,Txz*) = 0. Therefore z* € Tz*, by where
x* € T"z* for every n > 1.

<
<
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Let y*,z* € Ta*. There exists sequence {y, },y1 € Ta*,yn € Typ—1, n >
2 such that d (y,,y*) < H (Tyn,l,Tac*)—&—%. We have y,, € Ty,—1 C T?yn_o C
L CT Ty € T

Then

1
d(z,y") < d (2%, yn) +d(yn,y") < 0 (T"27) + H (Tyn-1,T2") +

1 1

<B(T"0") + o (A lgn1,2%) + - < (T) +d(g1,2) +
<§(T"x*)+ 0 (T ™) + 1
n

Letting n — oo we get d (z*,y*) =0, so Ta* = {z*}.
Now suppose that there exists y* # x* such that y* € Ty*. Since

d(y*,2") =D (y", Tz") < H(Ty", Tz*) < ¢ (d(y",2")) <d(y",z")
we have a contradiction. O

Ezample 2.2. Let X = [0,00) and d (z,y) = |x —y|, then (X,d) is complete
metric space. Define a mapping T : X — CB (X)) as:

_ {0} =0
T””—{[O,m(ux)] >0

Taking x = 0, y > 0, we have H (T0,Ty) = In(1 +y) and d(0,y) = y. Since
limy_,ow =1, we get limy%o% = 1. This implies (3) ¢ € [0, 1) such
that H (Tz,Ty) < cd(x,y) (V) z,y € X, hence T does not verify hypothesis

of Theorem 1.4.
Let ¢ : [0,00) — [0,00), ¢ (z) = In (1 + ).
For € > 0, arbitrary, we consider § = ¢ — 1 > &, obviously. For ¢ € (¢,0)
we have ¢ (1) =In(1+1¢) <Ine® =¢, s0 ¢ € ®;.
It is clear that
(i) ¢(x)=In(1+=x) <z, for every z € X
(ii) ¢(z) =0 & =0

For (V) z,y € X we have

e@)+e)=In(l+z)+In(l+y)=In(1+z+y+ay)
>In(l4+z+4+y)=¢(x+y).

For y > x > 0 we have Tz C Ty, so

H (Tz,Ty) =sup{D (b,Tx):be Ty}
1+y
I+

=In(l4+y)—In(l+z)=1In
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Since 0 < z <y we get 22 < zy, and then

I4y<(1l+2)(l+y—2) =
+y
14+

1+y
In—= <In(1 —x).
n1+x*n( ty—2)

<l+y—z&

This implies

H (Tz,Ty) < ¢ (d(z,y)) (1)
Let xg € X arbitrarly fixed and the sequence {,},, such that
Tp=In(1+z,-1), V)n>1 (2)

It is clear that 0 <z, < 2,1, hence {x,} converges to a limit [ > 0. Taking
the limit as n — oo in (2), we get [ = In (1 4 1) which implies [ = 0.
On the other hand we have

_ {0}7 z0 =0
Tro = {[071H(1+$0)} = [0, 2], xz >0

2 _ {0}7 1:0:0
Tmo_{[(),:cg], 9 >0

Inductively, we get

n _ {0}7 xOZO
T zO{[O,xn], 29 >0

Thus § (T™x¢) = x,, — 0. Therefore T satisfies the hypothesis of Theorem 2.1.

(T0 = {0})
Let v : [0,00) — [0,1),

In(l—‘,-gc)7 >0
a(x)_{o, z=0"

Since
lim o () =0

lima(z) =1

x—0

lima (z) = a(a) € (0,1),(¥) a € (0,00)

r—a

then « (t,) — 1 implies ¢, — 0, hence a € S.

Let (V) z,y € [0,00). If 2 = y we have H (Tz,Ty) =0 < a(d(x,y)) -
d(z,y) =0.Ifx # y by (1) we have H (Tz, Ty) < ¢ (d(x,y)) =In (1 +d(x,y))
= a(d(z,y)) d(x,y). In conclusion H (Tz, Ty) < a(d(z,y))-d(x,y), (V) z,y
€ [0,00), where T satisfies the inequality of Corollary 1.1. For x = ¢ — 1 we
have d(e—1,0) =e—1, T(e—1) = [0,1] and D (e —1,T (e—1)) = e — 2,
from where d (e — 1,0) # D (e — 1,T (e — 1)). Therefore, from Proposition 1.1,
T is not a special multi-valued mapping.
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In Theorem 1.7 (X, d) is a bounded hyperconvex metric space, but in our
example (X, d) is an unbounded metric space.
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