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1. Introduction and Preliminaries

Metric fixed point theory, as it is well-known, plays an incontestable role in
many branches of mathematics and in many other sciences. Also, more and
more interesting and quaint applications are covered with the help of fixed
point tools. The inspiration taken from the starting point of this theory, i.e.
the famous Banach contraction principle, led to the great development in many
directions, including the research on very general conditions on the mappings
and on the spaces where they are defined on. The examples of recent investiga-
tions in this context one can find e.g. in [26–28], where the authors considered
the contractive mappings of various type in uniform spaces equipped with the
so called generalized pseudodistances. In turn, in [3] there was taken into con-
sideration the well-known contraction of Suzuki type [21] and the appropriate
conditions were delivered which imply that certain Banach spaces have fixed
point property. Obviously there are many other significant contributions to
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the fixed point theory. A thorough research on the equivalence of some known
nonlinear contractive conditions one can find e.g. in [7,8].

In the present work, for a nonempty set X, we will introduce the concept
of certain mapping defined on the subset of X × X which will successfully
substitute many known distance function studied so far. Next, we will define
a new type of contractive mapping and prove some fixed point results which
cover many known theorems in the literature. The novelty of the proposed
project is guaranteed by the nontrivial example concerning non-metrizable
topological space.

If X is a non-empty set on which a convergence property is defined, we
say that a mapping T : X → X is a Picard Operator (abbreviated P.O.) if it
has a unique fixed point ξ and ξ = limn Tnx, for all x ∈ X, where Tn denotes
the n-th composition of T .

1.1. F -contractions

In 2012, D. Wardowski in his work [24] proposed a new kind of contractive
self-mapping T on a metric space (X,d), namely F -contraction. He considered
the functions F : (0,∞) → R satisfying the following conditions:
(F1) F is increasing,
(F2) F (tn) → −∞ if and only if tn ↘ 0,
(F3) limt→0 tλF (t) = 0 for some λ ∈ (0, 1).

A self mapping T on a metric space (X,d) is said to be an F -contraction
if there exists τ > 0 such that

F
(
d(Tx, Ty)

)
+ τ ≤ F (d(x, y)) (1)

for all x, y ∈ X with Tx �= Ty.

Theorem 1.1. [24, Th. 2.1] If (X,d) is a complete metric space and T : X → X
an F -contraction, then T is a P.O.

Putting concrete forms of F , Wardowski obtained other known types
of contractions, including Banach contraction principle, and proved that F -
contractions are really their generalizations. In the literature one can find many
papers devoted to F -contractions. The articles [14,16,20,25] are some of them.
In [23] M. Turinici showed that some class of F -contractions are contractions
of Matkowski type [13]. In the recent article [18] Secelean and Wardowski
extended the family of F -contractions by introducing so called ψF -contractions
which include even the Picard operators without nonexpansiveness condition.

1.2. Some Generalized Metric Spaces

In 2000, Branciari [4] introduced the concept of generalized metric space or
rectangular metric space (abbreviated RMS), where the sum on the right hand
side of the triangular inequality in the definition of a standard metric is re-
placed by a three-term expression. This concept is very interesting because a
RMS does not necessarily have a compatible topology.
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Definition 1.1. Let X be a non-empty set and d : X × X → [0,∞) be a
mapping such that, for all x, y ∈ X and all distinct points u, v ∈ X, each of
them different from x and y, one has

(i) d(x, y) = 0 ⇔ x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ d(x, u)+d(u, v)+d(v, y) (quadrilateral or rectangular inequal-

ity).
Then (X, d) is called generalized or rectangular metric space (RMS).

Definition 1.2. Let (X, d) be a RMS, (xn) be a sequence in X and x ∈ X.
We say that (xn) d-converges to x, or simply converges, if d(xn, x) → 0. We
denote this by xn → x.

We also say that (xn) is a Cauchy sequence if d(xn, xm) −→
n,m

0.

(X, d) is called complete if every Cauchy sequence converges to some
x ∈ X.

Remark 1.1. 1. Clearly any metric space is a RMS.
2. A RMS (X, d) may not have a topology compatible with d, i.e. a

topology τ on X such that a sequence (xn) ⊂ X τ -converges to some x ∈ X if
and only if it d-converges to x, as it follows from [22, Ex. 7].

In a complete RMS every Cauchy sequence of distinct points has a unique
limit. More precisely, one has the following result established in [10, Lemma
1.10].

Lemma 1.1. Let (X, d) be a RMS, (xn) ⊂ X be a Cauchy sequence. Assume
that there is a positive integer N such that:

(i) xn �= xm, for all n,m > N , n �= m;
(ii) xn and x are distinct points in X, for all n > N ;
(iii) xn and y are distinct points in X, for all n > N ;
(iv) limn d(xn, x) = limn d(xn, y) = 0. Then x = y.

Various fixed point results were established in such spaces. We describe
such a result given by Jleli and Samet in [11].

Let Θ be the family of functions θ : (0,∞) → (1,∞) that satisfy the
following conditions:
(Θ1) θ is non-decreasing;
(Θ2) for each sequence (tn) ⊂ (0,∞), limn θ(tn) = 1 if and only if tn → 0+;
(Θ3) there exist r ∈ (0, 1) and l > 0 such that limt→0+

θ(t)−1
tr = l.

Theorem 1.2. [11, Th. 2.1] Let (X, d) be a complete RMS and T : X → X be
a given map. Suppose that there exist θ ∈ Θ and λ ∈ (0, 1) such that

x, y ∈ X, d(Tx, Ty) �= 0 ⇒ θ
(
d(Tx, Ty)

) ≤ [
θ
(
d(x, y)

)]λ
. (2)

Then T has a unique fixed point.
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Note that the Banach contraction principle follows from the previous
theorem taking θ(t) = et. On the other hand note that in metric spaces The-
orem 1.2 can be derived from Theorem 1.1 by putting F (t) = ln(ln(θ(t))) and
τ = − ln λ.

In the following we describe another generalization of the standard notion
of metric given by Jleli and Samet in [9] which extends some other generalized
metric structures such as: b-metric spaces introduced by Bakhtin [2] and dis-
located metric defined by Hitzler and Seda in [6]. In these spaces several fixed
point results are improved.

Let X be a nonempty set.

Definition 1.3. A function D : X × X → [0,∞] is said to be a generalized
metric if it satisfies the following conditions:
(D1) for every x, y ∈ X, D(x, y) = 0 ⇒ x = y ;
(D2) D(x, y) = D(y, x), for every x, y ∈ X ;
(D3) there exists C > 0 such that

x, y ∈ X, (xn) ⊂ X, lim
n

D(xn, x) = 0 ⇒ D(x, y) ≤ C lim sup
n

D(xn, y).

For no confusion we will call this function a D-metric.

Definition 1.4. Let (X,D) be a D-metric space and (xn) ⊂ X. We say that
(xn) converges to some x ∈ X if D(xn, x) → 0. Also, (xn) is a Cauchy sequence
if D(xn+p, xn) −→

n,p
0.

(X,D) is complete if every Cauchy sequence is convergent.

In a D-metric space every convergent sequence has a unique limit [9,
Prop. 2.4].

Proposition 1.1. [9, Prop. 2.8, 2.10] Every b-metric and every dislocated metric
is a D-metric.

Theorem 1.3. [9, Th. 3.3] Let (X,D) be a complete D-metric space and T :
X → X be a mapping for which there is k ∈ (0, 1) such that

D(Tx, Ty) ≤ kD(x, y), ∀x, y ∈ X.

If there is x0 ∈ X such that supi,j∈N D(T ix0, T
jx0) < ∞, then (Tnx0) con-

verges to a fixed point ω of T . Moreover, if ω′ is another fixed point of T such
that D(ω, ω′) < ∞, then ω = ω′.

Senapati et al. [19] generalized the notion of F -contraction to a D-metric
space and proved a fixed point theorem.

Definition 1.5. A self-mapping T on a D-metric space is said to be an F -
contraction if there exists τ > 0 such that, for all x, y ∈ X,

D(x, y)∈ (0,∞) and D(Tx, Ty) ∈ (0,∞) ⇒ τ +F
(D(Tx, Ty)

)≤F
(D(x, y)

)
,

where F : (0,∞) → R satisfy (F1) and (F2).
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Theorem 1.4. [19, Th. 4.2] Let (X,D) be a D-complete metric space and T :
X → X an F -contraction. If there is x0 ∈ X such that supi,j∈N D(T ix0, T

jx0)
< ∞, then (Tnx0) converges to a fixed point ω of T . Moreover, if ω′ is another
fixed point of T such that D(ω, ω′) < ∞, then ω = ω′.

In [1] and [12] one can find more detailed and recent information about
fixed points in generalized spaces.

2. Main Results

Let X be any non-empty set and Δ =
{
(x, x); x ∈ X

}
.

We will denote by F the class of all functions F : (0,∞) → R that satisfy
(F2).

Definition 2.1. Consider a function ρ : X ×X \Δ → R. We say that a sequence
(xn) ⊂ X forward ρ-converges (respectively backward ρ-converges) to some
x ∈ X whenever, for each M > 0, there exists NM ∈ N such that, for every
n ≥ NM , one has

xn �= x ⇒ ρ(xn, x) < −M (resp. xn �= x ⇒ ρ(x, xn) < −M). (3)

If each forward ρ-convergent sequence has a unique limit, then ρ is called
a ρ-metric and the pair (X, ρ) is said to be a ρ-space.

Throughout the article we work only with the notion of forward ρ-conve-
rgence, therefore for simplicity we will omit “forward”.

Definition 2.2. If (X, ρ) is a ρ-space and τ is a topology on X such that a
sequence (xn) converges to x ∈ X in the topology τ if and only if it ρ-converges
to x, we say that (X, τ, ρ) is a topological ρ-space.

Remark 2.1. 1. If (X, ρ) is a ρ-space and (xn) ⊂ X is stationary (i.e. there
are x ∈ X and N ∈ N such that xn = x, for all n ≥ N), then it ρ-
converges to x. Also, if (xn) is such that xn �= x for all n greater that
some N ∈ N, then

xn → x ⇔ ρ(xn, x) → −∞.

2 . In the above settings, if the set A = {nk : xnk
�= x, k = 1, 2, . . . } is

infinite and ρ(xnk
, x) −→

k
−∞, then, by Definition 2.1, xn → x.

Example 2.1. If (X, d) is a metric space, then one can observe that ρ(x, y) =
−1/d(x, y) is a ρ-metric. More generally, if F ∈ F , then ρ(x, y) := F

(
d(x, y)

)

is a ρ-metric and X is a topological ρ-space.
If (X, d) is a RMS in which all convergent sequences have a unique limit

and F ∈ F , then ρ(x, y) = F
(
d(x, y)

)
is a ρ-metric which may not be topolog-

ical (see Remark 1.1, 2.)
Also, if (X,D) is a D-metric space and F ∈ F , then, taking ρ(x, y) =

F
(D(x, y)

)
, we obtain a ρ-space.
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When the underlying topological space (X, τ) is non-metrizable, ρ-metric
finds its real application and can be used to measure the “distance” between
the elements in the topological ρ-space (X, τ, ρ). Such a situation is illustrated
by the following example.

Example 2.2. Consider the Sorgenfrey line (lower limit topology), i.e. the
topology τl on the set R generated by the basis of all half-open intervals

B =
{
[a, b) : a, b ∈ R, a < b

}
.

It is known that (R, τl) is a Hausdorff topological space and it is not metrizable
(see e.g. [5]). It is easy to observe that, in this topology, a given sequence
converges whenever it converges in the standard topology and at most a finite
number of elements are less than the limit.

Consider now the mapping ρ : R × R \ Δ → R given by

ρ(x, y) =
1

y − x
, ∀x �= y ∈ R.

Taking any sequence (xn) convergent to x, xn �= x, with respect to the
topology τl, we have xn ↘ x in the standard topology, and due to the fact
that xn > x for almost all n ∈ N, we get ρ(xn, x) → −∞. On the other side,
taking any (xn) ⊂ R, x ∈ R, xn �= x, such that ρ(xn, x) → −∞ we must have
xn > x except for finitely many n and 1

x−xn
→ −∞, so xn ↘ x in the standard

topology and hence xn →
τl

x.

Summarizing, (R, τl, ρ) is a topological ρ-space. The analogous conclusion
can be also obtained for the mapping

ρ(x, y) =
{

c, for y > x;
1

y−x , for y < x,

where c ∈ R. �

Definition 2.3. Let (X, ρ) be a ρ-space. A sequence (xn) ⊂ X is said to be ρ-
backward-Cauchy (respectively ρ-forward-Cauchy) whenever, for every M > 0,
there is N ∈ N such that, for all n ≥ N and p ≥ 1, one has

xn+p �= xn ⇒ ρ(xn+p, xn) < −M (resp. ρ(xn, xn+p) < −M).

A sequence (xn) ⊂ X is said to be ρ-Cauchy if for every M > 0, there is N ∈ N

such that, for all m,n ≥ N one has

xm �= xn ⇒ ρ(xm, xn) < −M.

We say that ρ is backward complete (resp. forward complete, complete) if every
ρ-backward-Cauchy (resp. ρ-forward-Cauchy, ρ-Cauchy) sequence converges.

Remark 2.2. 1. If ρ is symmetric, then ρ-backward-Cauchy and ρ-forward-
Cauchy properties coincide.



Vol. 72 (2017) New Fixed Point Tools in Non-metrizable Spaces 925

2. A ρ-space is backward complete (respectively forward complete, com-
plete) if and only if every sequence of distinct elements (xn) ⊂ X such
that

ρ(xn+p, xn) −→
n,p

−∞, (resp. ρ(xn, xn+p) −→
n,p

−∞, ρ(xm, xn) −→
m �=n

−∞)

is ρ-convergent.
3. Let (xn) be a sequence of different elements in a ρ-space. Then

ρ(xn, xn+p) −→
n,p

−∞ and ρ(xn+p, xn) −→
n,p

−∞ (4)

if and only if ρ(xm, xn) −→
m �=n

−∞. Therefore, (xn) is ρ-Cauchy if and only

if it is simultaneously ρ-backward-Cauchy and ρ-forward-Cauchy.

Proof. 1. and 2. are obvious. 3. If (xn) is ρ-Cauchy, one has clearly (4).
Conversely, the properties from (4) imply

∀M > 0, ∃ N ∈ N such that ρ(xn+p, xn) < −M and ρ(xn, xn+p)
< −M, ∀n ≥ N, p ≥ 1.

Choose m,n ≥ N , m �= n. If m > n, then ρ(xm, xn) = ρ(xn+p, xn) < −M ,
where p = m − n. Analogously, if m < n one obtains ρ(xm, xn) < −M .

Therefore (xn) is ρ-Cauchy. �
Example 2.3. Any of the ρ-metrics defined in Example 2.2 is forward complete,
while it is not backward complete. Indeed, if (xn) ⊂ R is a sequence of distinct
elements such that ρ(xn, xn+p) −→

n,p
−∞, then there is n0 ∈ N such that

(xn)n≥n0 is decreasing and |xn − xn+p| −→
n,p

0. Hence (xn) is Cauchy with

respect to the Euclidean metric, so it is convergent. Therefore (xn) converges
in the Sorgenfrey topology.

Next, if ρ(xn+p, xn) −→
n,p

−∞, then (xn)n≥n0 is increasing for some n0 ∈
N, so it does not converge in the Sorgenfrey line.

Remark 2.3. Let us consider a metric space (X, d), a function F ∈ F and a
ρ-metric ρ = F ◦ d (see Example 2.1). Then d is complete if and only if ρ is
complete. The same assertion holds if we consider an RMS or a D-metric space
instead of a metric space.

Proof. Suppose that d is complete and (xn) ⊂ X is ρ-Cauchy. Assume that
(xn) is not d-Cauchy. Then there exist ε > 0 and the subsequences (xnk

) and
(xmk

) of (xn) such that

tk = d(xmk
, xnk

) > ε for all k ∈ N.

By (F2) ρ(xmk
, xnk

) = F (tk) �→ −∞ which contradicts the fact that (xn) is
ρ-Cauchy (see Remark 2.2). Therefore (xn) is d-Cauchy and hence convergent,
i.e. d(xn, x) → 0 for some x ∈ X. Now, using again (F2) one can easily see
that (xn) is ρ-convergent.

The proof of the second assertion is very similar. �
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Remark 2.4. A ρ-convergent sequence need not be ρ-Cauchy as we can see in
the following example. Set X = [0,∞) and let ρ : X ×X \Δ → R be given by

ρ(x, y) =
{

ln(x + y), if x = 0 or y = 0;
ln(x + y + 1), otherwise.

Then ρ is a ρ-metric. If xn = 1
n , n = 1, 2, . . . , then ρ(xn, 0) = − ln n → −∞

so (xn) is ρ-convergent. However, ρ(xn+p, xn) = ρ(xn, xn+p) = ln
(

1
n+p + 1

n +
1
) −→

n,p
0 hence (xn) is neither ρ-backward-Cauchy nor ρ-forward-Cauchy.

A nonempty subset B ⊂ X is said to be ρ-bounded whenever there exists
M > 0 such that ρ(u, v) ≤ M , for all u, v ∈ B, u �= v.

Let ψ : (−∞, μ) → (−∞, μ), where μ > M := supx�=y∈X ρ(x, y).

Definition 2.4. A mapping T : X → X is called ρψ-contraction if

ρ(Tx, Ty) ≤ ψ
(
ρ(x, y)

)
, ∀x, y ∈ X, x �= y, Tx �= Ty. (5)

For a mapping T : X → X and x0 ∈ X the orbit of T starting at the point x0,
denoted by O(T, x0), is the set

O(T, x0) = {x0, Tx0, T
2x0, . . . }.

Theorem 2.1. Let (X, ρ) be a ρ-space and assume that ρ is backward complete
or forward complete and that ψ is a nondecreasing map with ψn(t) → −∞, for
all t ∈ (−∞, μ). If T is a ρψ-contraction with a ρ-bounded orbit O(T, x0) for
some x0 ∈ X, then it is a P.O.

Proof. First note that ψ(t) < t, for all t ∈ (−∞, μ). Indeed, if there is t0 ∈
(−∞, μ) such that ψ(t0) ≥ t0, then ψ2(t0) ≥ ψ(t0) ≥ t0 and, inductively,
ψn(t0) ≥ t0, for all n ∈ N. This contradicts ψn(t0) → −∞.

Since

ρ(Tx, Ty) ≤ ψ
(
ρ(x, y)

)
< ρ(x, y), ∀x, y ∈ X, x �= y, Tx �= Ty, (6)

it follows that T has at most one fixed point.
In order to establish the existence of fixed point of T and also its succes-

sive approximation, we have to investigate two cases.

Case I. If there exist n, p ≥ 1 such that Tn+px0 = T px0, then T px0 is a fixed
point for Tn. Next Tn+p+1x0 = T p+1x0, hence T p+1x0 is, also, a fixed point
of Tn. From the inequalities

ρ(Tnx, Tny) ≤ ψ
(
ρ(Tn−1x, Tn−1y)

)

< ρ(Tn−1x, Tn−1y) < · · · < ρ(x, y), ∀x �= y ∈ X, Tnx �= Tny,

we deduce that Tn has only one fixed point. Therefore T p+1x0 = T px0, so
ξ = T px0 is a fixed point of T .
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Case II. Assume that, for every n, p ≥ 1, one has Tn+px0 �= Tnx0. Then,
according to (6), for every n, p ≥ 1 we have

ρ(Tn+px0, T
nx0) ≤ ψ

(
ρ(Tn+p−1x0, T

n−1x0)
) ≤ · · · ≤ ψn

(
ρ(T px0, x0)

)

≤ ψn(M) −→
n

−∞,

where M = supx�=y ρ(x, y), which means that (Tnx0) is ρ-backward-Cauchy.
Analogously, we obtain

ρ(Tnx0, T
n+px0) ≤ · · · ≤ ψn

(
ρ(x0, T

px0)
) ≤ ψn

(
M

) −→
n

−∞
and so (Tnx0) is ρ-forward-Cauchy.

By hypothesis, there exists ξ ∈ X such that Tnx0 −→
n

ξ.

Set A = {n ∈ N; Tn+1x0 �= Tξ}. If A is finite, then Tn+1x0 → Tξ.
Assume that A is infinite. Then A = (nk)k∈N and Tnkx0 �= ξ, for all k ≥ 1.
Hence ρ(Tnkx0, ξ) −→

k
−∞.

Using, again (6), we get

ρ(Tnk+1x0, T ξ) < ρ(Tnkx0, ξ), ∀ k ∈ N,

that is Tnk+1x0 −→
k

Tξ.

Therefore, by Remark 2.1, Tn+1x0 −→
n

Tξ.

Since all convergent sequences in X have a unique limit, one obtains
Tξ = ξ, so ξ is a fixed point of T .

In order to show the successive approximations of ξ, choose x ∈ X. If
there is n0 ∈ N such that Tn0x = ξ, then the conclusion is obvious. Suppose
that Tnx �= ξ, for all n ≥ 1. Then

ρ(Tnx, ξ) = ρ(Tnx, Tnξ) ≤ ψ
(
ρ(Tn−1x, Tn−1ξ)

) ≤ · · · ≤ ψn
(
ρ(x, ξ)

) −→
n

−∞,

so Tnx −→
n

ξ.

The proof is complete. �

In the following we provide an example of non-metrizable topological
space in which the previous theorem can be applied.

Example 2.4. Take any λ ∈ (0, 1) and set

X =
∞⋃

n=1

[λ2n−1, λ2n−2] ∪ {0}

with the topology τl induced from the Sorgenfrey line. Let us consider a map-
ping T : X → X given by

Tx =

⎧
⎨

⎩
0, for x ∈

∞⋃

n=1
[λ2n−1, λ2n−2) ∪ {0};

λ2n, for x = λ2n−2, n ∈ N
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and the function ψ : (−∞, μ) → (−∞, μ), μ > 0, ψ(t) = t + 2 ln λ. Denote
Λ = {λ2n−2 : n ∈ N} and define ρ : X × X \ Δ → R as follows

ρ(x, y) =
{

ln |x − y|, if [x, y ∈ Λ ∪ {0}] or [x, y /∈ Λ and y < x];
0, otherwise.

Then

a) (X, τl) is a non-metrizable Hausdorff topological space;
b) ρ is a forward complete topological ρ-metric;
c) T is continuous in (X, τl) while it is discontinuous with respect to the

standard topology τd generated by the Euclidean metric d on R;
d) T is a ρψ-contraction and P.O.

Proof. a) The Sorgenfrey line is Hausdorff, and so is its subspace (X, τl).
We will prove the non-metrizability of X using a direct way. Suppose

that (X, τl) is metrizable, i.e. τl = τδ, where τδ denotes the topology induced
by some metric δ. Fix x ∈ [λ, 1) ⊂ X. Since [x, 1) ∈ τl = τδ, there exists
n ∈ N such that B(x, 1

n ) ⊂ [x, 1). B(x, 1
n ) ∈ τl, therefore there is also m ∈ N

such that [x, x + 1
m ) ⊂ B(x, 1

n ). Summarizing, for each a ∈ [λ, 1) one can find
s, t > 0 such that a ∈ Vm,n, where

Vm,n =
{

x ∈ [
λ, 1

)
:
[
x, x +

1
m

)
⊂ B

(
x,

1
n

)
⊂ [x, 1)

}
.

In consequence, we get [λ, 1) ⊂ ⋃
m,n∈N

Vm,n. The set [λ, 1) is uncountable,
therefore there must exist m0, n0 ∈ N such that Vm0,n0 is uncountable. Let
(xk) be any sequence of elements in [λ, 1) such that λ < x1 < x2 < . . . < 1,
xk → 1, x1 − λ < 1

m0
and xk+1 − xk < 1

m0
for all k ∈ N. In one of intervals

[λ, x1] or [xk, xk+1], k ∈ N, there are uncountable many elements of Vm0,n0 .
Thus we can choose u, v ∈ Vm0,n0 such that u > v and u − v < 1

m0
. Hence, we

have

u ∈
[
v, v +

1
m0

)
⊂ B

(
v,

1
n0

)
,

and, in consequence

v ∈ B
(
u,

1
n0

)
⊂ [u, 1).

From the above we obtain v ≥ u contradicting the choice of u, v. (X, τl) is
therefore non-metrizable.

b) In order to show that ρ is a ρ-metric, consider a sequence of different
elements (xn) ⊂ X which converges to x ∈ X with respect to τl. Then we can
assume that (xn) is decreasing and |xn−x| → 0, that is xn → x with respect to
the Euclidean metric. Clearly, x /∈ Λ. We claim that ρ(xn, x) → −∞. Indeed,
if there is N ∈ N such that xn /∈ Λ for every n ≥ N , then ρ(xn, x) = ln |xn−x|.
On the contrary, one can find a subsequence (xnk

)k ⊂ Λ. In this case x = 0
and ρ(xn, 0) = ln xn, for all n ≥ 1. In both cases ρ(xn, x) → −∞.
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Conversely, let suppose that (xn) ⊂ X has different elements and satisfies
ρ(xn, x) → −∞, where x ∈ X. It follows that xn > x ≥ 0 except for a finite
set of n ∈ N. We will prove that ρ(xn, x) = ln |xn −x| hence |xn −x| → 0, that
is xn → x with respect to the topology τl.

If there exists N ∈ N such that xn, x /∈ Λ for all n ≥ N , then ρ(xn, x) =
ln |xn − x|. Assume that there is a subsequence (xnk

) ⊂ Λ of (xn). Then
xnk

−→
k

0, so x = 0 and ρ(xn, x) = lnxn.

It remains to prove the forward completeness of ρ. For this purpose, let
(xn) ⊂ X be a sequence of different numbers such that ρ(xn, xn+p) −→

n,p
−∞.

Then one can find N ∈ N such that ρ(xn, xn+p) = ln |xn−xn+p|, for all n ≥ N ,
p ≥ 1. Moreover (xn)n≥N is decreasing because, if this is not so, one can find
a subsequence (xnk

) of (xn) such that xnk
< xnk+1 , for every k ≥ 1. Hence

ρ(xnk
, xnk+1) = 0, for all k ∈ N, which is a contradiction.
Therefore |xn − xn+p| −→

n,p
0, hence (xn) is a Cauchy sequence in (R,d)

so it converges to some x ∈ R. Since �X ∈ τd, we deduce that X is closed in
(R, τd) so x ∈ X. Next, (xn)n≥N being decreasing, it follows that xn → x with
respect to τl.

Consequently ρ is forward complete.
c) Obviously, for every n ∈ N, T is discontinuous in λ2n−2 with respect

to the topology τd. However it is continuous with respect to τl. Indeed, for
every n ∈ N, it is enough to consider the open neighborhood Un of λ2n−2 of
the form

Un = {λ2n−2}.

Then, taking any Vn ∈ τl such that λ2n = T (λ2n−2) ∈ Vn we have T (Un) ⊂ Vn.
The continuity of T with respect to τl on the set X \ Λ is easy to be

verified.
d) In order to show that T is a ρψ-contraction consider first x = λ2m−2,

y = λ2n−2, m,n ∈ N, x �= y. We have

ρ(x, y) − ρ(Tx, Ty) = ρ(λ2m−2, λ2n−2) − ρ(λ2m, λ2n)

= ln
|λ2m−2 − λ2n−2|

|λ2m − λ2n| = ln
λ2m−2|1 − λ2n−2m|
λ2m|1 − λ2n−2m| = −2 ln λ.

For x = 0 and y = λ2n−2 we get

ρ(x, y) − ρ(Tx, Ty) = ρ(0, λ2n−2) − ρ(0, λ2n) = ln
λ2n−2

λ2n
= −2 ln λ.

Next, taking x /∈ Λ, x �= 0, and y = λ2n−2 for some n ≥ 1, we obtain

ρ(x, y) − ρ(Tx, Ty) = ρ(x, λ2n−2) − ρ(0, λ2n) = − ln λ2n ≥ −2 ln λ.

In the other cases in which x, y /∈ Λ, one has Tx = Ty = 0 and (5) implicitly
holds.

Finally observe that every orbit of T is ρ-bounded.



930 N.-A. Secelean, D. Wardowski Results Math

Consequently, all the assumptions of Theorem 2.1 are satisfied, so T is a
P.O. �

Remark 2.5. In the space X endowed with the standard metric d the operator
T from the previous example is neither nonexpansive nor expansive. This em-
phasizes that Theorem 2.1 offers a new method to establish that a self-mapping
is a P.O.

Proof. Take, for some n ∈ N, x1 = 0, max
{
λ2n−1, λ2n−2(1 − λ2)

}
< x2 <

λ2n−2, y = λ2n−2. The conclusion follows from the following inequalities

d(Tx1, T y) < d(x1, y) ⇔ λ2n < λ2n−2 and
d(Tx2, T y) > d(x2, y) ⇔ λ2n > λ2n−2 − x2 ⇔ x2 > λ2n−2(1 − λ2).

�

Lemma 2.1. If ψ : (−∞, μ) → (−∞, μ), μ ∈ [0,∞], is an upper semi-continuous
function (or continuous) with ψ(t) < t, for all t < μ, then limn ψn(t) = −∞,
for all t < μ.

Proof. Fix t ∈ (−∞, μ). Then ψn+1(t) < ψn(t), for every n ∈ N, hence the
sequence

(
ψn(t)

)
is decreasing so it has a limit l ∈ [−∞, μ). If l ∈ R, then

l ≤ lim supt→l ψ(t) ≤ ψ(l) which is a contradiction. So l = −∞. �

Remark 2.6. Theorem 1.2 follows from Theorem 2.1 as a corollary, taking
ρ(x, y) = 1

1−θ(d(x,y)) for all x, y ∈ X, x �= y, and ψ : (−∞, 0) → (−∞, 0),

ψ(t) = (−t)λ

(−t)λ−(1−t)λ .

Proof. First note that, following the proof of Theorem 2.1, one can suppose for
the function ρ only that every ρ-Cauchy sequence has a unique limit instead
of the uniqueness of the limit of all ρ-convergent sequences. Next, since F (t) =

1
1−θ(t) ∈ F , it follows that ρ satisfies (3). We also note that, d being complete,
one has ρ is complete.

A trivial verification shows that ψ is non-decreasing and that ψ(t) < t,
for all t ∈ (−∞, 0). So, by Lemma 2.1, ψ satisfies the conditions from Theorem
2.1.

Now, since θ
(
d(x, y)

)
= 1 − 1

ρ(x,y) , one has

θ
(
d(Tx, Ty)

) ≤ [
θ
(
d(x, y)

)]λ ⇔ 1 − 1
ρ(Tx, Ty)

≤
(
1 − 1

ρ(x, y)

)λ

⇔ ρ(Tx, Ty) ≤ 1

1 − (
1 − 1

ρ(x,y)

)λ
= ψ

(
ρ(x, y)

)
,

for all x, y ∈ X with Tx �= Ty. Finally, note that ρ < 0 and hence every orbit
of T is ρ-bounded. �
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Remark 2.7. Theorem 1.3 and [6, Th. 2.7] are simple consequences of Theorem
2.1 if we take ρ(x, y) = −1/D(x, y), for all x, y ∈ X, x �= y, and ψ(t) = 1

k t, for
t ∈ (−∞, 0).

Remark 2.8. Theorem 1.4 is a particular case of Theorem 2.1 by taking ρ(x, y)
= (F ◦ D)(x, y), for all x �= y ∈ X, and ψ(t) = t − τ , t < 0.

The following proposition states that the class of ρψ-contraction map-
pings on a complete metric space includes that of ϕ-contractions.

Proposition 2.1. 1. If μ = 0, then a mapping ψ : (−∞, μ) → (−∞, μ) is
nondecreasing with ψn(t) → −∞ for all t < μ if and only if ϕ : (0,∞) →
(0,∞), ϕ(t) = −1/ψ(−t−1), is a comparison function.

2. Given a metric space (X,d), a mapping T : X → X is a ϕ-contraction
if and only if it is a ρψ-contraction, where ρ(x, y) = −1/d(x, y), for all
x �= y ∈ X, and ψ(t) = −1/ϕ(−t−1).

Proof. 1. If ψ is nondecreasing, then clearly ϕ is nondecreasing too. Next,
it is easy to see that ϕn(t) = −1/ψn(−t−1) for every t > 0 and n ≥ 1.
So

ϕn(t) → 0 ⇔ ψn(−t−1) → −∞.

Since ψ(s) = −1/ϕ(−s−1), for all s < 0, the converse implication is
obvious.

2. According to Example 2.1, ρ is a ρ-metric. For every x, y ∈ X with x �= y
and Tx �= Ty, one has

ρ(Tx, Ty) ≤ ψ
(
ρ(x, y)

) ⇔ −1
d(Tx, Ty)

≤ ψ
( −1

d(x, y)

)
=

−1
ϕ
(
d(x, y)

)

⇔ d(Tx, Ty) ≤ ϕ
(
d(x, y)

)
.

�
For a given ρ-space (X, ρ), in order to obtain the next result, we will need

the existence of a function Γ: (−∞, μ) → (0,∞), μ = supx,y∈X,x�=y ρ(x, y),
such that:
(Γ1) Γ is increasing;
(Γ2) (Γ◦ρ)(x, y) ≤ (Γ◦ρ)(x, z)+(Γ◦ρ)(z, y) for all x, y, z ∈ X, x �= y �= z �= x;
(Γ3) tn → −∞ implies Γ(tn) → 0.

If X is a metrizable space, then some simple example of functions ρ and
Γ can be found in the following example.

Example 2.5. Consider a metric space (X,d) and two functions Γ : (−∞, 0) →
(0,∞) which satisfies (Γ1), (Γ3) and its inverse Γ−1 : Γ

(
(−∞, 0)

) → (−∞, 0).
If ρ : X × X \ Δ → R is given by ρ(x, y) = Γ−1

(
d(x, y)

)
, then ρ is a ρ-

metric and (Γ1)-(Γ3) hold. In particular we can consider Γ(t) = −1/t and
ρ(x, y) = −1/d(x, y) or Γ(t) = et and ρ(x, y) = ln d(x, y).

Moreover in both cases the mapping Γ is continuous.
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Proposition 2.2. Consider a ρ-space X, a function Γ: (−∞, μ) → (0,∞) satis-
fying (Γ1)− (Γ3) and Ω ⊂ (−∞, μ) such that (−∞, μ)\Ω is dense in (−∞, μ).
For every sequence (xn) ⊂ X of different elements, if ρ(xn, xn+1) → −∞,
ρ(xn+1, xn) → −∞ and (xn) is not ρ-Cauchy, then there exist M ∈ (−∞, μ)\Ω
and the sequences (mk), (nk) of natural numbers such that
(a) Γ

(
ρ(xmk

, xnk
)
) ↘ Γ(M), k → ∞;

(b) Γ
(
ρ(xmk+1, xnk+1)

) →
k

Γ(M).

Proof. Since (xn) is not ρ-Cauchy and (−∞, μ) \ Ω is dense, there exists M ∈
(−∞, μ) \ Ω such that, for each k ∈ N one can find m,n ∈ N, k ≤ m < n such
that ρ(xm, xn) > M . Denote

mk = min
{
m ∈ N : ∃n ∈ N, k ≤ m < n, ρ(xm, xn) > M

}
.

nk = min
{
n ∈ N : k ≤ mk < n, ρ(xmk

, xn) > M
}
.

Let n0 ∈ N be such that ρ(xn, xn+1) < M and ρ(xn+1, xn) < M for
all n ≥ n0. By the definition of mk and nk, for all k ≥ n0, one must have
nk ≥ mk + 2 and ρ(xmk

, xnk−1) ≤ M . Therefore, using (Γ2) and (Γ3), for all
k ≥ n0, we get

Γ(M) ≤ Γ
(
ρ(xmk

, xnk
)
) ≤ Γ

(
ρ(xmk

, xnk−1)
)

+ Γ
(
ρ(xnk−1, xnk

)
)

≤ Γ(M) + Γ
(
ρ(xnk−1, xnk

)
)
.

In consequence, since Γ
(
ρ(xnk−1, xnk

)
)

> 0, ρ(xnk−1, xnk
) →

k
−∞ and due to

(Γ3), we obtain

Γ
(
ρ(xmk

, xnk
)
) ↘ Γ(M), k → ∞.

Also observe that, for all k ∈ N, using couple times (Γ2), we have the inequal-
ities

Γ
(
ρ(xmk

, xnk
)
) − Γ

(
ρ(xmk

, xmk+1)
) − Γ

(
ρ(xnk+1, xnk

)
)≤Γ

(
ρ(xmk+1, xnk+1)

)

≤ Γ
(
ρ(xmk+1, xmk

)
)

+ Γ
(
ρ(xmk

, xnk
)
)

+ Γ
(
ρ(xnk

, xnk+1)
)
.

Letting k → ∞ and applying (Γ3) finally we obtain

Γ(ρ(xmk+1, xnk+1)) −→
k

Γ(M).

�
Theorem 2.2. Let T : X → X be a ρψ-contraction defined on a complete ρ-
space, where ψ : (−∞, μ) → (−∞, μ), μ > supx,y∈X,x�=y ρ(x, y), is an upper
semicontinuous function satisfying ψ(t) < t for all t < μ. Assume that there
exists a map Γ: (−∞, μ) → (0,∞) continuous on a dense subset A of (−∞, μ)
which satisfies (Γ1)-(Γ3). Then T is a P.O.

Proof. First observe that, for all x, y ∈ X with x �= y and Tx �= Ty, we have

ρ(Tx, Ty) ≤ ψ(ρ(x, y)) < ρ(x, y),

which proves that T has at most one fixed point.



Vol. 72 (2017) New Fixed Point Tools in Non-metrizable Spaces 933

Consider any x0 ∈ X and denote xn = Tnx0. If xn0 = xn0−1 for some
n0 ∈ N then one can see that Tn0−1x0 is a fixed point of T .

Assume that xn �= xn−1 for all n ∈ N and denote δn = ρ(xn, xn+1),
n ∈ N. We have

δn ≤ ψ(δn−1) < δn−1 for all n ∈ N.

Set λ = limn δn. If −∞ < λ then, by the above, we get

λ = lim
n

ψ(δn−1) ≤ lim sup
t→λ

ψ(t) ≤ ψ(λ),

which is a contradiction and consequently δn ↘ −∞.
Now, suppose that (xn) is not ρ-Cauchy. Taking Ω = (−∞, μ) \ A in

Proposition 2.2, it follows that there exist M ∈ A and the sequences (mk),
(nk) such that

Γ
(
ρ(xmk

, xnk
)) ↘ Γ(M), Γ

(
ρ(xmk+1, xnk+1)

) →
k

Γ(M).

The continuity of Γ in M and its monotonicity imply ρ(xmk
, xnk

) ↘ M and
ρ(xmk+1, xnk+1) →

k
M. Hence, we obtain

ρ(xmk+1, xnk+1) ≤ ψ
(
ρ(xmk

, xnk
)
)
, for all k ∈ N.

Letting k → ∞ and using the upper semicontinuity of ψ, we get

M ≤ lim sup
k→∞

ψ
(
ρ(xmk

, xnk
)
) ≤ lim sup

t→M
ψ(t) ≤ ψ(M),

which is impossible. Therefore (xn) is ρ-Cauchy and hence convergent. The
rest of the proof is analogous as in the proof of Theorem 2.1. �

As a particular case we obtain [15, Th. 2.1]:

Corollary 2.1. Let T be a self mapping on a complete metric space (X, d).
Suppose that F : (0,∞) → R is a continuous function which satisfies (F1) and
(F2). If there exists τ > 0 such that (1) holds, then T is a P.O.

Proof. The function F : (0,∞) → (−∞,M), where M = supt>0 F (t), is invert-
ible and Γ := F−1 is continuous and satisfies (Γ1)-(Γ3). Next, taking ρ := F ◦d
and ψ(t) = t − τ , the conclusion follows immediately from Theorem 2.2. �

Remark 2.9. Corollary 2.1 generalizes [11, Th. 2.1] and [17, Th. 3.2].
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