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Abstract. If S is a given regular d-simplex of edge length a in the d-
dimensional Euclidean space E , then the distances t1, . . ., td+1 of an
arbitrary point in E to the vertices of S are related by the elegant relation

(d + 1)
(
a4 + t41 + · · · + t4d+1

)
=

(
a2 + t21 + · · · + t2d+1

)2
.

The purpose of this paper is to prove that this is essentially the only
relation that exists among t1, . . . , td+1. The proof uses tools from analysis,
algebra, and geometry.
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1. Introduction

Much has been written about the elegant relation

(d + 1)

⎛

⎝a4 +
d+1∑

j=1

t4j

⎞

⎠ =

⎛

⎝a2 +
d+1∑

j=1

t2j

⎞

⎠

2

(1)

that exists among the edge length a of a regular d-dimensional simplex in the
Euclidean space R

d and the distances t1, . . . , td+1 from the vertices of that
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Figure 1. Illustrating Relation (2)

simplex to an arbitrary point in R
d. The special case d = 2 is illustrated in

Fig. 1 below, and the corresponding relation

3
(
a4 + t41 + t42 + t43

)
=

(
a2 + t21 + t22 + t23

)2
(2)

was popularized by Martin Gardner in his article [5] that was reproduced in
[6, Chapter 5, pp. 56–65]. Feedbacks on Gardner’s article appear in [4,7], and
[14], and in possibly other places. A proof of the general case can be found in
[1], and another proof that uses the Cayley–Menger formula for the volume
of a simplex is given in [9]. The relation (1) can also be derived using linear
algebra.

One of the striking features of (1) is its symmetry, not only in {t1, . . . ,
td+1} (which is only expected), but also in {a, t1, . . . , td+1}. The fact that a
plays the same role in (1) as any other ti does not seem to have a satisfactory
explanation1. Due to this symmetry, it is customary to set a = t0 in (1) and
write it in the form

(d + 1)

⎛

⎝
d+1∑

j=0

t4j

⎞

⎠ =

⎛

⎝
d+1∑

j=0

t2j

⎞

⎠

2

. (3)

Another striking feature of (1) (or rather (3)) is its similarity with the
relation

1Recently, Dr. Ismail Hammoudeh of Amman University has come up with a satisfactory
conceptual explanation of this symmetry. He intends to write this in a separate paper.
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d

⎛

⎝
d+1∑

j=0

(
1
rj

)2
⎞

⎠ =

⎛

⎝
d+1∑

j=0

1
rj

⎞

⎠

2

(4)

that exists among the oriented radii r0, . . . , rd+1 of d + 2 spheres in R
d that

are in mutual external touch; see [3,13].
It is now natural to ask whether there are other relations, beside the

one in (1), among t1, . . . , td+1. We state this question precisely below, and we
devote the rest of the paper to answering it.

Question 1.1. Let S = [v1, . . . ,vd+1] be a regular d-simplex of side length t0
in R

d. For every t ∈ R
d, let tj be the distance from t to vj , 1 ≤ j ≤ d + 1. Let

R = R[T1, . . . , Td+1] be the ring of polynomials in the indeterminates T1, . . .,
Td+1 over the field R of real numbers. Let I be the ideal in R defined by

I = {f ∈ R : f (t1, . . . , td+1) = 0 ∀ t ∈ R
d}, (5)

and let

F = (d + 1)

⎛

⎝t40 +
d+1∑

j=1

T 4
j

⎞

⎠ −
⎛

⎝t20 +
d+1∑

j=1

T 2
j

⎞

⎠

2

. (6)

Is I generated by F?

We shall establish an affirmative answer to this question in Theorem 5.1 in
Sect. 5. This essentially amounts to proving that I is a prime ideal of height 1 in
the integral domain of functions that are real analytic on R

d\{v1, . . . ,vd+1},
that F ∈ I, and that F is irreducible. Rigorous proofs of these intuitively
obvious facts turn out to involve tools from analysis, algebra, and geometry. As
some of this material cannot be assumed to be known to the potential readers
of this article, we have chosen to be self-contained, writing the definitions of
the terms, and giving adequate references to, or proofs of, the theorems used.
Readers are advised to read the main theorem, Theorem 5.1, and its proof
first, and decide for themselves what sections of the paper they need to go
back to and read.

The paper is organized as follows. Section 2 establishes the irreducibility
of a certain polynomial. This is an essential step in the proof of the main the-
orem. Section 3 introduces the preliminary definitions and theorems from the
theory of real analytic functions. The only reference that we have used is the
book [11]. Section 4 puts together the necessary algebraic tools. These include
the height of an ideal, algebraic independence over a field, transcendence bases
and degree of an extension, the Krull dimension of a ring, and how these are
related. The only reference that we referred to here is R. Y. Sharp’s book
[15]. We have also proved in this section that the distances from an arbitrary
point in R

n to any n vertices of a regular n-simplex in R
n are algebraically

independent (over R). Section 5 contains the main theorem and its proof. The
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last section, Sect. 6, contains a list of problems that may generate further re-
search. We expect that most, or all, of these problems are within reach of a
young researcher, and we also expect the material in Sects. 2, 3, 4 and 5 to be
useful to such a researcher and to others, and easier to refer to than to refer
to various books.

2. Irreducibility of a Certain Class of Polynomials

The following theorem will be used later in this article. It follows from the
results in [8], where the irreduciblity of the more general polynomial

t

⎛

⎝a4 +
n∑

j=1

x4
j

⎞

⎠ −
⎛

⎝a2 +
n∑

j=1

x2
j

⎞

⎠

2

∈ k[x1, . . . , xn], (7)

for all fields k and all t, a ∈ k was fully investigated. However, we chose to pro-
vide an independent proof, thus removing dependence on [8]. In the proof, we
freely use the fact that factors of a homogeneous polynomial are homogeneous;
see [16, Theorem 10.5, p. 28].

Theorem 2.1. Let R[x1, . . . , xn] be the polynomial ring in the indeterminates
x1, . . . , xn over the real number field R, and let

f = t

⎛

⎝a4 +
n∑

j=1

x4
j

⎞

⎠ −
⎛

⎝a2 +
n∑

j=1

x2
j

⎞

⎠

2

∈ R[x1, . . . , xn], (8)

where t, a ∈ R, n ≥ 3, and t ≥ 3. Then f is irreducible.

Proof. It is easy to see that a polynomial in R[x1, . . . , xn] is irreducible if its
leading homogeneous component is irreducible. Since the leading homogeneous
component of f is given by

g = g(x1, . . . , xn) = t

⎛

⎝
n∑

j=1

x4
j

⎞

⎠ −
⎛

⎝
n∑

j=1

x2
j

⎞

⎠

2

∈ R[x1, . . . , xn], (9)

it is sufficient to show that g is irreducible. Letting F be the polynomial
obtained from g by setting x4 = · · · = xn = 0, and renaming x1, x2, and x3 as
x, y, and z, it is again easy to see that g is irreducible if F is. This follows from
the fact that if A is a homogeneous polynomial in many variables of degree
d, and if A∗ is obtained from A by substituting 0 for some of these variables,
then either A∗ = 0 or A∗ is homogeneous of degree d. Thus we are left with
showing that the polynomial

F = t
(
x4 + y4 + z4

) − (
x2 + y2 + z2

)2 ∈ R[x, y, z] (10)

is irreducible.
To prove that F is irreducible, we first show that F cannot have a non-

constant symmetric factor. Letting
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s = x + y + z, p = xy + yz + zx, q = xyz,

we write F as a polynomial φ = φ(s, p, q) in the polynomial ring R[s, p, q], and
we show that φ is irreducible. Direct calculations show that

F = (t − 1)
(
x4 + y4 + z4

) − 2
(
x2y2 + y2z2 + z2x2

)

= (t − 1)
(
x2 + y2 + z2

)2 − 2t
(
x2y2 + y2z2 + z2x2

)

= (t − 1)(s2 − 2p)2 − 2t(p2 − 2qs)
= (t − 1)s4 + 2(t − 2)p2 − 4(t − 1)s2p + 4tqs.

Thus φ = (t − 1)s4 + 2(t − 2)p2 − 4(t − 1)s2p + 4tqs. Since φ is linear in q with
leading term 4tsq, it follows that the only possible factorizations of φ are of
the form

φ = (4tsq + φ1(s, p))φ2(s, p) and φ = (4tq + φ1(s, p))φ2(s, p).

Comparing coefficients of q, we see that either φ2 = 1, in which case the
factorization is trivial, or φ2 = s, which is impossible since s does not divide φ.
Thus φ is irreducible, and therefore F has no non-constant symmetric factors.

We next prove that F has no linear factor. If F has a factor A of degree
1, then the set Z(A) of zeros of A is a plane (in the (xyz)-space). However, we
shall see now that Z(F ) is contained in a set of four lines, contradicting the
fact that Z(A) ⊆ Z(F ). We rewrite F as follows:

F = t
(
x4 + y4 + z4

) − (
x2 + y2 + z2

)2

= (t − 1)
((

x4 + y4 + z4
) − (

x2y2 + y2z2 + z2x2
))

+(t − 3)
(
x2y2 + y2z2 + z2x2

)

=
t − 1

2
(
(x2 − y2)2 + (y2 − z2)2 + (z2 − x2)2

)

+(t − 3)
(
x2y2 + y2z2 + z2x2

)
.

Since t ≥ 3, it follows that F ≥ 0 for all x, y, z ∈ R, and that F = 0 if and
only if (t = 3 and x2 = y2 = z2) or (t > 3 and x = y = z = 0). Hence Z(F ) is
contained in a set of four lines. Thus deg(A) cannot be 1.

We next show that F cannot have a factor A of degree 2. If it does, then
by the previous steps, A is irreducible and non-symmetric. Let

A = ax2 + by2 + cz2 + αyz + βzx + γxy,

where a, b, c, α, β, γ are in R. Letting σ be the permutation (x �→ y �→ z �→ x),
we see that F is divisible by A, σ(A), and σ2(A). Since deg(Aσ(A)σ2(A)) =
6 > deg F , and since A, σ(A), σ2(A) are irreducible, it follows that two (and
hence all) of the polynomials A, σ(A), and σ2(A) are associates (i.e., constant
multiples of each other). Thus A = λσ(A) for some λ ∈ R. Since σ3(A) = A,
it follows that λ3 = 1 and hence λ = 1. Thus A = σ(A). Since

σ(A) = ay2 + bz2 + cx2 + αzx + βxy + γyz,
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it follows that a = b = c and α = β = γ, contradicting the assumption that A
is not symmetric.

Thus F , and hence f , is irreducible, as desired. �

3. Real Analytic Functions in Several Variables

In this section, we present the basic material on real analytic functions that will
be needed in the proof of the main theorem, Theorem 5.1. The treatment is self
contained, and all necessary definitions are given. We feel that this interesting
subject (of real analytic functions) is not usually covered in standard required
courses in graduate schools, and we also feel that there are not many textbooks
on the subject. Our only reference is [11], and any differences between our
presentation and that in [11] are very slight and trivial, and they are made
with the permission of the first author of [11].

Definition 3.1. ([11, Definition 2.1.4, p. 27]) Let Z
+ = N ∪ {0} be the set

of non-negative integers, and let (Z+)m, m ∈ N, be denoted by Λ(m). If
e = (e1, . . . , em) ∈ Λ(m), and if r = (r1, . . . , rm) ∈ Gm, where G is any
commutative ring with 1, then re stands for the product

m∏

j=1

r
ej

j .

A power series in the m variables x = (x1, . . . , xm) with center at a =
(a1, . . . , am) ∈ R

m is a formal expression
∑

e∈Λ(m)

ce(x − a)e, where ce ∈ R. (11)

The power series (11) is said to converge at b = (b1, . . . , bm) ∈ R
m if some

rearrangement of it converges. More precisely, the power series (11) converges
at b = (b1, . . . , bm) if there is a bijection φ : Z+ → Λ(m) such that the sequence
of partial sums of the series

∞∑

j=0

cφ(j)(b − a)φ(j)

converges.

Theorem 3.2. ([11, Proposition 2.1.7 (Abel’s Lemma), p. 27]) If the power
series

∑
e∈Λ(m) cexe converges at a point x = b = (b1, . . . , bm) ∈ R

m, then it
converges uniformly and absolutely on compact subsets of the silhouette of b,
i.e., the open box

(−|b1|, |b1|) × · · · × (−|bm|, |bm|) .

Corollary 3.3. If a power series converges at every point in an open set U , then
it converges absolutely at every point in U . Consequently, it defines a function
on U .
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Proof. Let q ∈ U . Then U contains a closed box B centered at q. Thus q
belongs to the silhouette S of some vertex, say v, of B. Since the given power
series converges at v, it follows from Abel’s lemma that it converges absolutely
on S, and hence at q. �
Definition 3.4. ([11, Definition 2.2.1, p. 29]) We say that the real-valued func-
tion f is real analytic at a point p in R

n if p has a neighborhood U on which
f can be represented as a power series centered at p. We say that f is real
analytic on a set U if f is real analytic at every point of U .

Theorem 3.5. If f is real analytic at p ∈ R
n, then f is real analytic on a

neighborhood U of p. Consequently, the set where f is real analytic is open.

Proof. Let Fp(z) be a power series centered at p (i.e., in powers of (z − p))
that represents f on some neighborhood U of p. By Proposition 2.2.7 (p. 32)
of [11], Fp(z) is real analytic on U . But Fp(z) coincides with f on U . Therefore
f is real analytic on U . �
Theorem 3.6. ([11, Theorem 2.2.2, p. 29]) If f , g are real analytic on the
subsets U , V of Rn, respectively, then f + g, fg are real analytic on U ∩ V ,
and f/g is real analytic on U ∩ V ∩ {p : g(p) �= 0}.
Theorem 3.7. ([11, Corollary 1.2.7, p. 14]) If f is real analytic on the open
interval U ⊆ R, and if the set of zeros of f has an accumulation point in U ,
then f is identically zero on U .

Remark 3.8. Theorem 3.7 does not seem to have an analogue in higher dimen-
sions. For example, the function f : R2 → R defined by f(x, y) = xy is real
entire, and its zero set consists of the x- and y- axes. But f is not identically
zero.

Lemma 3.9. Suppose that f = f(x1, . . . , xn) is real analytic at a = (a1, . . . , an),
and let 1 ≤ k ≤ n. Let

f∗ = f∗(xk+1, . . . , xn) = f(a1, . . . , ak, xk+1, . . . , xn).

Then f∗ is real analytic at a∗ = (ak+1, . . . , an). The same holds for the function
f∗ and the point a∗ defined by

f∗ = f∗(x1, . . . , xk) = f(x1, . . . , xk, ak+1, . . . , an), a∗ = (a1, . . . , ak).

Proof. Just substitute a1, . . . , ak for x1, . . . , xk in the power series. �
Theorem 3.10. Let U ⊆ R

d be a connected open set and let f be an analytic
function on U . If f = 0 on some non-empty open subset V of U , then f = 0
on U .

Proof. If d = 1, then U ⊆ R is an open interval, and the result follows from
Theorem 3.7. So we take d > 1.

If U is convex, choose a point p in V and consider lines L through p.
Since L ∩ U is an open interval of L and L ∩ V is non-empty, it follows from
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Lemma 3.9 and a change of coordinates that the restriction of f on L ∩ U is
0. Therefore f = 0 on U since the intervals L ∩ U cover U by convexity.

In the general case, let p ∈ V and let q be any other point of U . We shall
show that f(q) = 0. Since U is connected, we can find a finite number of open
convex neighborhoods Wi, 1 ≤ i ≤ n, such that

p ∈ W1, q ∈ Wn, and Wi ∩ Wi+1 is non-empty for i = 1, . . . , n − 1.

Letting fi denote the restriction of f on Wi, we conclude by the previous case
that if fi = 0, then fi+1 = 0. Therefore fn = 0, and hence f(q) = 0. �

Corollary 3.11. The ring A of all real analytic functions on a connected open
set U ⊆ R

d is an integral domain.

Proof. Let fg = 0 in A, and let V = {x ∈ U : g(x) �= 0}. If V is empty, we are
done. Otherwise, the restriction of f on V is 0, and therefore f = 0 on U by
Theorem 3.10. �

Remark 3.12. On the set of all functions that are real analytic at a point
p ∈ R

m, we define an equivalence relation ≡ by

f ≡ g ⇐⇒ f = g on some open neighborhood U = Uf,g of p.

Each equivalence class is called a germ or a p-germ. It is not difficult to define
addition and multiplication on the set G of p-germs so that G becomes a ring.
Now the proof above can be mimicked to show that G is an integral domain.
This is stronger than Corollary 3.11.

Theorem 3.13. ([11, Proposition 2.2.8, p. 33]) If fj, 1 ≤ j ≤ d, are real ana-
lytic at p ∈ R

n, and if g is real analytic at (f1(p), . . . , fd(p)) ∈ R
d, then the

composition g(f1, . . . , fd) is real analytic at p ∈ R
n.

Corollary 3.14. If f is real analytic on some open set U ⊆ R
n, and if f(p) > 0

for some p ∈ U , then there exists a neighborhood W ⊆ U of p such that
√

f
exists and is real analytic on W . In particular, if p ∈ R

n, then the function
h : Rn → R defined by h(x) = ‖x − p‖ is real analytic at all points except at p.

Proof. Observe that the square root function defined on {x ∈ R : x > 0} by
x �→ √

x is real analytic because

√
a + x =

√
a

∞∑

n=0

(
1
2
n

)(x

a

)n

for small x. The desired result now follows from Theorem 3.13. �

4. Algebraic Independence of Certain Functions

Let S be a regular d-simplex in R
d, and let {v1, . . . ,vn}, n < d + 1, be n

vertices of S. Let the functions φj : R
d → R, 1 ≤ j ≤ d, be defined by

φj(x) = ‖x−vj‖. Let U be an open everywhere dense subset of Rd, and let A
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be the ring of real-valued functions that are real analytic on U . We have seen
in Corollary 3.11 that A is an integral domain, and we have seen in Corollary
3.14 that the functions φj , 1 ≤ j ≤ d, belong to A. In this section, we shall
show that these functions are algebraically independent over R. Actually, the
same holds if {v1, . . . ,vn} is any set of affinely independent points in R

d, but
the proof is lengthier.

We start with the necessary preliminaries that we need from algebra.

4.1. Algebraic Preliminaries

Our reference is [15], and all rings referred to are commutative with 1. If B is
any ring, then B[T1, . . . , Tn] stands for the polynomial ring over B in the n
indeterminates T1, . . . , Tn.

Let S be a ring (commutative with identity 1 �= 0).
If P is a prime ideal in S, then the height of P , written htP , is the

supremum of all non-negative integers k for which there exists a sequence
P0, P1, . . . , Pk = P of prime ideals in S of the form

P0 ⊂ P1 ⊂ · · · ⊂ Pk = P,

where ⊂ stands for strict inclusion. If the supremum does not exist, we write
htP = ∞. The dimension of S, written dim S, is the supremum of all non-
negative integers k for which there exists a sequence P0, P1, . . . , Pk = P of
prime ideals in S of the form

P0 ⊂ P1 ⊂ · · · ⊂ Pk = P.

If the supremum does not exist, we write dim S = ∞. Thus

dim S = sup{htP : P is a prime ideal in S},

where the supremum is defined for all subsets of [−∞,+∞]. It is easy to see,
as done in Remark 14.18 (viii) (page 279) of [15], that

ht P + dim S/P ≤ dim S, (12)

where we adopt the convention that ∞ + ∞ = ∞, and ∞ + n = ∞ for all
integers n.

Now let R be a subring of S.
A finite subset {s1, . . . , sn} of S is said to be algebraically independent

over R if there does not exist a non-zero polynomial f = f(T1, . . . , Tn) in
the polynomial ring R[T1, . . . , Tn] such that f(s1, . . . , sn) = 0. An arbitrary
subset of S is said to be algebraically independent over R if every finite subset
of S is algebraically independent over R. This is Definition 1.14 (page 8) of
[15]. If both R and S are fields, then a subset B = {s1, . . . , sn} of S that is
algebraically independent over R is called a (finite) transcencdence basis of S
over R if every subset of S that properly contains B is algebraically dependent
over R. This is Definition 12.54 (page 239) of [15]. By Theorem 12.53 (page 239)
of [15], if S has a finite transcendence basis over R, then any two such bases
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have the same number of elements. This number is called the transcendence
degree of S over R, and is denoted by tr.deg.RS.

If S is an integral domain that contains a field R and that is finitely
generated over R, i.e., S is an affine R-algebra, and if L is the field of quotients
of S, then

dim S = tr.deg.RL. (13)

This is Corollary 14.29 (page 282) in [15]. It follows that if R is a field, then

dim R[T1, . . . , Tn] = n. (14)

We also shall need the facts that if R is a field (or any unique factoriza-
tion domain), then the polynomial ring R[T1, . . . , Tn] is a unique factorization
domain, and that an irreducible element in a unique factorization domain D
generates a prime ideal of D; see [15, Theorem 1.42, p. 17] and [15, Exer-
cise 3.42, p. 49]. Now the following theorem, that we will use later, follows
immediately.

Theorem 4.1. Let R be a field, and let P be a prime ideal of R[T1, . . . , Tn] that
contains an irreducible polynomial f . If ht P = 1, then P is generated by f .

Proof. Let Q be the ideal generated by f . Then Q is a prime ideal. If Q �= P ,
then the chain P ⊃ Q ⊃ {0} would imply the contradiction that htP ≥ 2.
Therefore P = Q, as claimed. �

4.2. Algebraic Independence of Distances to Vertices of a Regular Simplex

In this section we prove that the functions φj : U → R, 1 ≤ j ≤ d, defined in
the previous section are algebraically independent over R.

Theorem 4.2. Let E = R
d, and let 1 ≤ n ≤ d. Let v1, . . . ,vn be n vertices of a

regular d-simplex in E, and let the functions φ1, . . . , φn : E → R be defined by

φj(p) = ‖p − vj‖, 1 ≤ j ≤ n.

Then the functions φ1, . . . , φn, (thought of as elements in the ring of all real-
valued functions on E) are algebraically independent (over R).

Proof. Identify R
n with the hyperplane H of Rn+1 defined by

H = {(x1, . . . , xn+1) ∈ R
n+1 : x1 + · · · + xn+1 = 0}.

We can assume that vi = ei for 1 ≤ i ≤ n, where ei is the standard unit vector
having 1 in the i-th place and 0 everywhere else. Let φi(x) = ‖x − ei‖. We
think of these functions as elements in the ring A of real analytic functions
on a connected dense open subset of R

n, and we do our calculations in the
quotient field of A.

To show that φi, 1 ≤ i ≤ n, are algebraically independent is equivalent
to showing that tr.deg.

R
R(φ1, . . . , φn) = n. Let

fi(x) = (φi(x))2 = ‖x − ei‖2.
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The field extension R(f1, . . . , fn) ⊂ R(φ1, . . . , φn) is algebraic, and so the two
fields have the same transcendence degree over R. For x = (x1, . . . , xn),

fi(x) = ‖x − ei‖2 = g(x) − 2xi + 1,

where g(x) = x2
1 + · · ·+x2

n. Therefore 2xi = g +1−fi. Squaring and summing
on i, we get

4g = 4
n∑

n=1

x2
i = n(g2 + 2g + 1) − 2(g + 1)

n∑

i=1

fi +
n∑

i=1

f2
i .

This is a quadratic equation for g over R(f1, . . . , fn), and so R(f1, . . . , fn, g) is
algebraic over R(f1, . . . , fn). But R(f1, . . . , fn, g) = R(x1, . . . , xn), which has
transcendence degree n over R. The same is therefore true for R(f1, . . . , fn)
and R(φ1, . . . , φn). �

The next corollary is what we actually need in the proof of the main
theorem, Theorem 5.1 below.

Corollary 4.3. Let n ≥ 1. Let E be a Euclidean space of dimension greater than
or equal to n, and let v1, . . . ,vn be n vertices of a regular n-simplex in E. Let E0

be any everywhere dense subset of E, and let the functions φ1, . . . , φn : E0 → R

be defined by

φj(p) = ‖p − vj‖, 1 ≤ j ≤ n.

Then the functions φj, 1 ≤ j ≤ n, thought of as elements in the ring of all
real-valued functions on E0, are algebraically independent (over R). This is
true in particular if E\E0 is a finite set.

Proof. Let g ∈ R[T1, . . . , Tn] be a non-zero polynomial for which

g(φ1(p), . . . , φn(p)) = 0

for all p ∈ E0. Since g(φ1, . . . , φn) is continuous, its set of zeros is closed, and
hence contains the closure E of E0. Thus

g (‖p − v1‖, · · · , ‖p − vn‖) = 0

for all p ∈ E. �

5. Answering Question 1.1: The Main Result

In this section, we establish, in Theorem 5.1 an affirmative answer to Question
1.1 posed in Sect. 1. Thus we prove that the ideal I of R is indeed the principal
ideal generated by F .

Theorem 5.1. Let S = [v1, . . . ,vd+1], d ≥ 2, be a regular d-simplex in R
d

having edge length a. Let t1, . . . , td+1 be the distances from an arbitrary point
t in R

d to the vertices of S. Let R = R[T1, . . . , Td+1] be the ring of polynomials
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over R in the indeterminates T1, . . . , Td+1, and let I be the ideal of R defined
by

I = {f ∈ R : f (t1, . . . , td+1) = 0 ∀ t ∈ R
d}. (15)

Let

F = (d + 1)

⎛

⎝a4 +
d+1∑

j=1

T 4
j

⎞

⎠ −
⎛

⎝a2 +
d+1∑

j=1

T 2
j

⎞

⎠

2

. (16)

Then I is the principal ideal generated by F .

Proof. Let U = R
d\{v1, . . . ,vd+1}. Let A be the set of (real-valued) functions

that are real analytic on U . By Corollary 3.11, A is an integral domain. By
Corollary 3.14, the functions φj : U → R, 1 ≤ j ≤ d + 1, defined by φj(t) =
‖t − vj‖ belong to A.

Let Φ : R[T1, . . . , Td+1] → A be the ring R-homomorphism defined by
Φ(Tj) = φj for 1 ≤ j ≤ d + 1. The kernel of Φ consists of all f ∈ R such that
f(t1, . . . , td+1) = 0 for all t in U . By continuity, this is the set of all f ∈ R
such that f(t1, . . . , td+1) = 0 for all t in R

d, i.e., the ideal I. The image A0 of
Φ, being a subring of the integral domain A, is itself an integral domain. Since
R/I ∼= A0, by the first isomorphism theorem, it follows that I is a prime ideal
of R.

Also, A0 contains the d elements φ1, . . . , φd, and these are algebraically
independent over R, by Corollary 4.3. It follows from the definition that
tr.deg.

R
(QF (A0)) ≥ d, where QF (.) denotes the quotient field. Since A0 and

R/I are isomorphic as R-algebras, it follows that tr.deg.
R
(QF (R/I)) ≥ d. Also,

the integral domain R/I is an affine R-algebra. Therefore tr.deg.
R
(QF (R/I)) =

dim(R/I). Therefore

d ≤ tr.deg.
R
(QF (A0)) = tr.deg.

R
(QF (R/I)) = dim(R/I)

≤ dim(R) − ht(I) = d + 1 − ht(I).

Hence ht(I) ≤ 1. Since I contains the polynomial F , which is irreducible by
Theorem 2.1, it follows that I contains the prime ideal generated by F . Hence
ht(I) = 1. By Theorem 4.1, I is generated by F , as claimed. �

Remark 5.2. When talking about a d-simplex, one usually assumes that d ≥
2, since a 1-simplex is a line segment with a poor geometry. However, it is
legitimate to wonder whether Theorem 5.1 still holds when d = 1, and it may
be interseting to know that it does not. In fact, if one takes d = 1 and if one
defines I and F as in Theorem 5.1, then it turns out that F is not irreducible
any more, as it factors into

F = 2(a4 + T 4
1 + T 4

2 ) − (a2 + T 2
1 + T 2

2 )2

= (T1 + T2 + a)(T1 + T2 − a)(T1 − T2 + a)(T1 − T2 − a),
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and that I is the principal ideal generated by

F0 = (T1 + T2 − a)(T1 − T2 + a)(T1 − T2 − a),

and not by F . To see this, let v1,v2 be two distinct points in R, and let

I = {f(T1, T2) ∈ R[T1, T2] : f(t1, t2) = 0 ∀ t ∈ R}.

Assuming that v1 < v2, we let I1, I2, and I3 be the ideals defined by

I1 = {f(T1, T2) ∈ R[T1, T2] : f(t1, t2) = 0 ∀ t ≤ v2},

I2 = {f(T1, T2) ∈ R[T1, T2] : f(t1, t2) = 0 ∀ t ≥ v1},

I3 = {f(T1, T2) ∈ R[T1, T2] : f(t1, t2) = 0 ∀ t ∈ (v1,v2)}.

It is easy to see that the polynomials

H1 = T1 − T2 − a ∈ I1, H2 = T1 − T2 + a ∈ I2, H3 = T1 + T2 − a ∈ I3.

Being of total degree 1, Hi, 1 ≤ i ≤ 3, is irreducible, and hence generates Ii.
Thus if H ∈ I, then H ∈ I1 ∩ I2 ∩ I3, and therefore Hi divides H for 1 ≤ i ≤ 3.
Since H1, H2, and H3 are pairwise relatively prime, and since R[T1, T2] is a
unique factorization domain, it follows that H1H2H3 divides H. This shows
that I is generated by H1H2H3, as claimed.

6. Questions for Further Research

Question 6.1. Let S = [v1, . . . ,vd+1] be a regular d-simplex of side length t0
in R

d. For every t ∈ R
d, let tj be the distance from t to vj , 1 ≤ j ≤ d + 1. Let

R0 = R[T0, T1, . . . , Td+1] be the ring of polynomials in the indeterminates T0,
T1, · · · , Td+1 over the field R of real numbers. Allowing t0 to vary, let I0 be
the ideal in R0 defined by

I0 = {f ∈ R0 : f (t0, t1, . . . , td+1) = 0 ∀ t ∈ R
d}, (17)

and let

F0 = (d + 1)

⎛

⎝T 4
0 +

d+1∑

j=1

T 4
j

⎞

⎠ −
⎛

⎝T 2
0 +

d+1∑

j=1

T 2
j

⎞

⎠

2

. (18)

Is I0 generated by F0?

Question 6.2. Suppose that S = [v1, . . . ,vd+1] is a regular d-simplex of side
length a in R

d, and suppose that the positive numbers t1, . . . , td+1 satisfy
(1). Does there exist a point t ∈ R

d such that the distance from t to vj ,
1 ≤ j ≤ d + 1, is tj?

Notice the relation to a result of Klamkin in [10], which states that if
t1, . . . , tn are positive and if

(t21 + · · · + t2n)2 > (n − 1)(t41 + · · · + t4n),

then there exists a regular (n − 1)-simplex [A1, . . . , An] (of edge length a) and
a point P in its affine hull such that |PAj | = aj .
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Question 6.3. Let S = [v1, . . . ,vd+1] be a regular d-simplex of side length t0 in
R

d, and let Γ be the circumsphere of S. For every t ∈ Γ, let tj be the distance
from t to vj , 1 ≤ j ≤ d+1. Let R = R[T1, . . . , Td+1] be the ring of polynomials
in the indeterminates T1, · · · , Td+1 over the field R of real numbers, and let J
be the ideal in R defined by

J = {f ∈ R : f (t1, . . . , td+1) = 0 ∀ t ∈ Γ}. (19)

Clearly J contains the polynomial F defined by

F = (d + 1)

⎛

⎝a4 +
d+1∑

j=1

T 4
j

⎞

⎠ −
⎛

⎝a2 +
d+1∑

j=1

T 2
j

⎞

⎠

2

.

It is also known, and not difficult to prove, that J contains the polynomials G
and H defined by

G =

⎛

⎝
d+1∑

j=1

T 2
j

⎞

⎠ − da2, H =

⎛

⎝
d+1∑

j=1

T 4
j

⎞

⎠ − da4.

Thus one may ask whether J is generated by F , G, and H. However, it is easy
to check that

(d + 1)H = F + ((d + 1)a2 + G)2 − (d + 1)2a4, (20)

and hence F is generated by G and H, and H is generated by F and G. Thus
we ask

Is J generated by G and H? Is J generated by F and G?

Question 6.4. Is the Soddy relation (4) essentially the only one? Given positive
numbers that satisfy (4), do there exist spheres having these numbers as radii
and mutually touching each other?

Question 6.5. If, instead of taking a regular n-simplex, one takes a general
n-simplex with given edge lengths, then the relation among the distances of
an arbitrary point in its affine hull is expected to be complicated. In fact this
problem is addressed for a triangle in [2], and the relation is found to be quite
unmanageable. However, one may try to consider a tetrahedron which is not
quite general. For example, a reasonable analog of the triangle in 3-space is,
besides the regular tetrahedron, the tetrahedron having congruent faces. These
tetrahedra are called equifacial, and have attracted much attention.
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