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Abstract. To tackle the problems in adjusting and controlling shapes of
rotation surfaces, a new efficient method for quickly constructing gen-
eralized Bézier rotation surfaces with multiple shape parameters is pro-
posed. Firstly, following the important idea of transfinite vectored rational
interpolating function, the shape-adjustable generalized Bézier rotation
surfaces are constructed using a generalized Bézier curve with multiple
shape parameters. Secondly, the explicit function expression of the shape-
adjustable generalized Bézier rotation surfaces is presented. The new ro-
tation surfaces inherit the outstanding properties of the Bézier rotation
surfaces, with a good performance on adjusting their local shapes by
changing the shape parameters. Finally, some properties of the new ro-
tation surfaces are discussed, and the influence rules of the shape param-
eters on the new rotation surfaces are studied. The modeling examples
illustrate that the shape-adjustable generalized Bézier rotation surfaces
provide a valuable way for the design of rotation surfaces.
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1. Introduction

Rotation surface is a kind of special and common geometric profile. The geo-
metric shapes of many objects are rotation surfaces in nature and the field of
product modeling design. A rotation surface is usually generated by rotating a
curve with a fixed angle around a straight line in space. Being a kind of special
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and significant one, rotation surface has very extensive applications in many
areas, such as aerospace, architectural design, machining, industrial design and
computer graphics. For instance, due to the fact that the surface models of
many objects are composed of rotation surfaces or sequences of rotation sur-
faces that are connected end to end, the problems about the generation and
explicit function expression of rotation surfaces are involved in the design or
manufacturing of many products like auto bodies, airplane skins, ship hulls,
moulds, fine-art objects, and the field of 3D cartoon and architecture [1,2].
Now, how to effectively and quickly obtain the 3D mathematical models of ro-
tation surfaces has been an important research content in computer aided geo-
metric design and computer graphics, while rotation surfaces are still usually
expressed in Bézier parametric form in current CAD/CAM system. Therefore,
the research on Bézier rotation surfaces has very significant theoretical and
practical application value.

Given the importance of rotation surfaces, scholars at home and abroad
have carried out extensive research on how to construct rotation surfaces and
have obtained some significant results [3–16]. At present, the methods for
designing rotation surfaces can be divided into the following three broad cate-
gories: the rotation surfaces represented by free surfaces, the coordinate trans-
formation method and the methods for generating special rotation surfaces.
The rotation surface representation based on free surfaces often exactly repre-
sent a rotation surface by using a kind of parametric surface (such as Rational
Bézier Surface, Rational B-Spline Surface, NURBS Surface, C-B-Spline Sur-
face and T-B-Spline Surface) [3–7]. For example, Farin et al. [3], Wang [4],
Kang et al. [5] gave the necessary and sufficient conditions for representing ro-
tation surfaces by rational Bézier surfaces, quadric rational B-Spline surfaces
and NURBS surfaces respectively. Meanwhile they derived the corresponding
constraint equations that the control points and weight factors of the surface
they studied need to satisfy for representing a rotation surface. Zeng and Ma
et al. studied the modeling technology of using C-B-Spline Surfaces and T-B-
Spline Surfaces to construct rotation surfaces in [6,7], respectively. In addition,
each of them gave his own specific calculating method for generating rotation
surfaces. However, a common problem of the rotation surfaces generated by
these free surfaces is that it will be very troublesome to readjust the shapes
of these rotation surfaces, that is, if the shape of a rotation surface need to
be modified, it is necessary to recalculate its control points and weight fac-
tors according to the corresponding constraint equations, which makes the
operation cumbersome and computation complex and will inconvenience de-
signers in appearance design. The main idea of the coordinate transformation
method [1,8,19] is that, given a parametric curve l(t) in space as the generating
line and a straight line L(t) as the rotation axis, a rotation surface can be con-
structed by rotating the generating line l(t) with a fixed angle θ(0 < θ ≤ 2π)
around the rotation axis L(t). Moreover, the equation of the rotation surface
can be obtained by using 3D rotation transformation. For instance, assuming
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that the generating line l(t) is a parametric curve in the plane xoz (noting:
the parametric curve can also be a free curve, such as Bézier, B-Spline and
NURBS curve et. al) and the rotation axis L(t) is the z axis, then the equation
of the rotation surface S can be expressed as follows [8,19]:

S(t, θ) =

⎛
⎝

cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎞
⎠ l(t) = [x(t) cos θ, x(t) sin θ, z(t)]T

where 0 < θ ≤ 2π, the generating line l(t) = [x(t), 0, z(t)]T , t ∈ [t0, t1].
Similarly, the same problem exists in modifying the shape of this kind of

rotation surface generated by the coordinate transformation method, that is,
it is necessary to modify the generating line l(t) to readjust the shape of the
rotation surface, which makes the design process take more time and energy.
Besides, the equation of this kind of rotation surface contains trigonometric
functions, which will increase the computation complexity and truncation error
in constructing a rotation surface. The methods for generating special rotation
surfaces are proposed to construct the rotation surfaces with specific charac-
teristics (or in order to achieve some particular purpose). The typical works
of these methods are drawing of rotation surfaces for illustration and annota-
tion in 3D [9], generalized revolving surface based on metamorphose curve [10],
free form modeling with variational implicit surfaces [11], 3D reconstruction
of rotation surfaces [12–14], generation and shape adjustment of revolution
surface based on stream curve [15], rotation surface modeling technique by
cubic B-spline free drawing [16], continuous forming for rotary surface based
on multi-point adjusting principle [17], subdivision method of revolution sur-
faces [18] and blends between quadrics of revolution [19], etc. Though each of
these special rotation surfaces generated in [4,8–13,15–17,19] has its own sig-
nificant improvements, the applicable ranges of them have certain limitations
and they also have many other drawbacks, such as the limitation of shape
adjustability, the lack of explicit expression and calculation complexity, etc.

In practical applications, designers often need to adjust the partial or
whole shape of a rotating surface intuitively and handily, so the research on
how to quickly generate special rotation surfaces which are easy for shape
analysis and adjustment has certain practical significance. Thus, we construct a
family of shape-adjustable generalized Bézier curves, combined with the theory
of transfinite vectored rational interpolating function, and then we study the
generating technology of shape-adjustable generalized Bézier rotation surfaces,
by which many rotation surfaces in different shapes can be constructed. What’s
more, we can modify the shapes of these rotation surfaces globally or locally,
further enhancing their shape adjustability.

The remainder of the paper is organized as follows. The definition and
continuity condition of shape-adjustable generalized Bézier curves are given
in Sect. 2. In Sect. 3, we describe the transfinite vector valued rational in-
terpolation function. A novel algorithm for constructing a shape-adjustable
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generalized Bézier rotation surfaces is given in Sect. 4. In Sect. 5, some prac-
tical examples are given and we present some practical applications. At last,
some conclusions are given in Sect. 6.

2. A Family of Shape-Adjustable Generalized Bézier Curves

2.1. Definition of Shape-Adjustable Generalized Bézier Curves

Similar to the construction of Bézier curves, given a set of control points P i ∈
Ru (u = 2, 3; i = 0, 1, 2, 3) located in a plane or space, a family of parametric
curves {∏̂

t} can be defined, whose equation in matrix form is expressed as
follows: {∏̂

t

}
: L(t;λ1, λ2, λ3, ω) = TMPT, 0 ≤ t ≤ 1 (1)

where T = [t4, t3, t2, t, 1],P = [P0,P1,P2,P3].

M =

⎛
⎜⎜⎜⎜⎝

−λ1ω + ω λ1ω + λ2ω − 4ω λ3ω − λ2ω + 2ω −λ3ω + ω
3λ1ω − 3ω − 1 9ω − 3λ1ω − 2λ2ω + 3 −5ω + 2λ2ω − λ3ω − 3 1 + λ3ω − ω
3 − 3λ1ω + 3ω −6 − 6ω + 3λ1ω + λ2ω 3 + 3ω − λ2ω 0
λ1ω − ω − 3 3 + ω − λ1ω 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎠

here λ1, λ3 ∈ [0, 4], λ2 ∈ [0, 6] and ω ∈ [0, 1] are local or global shape parame-
ters of the curve.

In this paper, the curve defined by (1) is called a shape-adjustable gen-
eralized Bézier (or SG-Bézier, for short) curve. Given the four control points
P0,P1,P2,P3, then a family of SG-Bézier curves can be generated by (1)
when each of the shape parameters λi(i = 1, 2, 3) and ω varies during its
value range. It can be easily proved that the SG-Bézier curves inherit most
outstanding properties of the traditional Bézier curves, such as convex hull
properties, symmetry, terminal properties, affine invariance and variation di-
minishing property. Furthermore, due to the fact that the curve defined by
(1) has four shape parameters, we have 34-1 different ways to modify its lo-
cal or global shape flexibly under the condition that its control points remain
unchanged. In particular, when ω = 0 or λ1 = λ3 = 1, λ2 = 3, the curve
will degrade into the traditional cubic Bézier curve. Figure 1 shows graphs of
SG-Bézier curves with the same control polygon and different shape param-
eters. Figure 1a shows the generated curve with ω = 1, 0.75, 0.5, 0.25, 0 and
λi(i = 1, 2, 3) remaining unchanged from bottom to top; Fig. 1b shows the
generated curve with λ1 = 4, 3, 2, 1, 0 and ω, λ2, λ3 remaining unchanged from
bottom to top; Fig. 1c shows the generated curve with λ2 = 6, 4.5, 3, 1.5, 0 and
ω, λ1, λ3 remaining unchanged from bottom to top; Fig. 1d shows the generated
curve with λ3 = 4, 3, 2, 1, 0 and ω, λ1, λ2 remaining unchanged from bottom
to top. Figure 1 intuitively reveals that the larger the shape parameter ω,
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Figure 1. SG-Bézier curves with the same control polygon
and different shape parameters. a λ1 = 4, λ2 = 3, λ3 = 4;ω =
1, 0.75, 0.5, 0.25, 0; b ω = 1, λ2 = 3, λ3 = 4;λ1 = 4, 3, 2, 1, 0;.
c λ1 = 4, ω = 1, λ3 = 4;λ2 = 6, 4.5, 3, 1.5, 0; d λ1 = 4, λ2 =
3, ω = 1;λ3 = 4, 3, 2, 1, 0;

the farther away the curve moves from its control polygon. So the shape pa-
rameter ω can modify the global shape of a curve, while the shape parameters
λ1, λ2, λ3 realize the local change of the curve’s shape.

2.2. Continuity Condition of Shape-Adjustable Generalized Bézier Curves

As it is difficult to construct a complex curve by a single SG-Bézier curve, the
key technology need to be solved is to realize the smooth continuity between
SG-Bézier curves. Similar to the smooth continuity between traditional Bézier
curves, the following conclusions about the smooth continuity conditions for
SG-Bézier curves can be derived.

Theorem 1. The sufficient and necessary conditions for G1 continuity between
two SG-Bézier curves L1(t;λ1,1, λ2,1, λ3,1, ω1) and L2(t;λ1,2, λ2,2, λ3,2, ω2) at
the joint are
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{
P0,2 = P3,1

P1,2 =
[
1 + 3+ω1−ω1λ3,1

α(3+ω2−ω2λ1,2)

]
P3,1 − 3+ω1−ω1λ3,1

α(3+ω2−ω2λ1,2)
P2,1

(2)

where α > 0 is constant, λi,j , ωj(i = 1, 2, 3; j = 1, 2) are shape parameters,
Pi,1(i = 0, 1, 2, 3) and Pi,2(i = 0, 1, 2, 3) are control points of the SG-Bézier
curves L1(t;λ1,1, λ2,1, λ3,1, ω1) and L2(t;λ1,2, λ2,2, λ3,2, ω2), respectively.

Proof. If L1(t;λ1,1, λ2,1, λ3,1, ω1) and L2(t;λ1,2, λ2,2, λ3,2, ω2) need to achieve
the G1 continuity, it is necessary that they achieve the G0 continuity at the
joint first, which means

L1(1;λ1,1, λ2,1, λ3,1, ω1) = L2(0;λ1,2, λ2,2, λ3,2, ω2) (3)

According to (1), the two curves meet the following conditions when t = 1 and
t = 0 {

L1(1;λ1,1, λ2,1, λ3,1) = P3,1

L2(0;λ1,2, λ2,2, λ3,2) = P0,2
(4)

Substituting (4) in (3), we have

P0,2 = P3,1 (5)

The above Eq. (5) indicates that the first requirement for G1 smooth continuity
between the two curves is a common control point. �

In addition, the tangent vectors of the two curves need to satisfy the
following condition

L′
1(1;λ1,1, λ2,1, λ3,1, ω1) = αL′

2(0;λ1,2, λ2,2, λ3,2, ω2) (α > 0) (6)

Then according to (1), we can obtain
{
L′

1(1;λ1,1, λ2,1, λ3,1, ω1) = (3 + ω1 − ω1λ3,1)(P3,1 − P2,1)
L′

2(0;λ1,2, λ2,2, λ3,2, ω2) = (3 + ω2 − ω2λ1,2)(P1,2 − P0,2)
(7)

Finally, substituting (7) in (6) and combining with (5), we have

P1,2 =
[
1 +

3 + ω1 − ω1λ3,1

α(3 + ω2 − ω2λ1,2)

]
P3,1 − 3 + ω1 − ω1λ3,1

α(3 + ω2 − ω2λ1,2)
P2,1 (8)

where α > 0 is constant.
Consequently, (5) and (8) constitute the sufficient and necessary condi-

tions for G1 smooth continuity between two adjacent SG-Bézier curves. Ob-
viously, when the constant α = 1 in (2), the G1 smooth continuity conditions
in Theorem 1 will degrade into the sufficient and necessary conditions for C1

smooth continuity between the curves. The greatest advantage of the smooth
continuity between the SG-Bézier curves is that we can modify the shape of a
composite curve just by changing its shape parameters (without modifying its
control points) under the condition that the composite curve maintains G1 or
C1 continuity condition.
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3. Transfinite Vectored Rational Interpolating Function

As the basis of matrix-valued rational interpolating, vectored rational interpo-
lating (VRI) is an extension of scalar functions rational interpolating, which
has been widely applied in the field of graphics and image processing, data
analysis, automatic control and mechanical vibration, and has aroused the in-
terests of national and foreign scholars for researching and studying [20,21].
The definition of transfinite vectored rational interpolating (TVRI) function
is given as follows on the basis of Samelson inverse.

Definition 1. Assuming V = (v1, v2, . . . vd) is a d-dimensional complex vector,
namely, V ∈ C d, the Samelson inverse of V is as follows [20,22]

V −1 =
1
V

= V ∗/ ‖V ‖2 (9)

where V ∗ = (v∗
1 , v

∗
2 , . . . v

∗
d) is the conjugate vector of V ; ‖V ‖ is the norm of

V and ‖V ‖2 = V · V ∗ = (V ,V ∗).

The definition of TVRI function can be given according to the Samelson
inverse of a vector in Definition 1. Since only three related interpolation con-
ditions are involved in this paper, we just give the definition of bivariate TVRI
function here.

Definition 2. First we can construct a bivariate function in the following form
[20]

R(s, t) =
N (s, t)
q(s, t)

= b0(s) +
t − t0

b1(s) + t−t1
b2(s)

(10)

If R(s, t) meets the following three interpolation conditions

R(s, ti) =
N (s, ti)
q(s, ti)

= V i(s) (i = 0, 1, 2) (11)

Then R(s, t) is called the bivariate transfinite vectored rational interpolating
function of the vectored functions V i(s)(i = 0, 1, 2), or the BTVRI function
for short. where N (s, t) = {λ1(s, t), λ2(s, t), λ3(s, t)} is a three-dimensional
vectored function, while λj(s, t) (j = 0, 1, 2) and q(s, t) are real functions of
the variable s and t;V i(s), bi(s)(i = 0, 1, 2) are three-dimensional vectored
functions of the variable s, ti ∈ R1(i = 0, 1, 2).

4. Construction of Shape-Adjustable Generalized Bézier
Rotation Surfaces

4.1. Problem Description

In this section, the focus is mainly on how to construct SG-Bézier rotation sur-
faces in space by using the SG-Bézier curves. The construction for SG-Bézier
rotation surfaces is that, given a composite SG-Bézier curve Lj(s;λ1,j , λ2,j ,
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λ3,j , ωj) (0 ≤ s ≤ 1, j = 1, 2, . . . , n), we can treat the curve as a generating
line to construct a SG-Bézier rotation surface, and then to derive the explicit
expression of the rotation surface based on the theory of BTVRI function.
Due to the fact that a SG-Bézier rotation surface contains multiple indepen-
dent shape parameters, we can modify the local or global shape of a rotation
surface flexibly only by adjusting its shape parameters. Furthermore, by mak-
ing use of the basic translational transformation and rotation transformation,
the SG-Bézier rotation surfaces can be moved in any orientation to a specified
location.

4.2. Construction Algorithm of SG-Bézier Rotation Surfaces

(1) In space rectangular coordinates system, we first construct a composite SG-
Bézier curve L̃0 with shape adjustability in a plane

∑
(in order to simplify

our discussion,
∑

can be considered as the plane xoy, the other two planes
xoz and yoz can be discussed similarly). The curve is composed of n curved
sections, whose control points are P0,j ,P1,j ,P2,j ,P3,j(j = 1, 2, . . . , n).

According to (1), the expression of the curve L̃0 is

L0,j(s;λ1,j , λ2,j , λ3,j , ωj) =
3∑

i=0

li,4(s)P i,j , (0 ≤ s ≤ 1, j = 1, 2, . . . , n) (12)

where L0,j(s;λ1,j , λ2,j , λ3,j , ωj) is the j-th curved section of L̃0, and λ1,j , λ2,j ,
λ3,j , ωj are its shape parameters; Each pair of neighboring curved sections
L0,j(s) and L0,j+1(s) of L̃0 satisfies the G0, G1 or C1 smooth continuity, in
other words, meets the conditions for the G0, G1 or C1 smooth continuity. The
calculation formulas of the basis functions li,4(s)(i = 0, 1, 2, 3) are as follows:

⎧⎪⎪⎨
⎪⎪⎩

l0,4(s) = [1 + (λ1,j − 1)ωjs](1 − s)3

l1,4(s) = [3 + ωj(1 − λ1,j) + ωj(λ1,j + λ2,j − 4)s]s(1 − s)2

l2,4(s) = [3 + (3 − λ2,j)ωj − ωj(λ3,j − λ2,j + 2)s]s2(1 − s)
l3,4(s) = [1 + (λ3,j − 1)ωj(1 − s)]s3

(13)

Let {xi,j , yi,j , 0}(i = 0, 1, 2, 3; j = 1, 2, . . . , n) be the coordinates of the control
points P i,j(i = 0, 1, 2, 3; j = 1, 2, . . . , n). We can rewrite the expression of L̃0

in vector form as follows

L0,j(s;λ1,j , λ2,j , λ3,j , ωj) =
3∑

i=0

li,4(s)P i,j =
3∑

i=0

li,4(s){xi,j , yi,j , 0}

=

{
3∑

i=0

li,4(s)xi,j ,
3∑

i=0

li,4(s)yi,j , 0

}

= {x0,j(s), y0,j(s), 0} (0 ≤ s ≤ 1, j = 1, 2, . . . , n) (14)

where x0,j(s) =
3∑

i=0

li,4(s)xi,j , y0,j(s) =
3∑

i=0

li,4(s)yi,j(j = 1, 2, . . . , n).
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Next, construct a curve L̃1 in the plane xoz(noting: the plane is perpen-
dicular to the plane xoy; the x-axis is the rotation axis of the rotation surface),
and the curve can be expressed in the following vector function form

L1,j(s;λ1,j , λ2,j , λ3,j , ωj) = {x1,j(s), 0, z1,j(s)}
= {x0,j(s), 0, y0,j(s)}(0 ≤ s ≤ 1, j = 1, 2, . . . , n) (15)

where L1,j(s;λ1,j , λ2,j , λ3,j , ωj) is the j-th section of the composite curve L̃1,
and it can be obtained by rotating the j-th section of the composite curve L̃0,
namely L0,j(s;λ1,j , λ2,j , λ3,j , ωj), clockwise around the x-axis with 90◦.

Finally, let the x-axis be the symmetry axis L and calculate the composite
curve L̃2 which is symmetric to the L̃0 about L, then we have

L2,j(s;λ1,j , λ2,j , λ3,j , ωj) = {x2,j(s), y2,j(s), 0}
= {x0,j(s), −y0,j(s), 0}(0 ≤ s ≤ 1, j = 1, 2, . . . , n) (16)

where L2,j(s;λ1,j , λ2,j , λ3,j , ωj) is the j-th curved section of the composite
curve L̃2 and it is symmetric to L0,j(s) about the x-axis.

Synthesizing the above results, we obtain the following three space para-
metric curves located in the plane xoy and xoz(the two planes are perpendic-
ular to each other) respectively:

⎧⎨
⎩

L̃0 : L0,j(s;λ1,j , λ2,j , λ3,j , ωj) = {x0,j(s), y0,j(s), 0}
L̃1 : L1,j(s;λ1,j , λ2,j , λ3,j , ωj) = {x0,j(s), 0, y0,j(s)}
L̃2 : L2,j(s;λ1,j , λ2,j , λ3,j , ωj) = {x0,j(s), −y0,j(s), 0}

(17)

where λ1,j , λ3,j ∈ [0, 4], λ2,j ∈ [0, 6], ωj ∈ [0, 1], and 0 ≤ s ≤ 1, j = 1, 2, . . . , n.
(2) Use the three curves L0,j(s),L1,j(s) and L2,j(s) in (17) as the three

interpolation condition functions of the BTVRI function in (11), and then a
BTVRI function similar to (10) can be constructed. The concrete steps are as
follows:

Step 1 Let t0 = 0, t1 = 1/2 and t2 = 1. According to the definition of
(10), a three-dimensional vectored function can be defined as follows

b0,j(s;λ1,j , λ2,j , λ3,j , ωj) = L0,j(s;λ1,j , λ2,j , λ3,j , ωj) (j = 1, 2, . . . , n) (18)

Step 2 On the basis of the definition of Samelson inverse, suppose
R1,j(s, t1;λ1,j , λ2,j , λ3,j , ωj) satisfies

R1,j(s, t1;λ1,j , λ2,j , λ3,j , ωj)

=
t1 − t0

L1,j(s;λ1,j , λ2,j , λ3,j , ωj) − b0,j(s;λ1,j , λ2,j , λ3,j , ωj)
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Then combined with (18), R1,j(s, t1;λ1,j , λ2,j , λ3,j , ωj) can be rewritten as
follows

b1,j(s;λ1,j , λ2,j , λ3,j , ωj) = R1,j(s, t1;λ1,j , λ2,j , λ3,j , ωj)

=
t1 − t0

L1,j(s;λ1,j , λ2,j , λ3,j , ωj) − L0,j(s;λ1,j , λ2,j , λ3,j , ωj)
(j = 1, 2, . . . , n)

(19)

Step 3 Give the following definitions in turn

R1,j(s, t2;λ1,j , λ2,j , λ3,j , ωj)

=
t2 − t0

L2,j(s;λ1,j , λ2,j , λ3,j , ωj) − b0,j(s;λ1,j , λ2,j , λ3,j , ωj)

=
t2 − t0

L2,j(s;λ1,j , λ2,j , λ3,j , ωj) − L0,j(s;λ1,j , λ2,j , λ3,j , ωj)
R2,j(s, t2;λ1,j , λ2,j , λ3,j , ωj)

=
t2 − t1

R1,j(s, t2;λ1,j , λ2,j , λ3,j , ωj) − b1,j(s;λ1,j , λ2,j , λ3,j , ωj)

Therefore R2,j(s, t2;λ1,j , λ2,j , λ3,j , ωj) can be rewritten as

b2,j(s;λ1,j , λ2,j , λ3,j , ωj) = R2,j(s, t1;λ1,j , λ2,j , λ3,j , ωj)

= (t2 − t1)
[

t2 − t0
L2,j(s;λ1,j , λ2,j , λ3,j , ωj) − L0,j(s;λ1,j , λ2,j , λ3,j , ωj)

− t1 − t0
L1,j(s;λ1,j , λ2,j , λ3,j , ωj) − L0,j(s;λ1,j , λ2,j , λ3,j , ωj)

]−1

(20)

where Li,j(s;λ1,j , λ2,j , λ3,j , ωj)(i = 0, 1, 2; j = 1, 2, . . . , n) are defined in (17).
Step 4 Substitute bi,j(s;λ1,j , λ2,j , λ3,j , ωj)(i = 0, 1, 2; j = 1, 2, . . . , n)

obtained by (18)–(20) in (10), and then we can obtain the following BTVRI
function⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rj(s, t;λ1,j , λ2,j , λ3,j , ωj)
= b0,j(s;λ1,j , λ2,j , λ3,j , ωj) + t−t0

b1,j(s;λ1,j ,λ2,j ,λ3,j ,ωj)+
t−t1

b2,j(s;λ1,j ,λ2,j ,λ3,j ,ωj)

0 ≤ s, t ≤ 1; 0 ≤ λ1,j , λ3,j ≤ 4, 0 ≤ λ2,j ≤ 6, 0 ≤ ωj ≤ 1
j = 1, 2, . . . , n

(21)
It can be easily proved that the BTVRI function in (21) satisfies the following
interpolation condition

Rj(s, ti;λ1,j , λ2,j , λ3,j , ωj)
= Li,j(s, ti;λ1,j , λ2,j , λ3,j , ωj)(i = 0, 1, 2; j = 1, 2, . . . , n)

(3) Substitute the coordinates of the three space parametric curves of (17) in
(21), and rationalize the functions Rj(s, t) in (21) from back to front by using
the Samelson inverse, which means
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Rj(s, t;λ1,j , λ2,j , λ3,j , ωj)
= b0,j(s;λ1,j , λ2,j , λ3,j , ωj)

+
t − t0

b1,j(s;λ1,j , λ2,j , λ3,j , ωj) + t−t1
b2,j(s;λ1,j ,λ2,j ,λ3,j ,ωj)

= {x0,j(s), y0,j(s), 0} +
t − 0

0.5
{0, −y0,j(s), y0,j(s)} + t−0.5

{0, −y0,j(s), −y0,j(s)}

= {x0,j(s), y0,j(s), 0} +
t − 0

{0, −y0,j(s), y0,j(s)}
4y2

0,j(s)
+ (t−0.5){0, −y0,j(s), −y0,j(s)}

2y2
0,j(s)

= {x0,j(s), y0,j(s), 0} +
t{

0, − t
2y0,j(s)

, 1−t
2y0,j(s)

}

= {x0,j(s), y0,j(s), 0} +
t

2t2 − 2t + 1
{0, −2ty0,j(s), 2(1 − t)y0,j(s)}

=
{

x0,j(s),
1 − 2t

2t2 − 2t + 1
y0,j(s),

2t − 2t2

2t2 − 2t + 1
y0,j(s)

}
(22)

Consequently, (22) gives the explicit expression of the BTVRI functions
Rj(s, t;λ1,j , λ2,j , λ3,j , ωj). In order to facilitate our following discussion,
Rj(s, t) can be rewritten in the following form with new introduced symbols

Rj(s, t;λ1,j , λ2,j , λ3,j , ωj) =
N j(s, t)
qj(s, t)

= {r1,j(s, t;λ1,j , λ2,j , λ3,j , ωj), r2,j(s, t;λ1,j , λ2,j , λ3,j , ωj),
r3,j(s, t;λ1,j , λ2,j , λ3,j , ωj)} (23)

where the calculating formulas for ri,j(s, t)(i = 1, 2, 3)are
⎧⎪⎪⎨
⎪⎪⎩

r1,j(s, t;λ1,j , λ2,j , λ3,j , ωj) = x0,j(s)
r2,j(s, t;λ1,j , λ2,j , λ3,j , ωj) = 1−2t

2t2−2t+1y0,j(s)
r3,j(s, t;λ1,j , λ2,j , λ3,j , ωj) = 2t−2t2

2t2−2t+1y0,j(s)
j = 1, 2, . . . , n

(24)

here x0,j(s), y0,j(s)(j = 1, 2, . . . , n) can be calculated according to (14).
On the basis of the conclusions in [20,23], it is easy to prove that the

parametric surface represented by (23) is half of the rotation surface generated
by rotating the generating line L̃0 in the plane xoy with a revolution around
the x-axis (the process of proof is not covered again here).

(4) If the whole rotation surface is required, the other half of it can be ob-
tained by using the opposite sign of the component r3,j(s, t;λ1,j , λ2,j , λ3,j , ωj)
of Rj(s, t;λ1,j , λ2,j , λ3,j , ωj), that is

R̃j(s, t;λ1,j , λ2,j , λ3,j , ωj)
= {r1,j(s, t;λ1,j , λ2,j , λ3,j , ωj), r2,j(s, t;λ1,j , λ2,j , λ3,j , ωj),

−r3,j(s, t;λ1,j , λ2,j , λ3,j , ωj)}
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Hence, the equation of the whole rotation surface generated by rotating the
generating line L̃0 with one revolution around the x-axis is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rj(s, t;λ1,j , λ2,j , λ3,j , ωj)
= {r1,j(s, t;λ1,j , λ2,j , λ3,j , ωj), r2,j(s, t;λ1,j , λ2,j , λ3,j , ωj),

r3,j(s, t;λ1,j , λ2,j , λ3,j , ωj)}
R̃j(s, t;λ1,j , λ2,j , λ3,j , ωj)

= {r1,j(s, t;λ1,j , λ2,j , λ3,j , ωj), r2,j(s, t;λ1,j , λ2,j , λ3,j , ωj) ,
− r3,j(s, t;λ1,j , λ2,j , λ3,j , ωj)}
0 ≤ s, t ≤ 1; 0 ≤ λ1,j , λ3,j ≤ 4, 0 ≤ λ2,j ≤ 6, 0 ≤ ωj ≤ 1; j = 1, 2, . . . , n

(25)
where Rj(s, t;λ1,j , λ2,j , λ3,j , ωj) and R̃j(s, t;λ1,j , λ2,j , λ3,j , ωj) are symmetri-
cal about the plane xoy and they make up a whole rotation surface; Their three
components ri,j(s, t;λ1,j , λ2,j , λ3,j , ωj)(i = 1, 2, 3) are calculated according to
(24).

Furthermore, if we want to get a partial rotation surface generated by
rotating the generating line L̃0 around the x-axis with a fixed angle θ(0 < θ <
2π; θ �= π), the following ways can be taken to solve this problem: 1©If the ro-
tation angle satisfies 0 < θ < π, we only need to use Rj(s, t;λ1,j , λ2,j , λ3,j , ωj)
in (25) to generate the partial rotation surface and the value range of the pa-
rameter t becomes 0 ≤ t ≤ θ/π in this case; 2© If the rotation angle satisfies
π < θ < 2π, we can use Rj(s, t;λ1,j , λ2,j , λ3,j , ωj) to generate the first half
and then use R̃j(s, t;λ1,j , λ2,j , λ3,j , ωj) to generate the rest according to the
method in 1©, with the value range of the parameter t becoming 0 ≤ t ≤ θ/π.

In conclusion, if the generating line locates in the plane xoz or yoz and
the rotation axis is the z-axis or y-axis, we can also construct a rotation surface
and reach similar conclusions.

Theorem 2. In the plane xoz, given a set of control points Pi,j(i = 0, 1, 2, 3;
j = 1, 2, . . . , n) whose coordinates are taken as {xi,j , 0, zi,j}(i = 0, 1, 2, 3; j =

1, 2, . . . , n), then a composite SG-Bézier curve L̃
Z

0 can be constructed by these
control points. The equation of the whole rotation surface generated by rotating
the generating line L̃

Z

0 around the z-axis with one revolution is
⎧⎨
⎩

RZ
j (s, t;λ1,j , λ2,j , λ3,j , ωj) =

{
1−2t

2t2−2t+1x0,j(s), 2t−2t2

2t2−2t+1x0,j(s), z0,j(s)
}

R̃
Z

j (s, t;λ1,j , λ2,j , λ3,j , ωj) =
{

1−2t
2t2−2t+1x0,j(s), − 2t−2t2

2t2−2t+1x0,j(s), z0,j(s)
}

(26)
where 0 ≤ s, t ≤ 1, λ1,j , λ3,j ∈ [0, 4], λ2,j ∈ [0, 6], ωj ∈ [0, 1](j = 1, 2, . . . , n) are

shape parameters; RZ
j and R̃

Z

j are symmetrical about the plane xoz; combined
with the two expressions, we can construct a whole SG-Bézier rotation surface.
For the j-th curved section LZ

0,j of the generating line L̃
Z

0 , the calculating
formulas of its components x0,j(s) and z0,j(s) are
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⎧⎪⎪⎨
⎪⎪⎩

x0,j(s) =
3∑

i=0

li,4(s)xi,j

z0,j(s) =
3∑

i=0

li,4(s)zi,j

where the basis functions li,4(s)(i = 0, 1, 2, 3) are calculated according to (13).

Theorem 3. In the plane yoz, given a set of control points Pi,j(i = 0, 1, 2, 3;
j = 1, 2, . . . , n) whose coordinates are taken as {0, yi,j , zi,j}(i = 0, 1, 2, 3; j =

1, 2, . . . , n), then a composite SG-Bézier curve L̃
Y

0 can be constructed by these
control points. And the equation of the whole rotation surface generated by
rotating the generating line L̃

Y

0 around the y-axis with one revolution is⎧⎨
⎩

RY
j (s, t;λ1,j , λ2,j , λ3,j , ωj) =

{
2t−2t2

2t2−2t+1z0,j(s), y0,j(s), 1−2t
2t2−2t+1z0,j(s)

}

R̃
Y

j (s, t;λ1,j , λ2,j , λ3,j , ωj) =
{

− 2t−2t2

2t2−2t+1z0,j(s), y0,j(s), 1−2t
2t2−2t+1z0,j(s)

}

(27)
where 0 ≤ s, t ≤ 1, λ1,j , λ3,j ∈ [0, 4], λ2,j ∈ [0, 6], ωj ∈ [0, 1](j = 1, 2, . . . , n)

are shape parameters; RY
j and R̃

Y

j are symmetrical about the plane yoz; com-
bined with the two expressions in (27), we can construct a whole SG-Bézier
rotation surface. For the j-th curved section LY

0,j of the generating line L̃
Y

0 ,
the calculating formulas of its components y0,j(s) and z0,j(s) are

{
y0,j(s) =

∑3
i=0 li,4(s)yi,j

z0,j(s) =
∑3

i=0 li,4(s)zi,j

where the basis functions li,4(s)(i = 0, 1, 2, 3) are calculated according to (13)

4.3. Properties Analysis of SG-Bézier Rotation Surfaces

Due to the fact that the generating line of a SG-Bézier rotation surface is a SG-
Bézier curve, the SG-Bézier rotation surfaces inherit many excellent properties
of SG-Bézier curves.

(1) Properties of boundary interpolation. The terminal properties of the
SG-Bézier curves tell us, for any piece of the generating line L̃0 of the SG-Bézier
rotation surfaces in (25), L0,j(s;λ1,j , λ2,j , λ3,j , ωj)(j = 1, 2, . . . , n) interpolates
through its terminal control points P0,j and P3,j , and the control points for
each pair of adjacent curves L0,j(s) and L0,j+1(s) satisfy P3,j = P0,j+1(j =
1, 2, . . . , n − 1). Therefore, the SG-Bézier rotation surfaces in (25) interpolate
through the n+1 circles generated by rotating its control points P0,j ,P3,j(j =
1, 2, . . . , n) around the x-axis with one revolution.

(2) Convex hull properties. The SG-Bézier rotation surfaces in (25) locate
within the stereoscopic rotation convex hull in space generated by rotating the
convex hull of its generating line L̃0 around the x-axis with one revolution.

(3) Smoothness. If each pair of the adjacent curved sections L0,j(s) and
L0,j+1(s) of the generating line L̃0 achieves G0, G1 or C1 smooth continuity,
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then the generated SG-Bézier rotation surface would surely achieves G0, G1 or
C1 smooth continuity along the direction of its generating line L̃0.

(4) Approximation property. With the gradual decrease of the shape pa-
rameters λ1,j , λ2,j , λ3,j and ωj , the SG-Bézier curve approaches its control
polygon little by little; Thus, the generated SG-Bézier rotation surface will
also gradually approaches the rotation surface generated by rotating the con-
trol polygon of its generating line L̃0 around the x-axis with one revolution in
this case.

4.4. Influence Rules of Shape Parameters on the SG-Bézier Rotation Surfaces

As shape parameters play a key role in the shape control of the SG-Bézier
rotation surfaces, it is necessary to analyze the influence rules of the shape pa-
rameters. The SG-Bézier rotation surfaces contain the 4n independent shape
parameters λ1,j , λ2,j , λ3,j , ωj(j = 1, 2, . . . , n), and we can analyze the influence
rules according to the influence rules of its shape parameters on its generat-
ing line. Further more, we can modify the shape of the SG-Bézier rotation
surfaces in C1

3 · C1
3 · C1

3 · C1
3 − 1 = 80 different ways by adjusting the values

of λ1,j , λ2,j , λ3,j , ωj , achieving the local and global shape modification of the
rotation surface.

The influence rules of the shape parameters on the SG-Bézier rotation
surfaces are as follows: 1© With the gradual decrease or increase of the shape
parameter λ1,j(all other parameters maintaining unchanged and ωj �= 0), the
rotation surfaces Rj(s, t), R̃j(s, t) will gradually approach or move away from
the circle generated by rotating the control point P1,j of the rotation gener-
ating line L̃0 around x-axis with one revolution. 2© With the gradual decrease
or increase of the shape parameter λ3,j (all other parameters maintaining un-
changed and ωj �= 0), the rotation surfaces Rj(s, t), R̃j(s, t) will gradually
move away from or approach the circle generated by rotating the control point
P2,j of the rotation generating line L̃0 around x-axis with one revolution. 3©
With the gradual increase of the shape parameter λ2,j (all other parameters
maintaining unchanged and ωj �= 0), the rotation surfaces Rj(s, t), R̃j(s, t)
will gradually approach the circle generated by rotating the control point P1,j

of the rotation generating line L̃0 around x-axis with one revolution and move
away from the one generated by rotating the control point P2,j of the rotation
generating line L̃0 around x-axis with one revolution. 4© The influence rules
of the shape parameter ωj on the shape of the SG-Bézier rotation surfaces can
be divided into the following situations: (i) When λ1,j > 1 and λ3,j > 1, with
the gradual decrease or increase of ωj(all other shape parameters maintaining
unchanged), the rotation surfaces Rj(s, t), R̃j(s, t) will gradually approach or
move away from the rotation surface generated by rotating the control polygon
of the generating line L̃0 around x-axis with one revolution; (ii) When λ1,j < 1
and λ3,j < 1, the influence rule is just the opposite from that of (i); (iii)When
λ1,j < 1 and λ3,j > 1, with the gradual increase of ωj (all other parameters
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maintaining unchanged), the rotation surfaces Rj(s, t), R̃j(s, t) will gradually
approach the circle generated by rotating the control point P1,j around x-axis
with one revolution and move away from the one generated by rotating the
control point P2,j around x-axis with one revolution; (iv) When λ1,j > 1 and
λ3,j < 1, the influence rule is just the opposite from the situation of (iii); (v)
When λ1,j = λ3,j = 1, λ2,j > 3, the influence rule is just the same as that of
(iii), while when λ1,j = λ3,j = 1, λ2,j < 3, the influence rule is just the oppo-
site from that of (iii); (vi)When λ1 = λ3 = 1, λ2 = 3, the SG-Bézier rotation
surfaces will degrade into the traditional cubic Bézier rotation surfaces, and
ωj will lose its effect in shape adjustability.

5. Numerical Examples

5.1. The Rotation of a SG-Bézier Curve Around the x-axis

Here, we give a numerical example to show the rotation of a shape-adjustable
generalized Bézier curve around the x-axis at first. Given a set of control points
Pj(j = 0, 1, 2, 3) in the plane xoy, whose coordinates are as follows:

⎧⎪⎪⎨
⎪⎪⎩

P0 = (0.2, 0.2, 0)
P1 = (0, 0.9, 0)
P2 = (1, 0.9, 0)
P3 = (0.8, 0.2, 0)

(28)

According to (14) and (28), the parametric equation of the SG-Bézier curves
L0(s;λ1, λ2, λ3, ω) defined by these control points Pj(j = 0, 1, 2, 3) is

L0(s;λ1, λ2, λ3, ω) = {x0(s), y0(s), 0} (0 ≤ s ≤ 1) (29)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0(s) = 1
5 +

(− 3
5 + 1

5λ1ω − 1
5ω

)
s +

(
18
5 ω − 3

5λ1ω + 18
5 − λ2ω

)
s2

+
(− 12

5 + 2λ2ω + 3
5λ1ω − 1

5λ3ω − 32
5 ω

)
s3 +

(
3ω − λ2ω − 1

5λ1ω + 1
5λ3ω

)
s4

y0(s) = 1
5 +

(
21
10 + 7

10ω − 7
10λ1ω

)
s +

(
21
10λ1ω − 21

10 − 21
10ω

)
s2

+
(− 21

10λ1ω + 14
5 ω − 10

7 λ3ω
)
s3 +

(− 7
5ω + 7

10λ1ω + 7
10λ3ω

)
s4

(30)
here 0 ≤ λ1, λ3 ≤ 4, 0 ≤ λ2 ≤ 6, 0 ≤ ω ≤ 1.

In terms of (25), the rotation surface generated by rotating the generating
line L0(s;λ1, λ2, λ3, ω) around the x-axis with one revolution is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R(s, t;λ1, λ2, λ3, ω)
=

{
x0(s), 1−2t

2t2−2t+1y0(s), 2t−2t2

2t2−2t+1y0(s)
}

R̃(s, t;λ1, λ2, λ3, ω)
=

{
x0(s), 1−2t

2t2−2t+1y0(s), − 2t−2t2

2t2−2t+1y0(s)
}

0 ≤ s, t ≤ 1

(31)
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where R(s, t;λ1, λ2, λ3, ω) and R̃(s, t;λ1, λ2, λ3, ω) constitute a whole rotation
surface and they are symmetrical about the plane xoy;x0(s) and y0(s) can be
calculated according to the formulas in (30).

Figures 2, 3, 4 and 5 show some graphics of the SG-Bézier rotation
surfaces with different shape parameters, where their generating lines have
the same control polygon. In these figures, the green light mesh surfaces are
the generating rotation surfaces, the yellow curves are the generating line
L0(s;λ1, λ2, λ3, ω), the blue polylines are the control polygon; The space cir-
cles composed of “*” are generated by rotating the control point P1 of the
generating line L0 around the x-axis with one revolution, and the space cir-
cles composed of “o” are generated by rotating the control point P2 of the
generating line L0 around the x-axis with one revolution. It can be seen from
Figs. 2, 3, 4 and 5, with the varying of the shape parameters, the change rule of
the shape of the rotation surface is consistent with the conclusion in Sect. 4.4.
All of these mean that the shape of a SG-Bézier rotation surface can be mod-
ified handily by adjusting its four shape parameters, which reduces time and
effort greatly.

Furthermore, using the method in this paper, we can also obtain the
rotation surface generated by rotating the generating line L0(s;λ1, λ2, λ3, ω)
around the x-axis with a certain angle θ(0 < θ < 2π; θ �= π), and the concrete
processing method can be seen in the discussion in Sect. 4.2. Figure 6 shows
some graphics of these incomplete SG-Bézier rotation surfaces generated by
rotating the generating line L0(s;λ1, λ2, λ3, ω) around the x-axis with the angle
θ = 0.5π and θ = 1.4π, and the shape parameters as well as control points of
the generating line L0(s;λ1, λ2, λ3, ω) are selected following the relative values
in Fig. 2a.

5.2. The Rotation of Three Pieces of SG-Bézier Curves Around the z-axis

In this section, we give a numerical example to show the rotation of a gen-
erating line, which is constructed by joining three SG-Bézier curves together
with piecewise smooth features (such as the G1 or G1 continuity), around the
z-axis. Given a set of control points P i,j(i = 0, 1, 2, 3; j = 1, 2, 3) in the plane
xoz, whose coordinates are as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0,1 = (5, 0, 13),P1,1 = (6, 0, 12)
P2,1 = (3, 0, 10),P3,1 = (2, 0, 8)
P0,2 = P3,1

P1,2 = (1, 0, 6)
P2,2 = (2, 0, 3),P3,2 = (5, 0, -1)
P0,3 = P3,2,
P1,3 = (8, 0, -5)
P2,3 = (5, 0, -9),P3,3 = (8, 0, -10)

(32)

According to (14) and (28), the parametric equations for the three pieces
of SG-Bézier curves LZ

0,j(s;λ1,j , λ2,j , λ3,j , ωj) defined by these control points
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Figure 2. SG-Bézier rotation surfaces with the parameter
ω taking different values and λ1, λ2, λ3 keeping unchanged.
a λ1 = 4, λ2 = 3, λ3 = 4;ω = 0. b λ1 = 4, λ2 = 3, λ3 =
4;ω = 0.2. c λ1 = 4, λ2 = 3, λ3 = 4;ω = 0.4. d λ1 = 4, λ2 =
3, λ3 = 4;ω = 0.6. e λ1 = 4, λ2 = 3, λ3 = 4;ω = 0.8 (f)
λ1 = 4, λ2 = 3, λ3 = 4;ω = 1
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Figure 3. SG-Bézier rotation surfaces with the parameter
λ1 taking different values and ω, λ2, λ3 keeping unchanged.
a ω = 1, λ2 = 3, λ3 = 4;λ1 = 0. b ω = 1, λ2 = 3, λ3 =
4;λ1 = 0.8. c ω = 1, λ2 = 3, λ3 = 4;λ1 = 1.6. d ω = 1, λ2 =
3, λ3 = 4;λ1 = 2.4. e ω = 1, λ2 = 3, λ3 = 4;λ1 = 3.2. f
ω = 1, λ2 = 3, λ3 = 4;λ1 = 4
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Figure 4. SG-Bézier rotation surfaces with the parameter
λ2 taking different values and λ1, ω, λ3 keeping unchanged.
a λ1 = 4, ω = 1, λ3 = 4;λ2 = 0. b λ1 = 4, ω = 1, λ3 =
4;λ2 = 1.2. c λ1 = 4, ω = 1, λ3 = 4;λ2 = 2.4. d λ1 = 4, ω =
1, λ3 = 4;λ2 = 3.6. e λ1 = 4, ω = 1, λ3 = 4;λ2 = 4.8. f
λ1 = 4, ω = 1, λ3 = 4;λ2 = 6
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Figure 5. SG-Bézier rotation surfaces with the parameter
λ3 taking different values and λ1, λ2, ω keeping unchanged.
a λ1 = 4, λ2 = 3, ω = 1;λ3 = 0. b λ1 = 4, λ2 = 3, ω =
1;λ3 = 0.8. c λ1 = 4, λ2 = 3, ω = 1;λ3 = 1.6. d λ1 = 4, λ2 =
3, ω = 1;λ3 = 2.4. e λ1 = 4, λ2 = 3, ω = 1;λ3 = 3.2. f
λ1 = 4, λ2 = 3, ω = 1;λ3 = 4
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Figure 6. SG-Bézier rotation surfaces with the rotation an-
gle θ taking different values. a θ = 0.5π. b θ = 1.4π

P i,j(i = 0, 1, 2, 3; j = 1, 2, 3) are

LZ
0,j(s;λ1,j , λ2,j , λ3,j , ωj) = {x0,j(s), 0, z0,j(s)} (0 ≤ s ≤ 1, j = 1, 2, 3) (33)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0,1(s) = 5 + (3 + ω1 − λ1,1ω1)s + (−12 + 3λ2,1ω1 + 3λ1,1ω1 − 12ω1)s2

+ (6 − 3λ1,1ω1 + λ3,1ω1 − 6λ2,1ω1 + 22ω1)s3

+ (λ1,1ω1 + λ3,1ω1 + 3λ2,1ω1 − 11ω1)s4

z0,1(s) = 13 + (−3 − ω1 + λ1,1ω1)s − (3 − 2λ2,1ω1 + 3λ1,1ω1 + 3ω1)s2

+ (1 + 3λ1,1ω1 − 2λ3,1ω1 − 4λ2,1ω1

+11ω1)s3 + (−λ1,1ω1 + 2λ3,1ω1 + 2λ2,1ω1 − 7ω1)s4

x0,2(s) = 2 + (−3 − ω2 + λ1,2ω2)s + (6 − 3λ1,2ω2 − λ2,2ω2 + 6ω2)s2

+ (3λ1,2ω2 + 3λ3,2ω2 + 2λ2,2ω2

− 12ω2)s3 + (−λ1,2ω2 − 3λ3,2ω2 − λ2,2ω2 + 7ω2)s4

z0,2(s) = 8 − (6 + 2ω2 − 2λ1,2ω2)s − (3 + 6λ1,2ω2 − 3λ2,2ω2 + 3ω2)s2

+ (6λ1,2ω2 − 4λ3,2ω2 − 6λ2,2ω2

+16ω2)s3 + (−2λ1,2ω2 + 4λ3,2ω2 + 3λ2,2ω2 − 11ω2)s4

x0,3(s) = 5 + (9 + 3ω3 − 3λ1,3ω3)s − (18 − 3λ2,3ω3 − 9λ1,3ω3 + 18ω3)s2

+ (12 − 9λ1,3ω3 + 3λ3,3ω3

+ 24ω3 − 6λ2,3ω3)s3 + (3λ1,3ω3 − 3λ3,3ω3 + 3λ2,3ω3 − 9ω3)s4

z0,3(s) = −1 − (12 + 4ω3 − 4λ1,3ω3)s + (4λ2,3ω3 − 12λ1,3ω3)s2

+ (3 + 12λ1,3ω3 − 8λ2,3ω3 − λ3,3ω3

+13ω3)s3 + (−4λ1,3ω3 + λ3,3ω3 + 4λ2,3ω3 − 9ω3)s4

(34)
here 0 ≤ λ1,j , λ3,j ≤ 4, 0 ≤ λ2,j ≤ 6, 0 ≤ ωj ≤ 1(j = 1, 2, 3).

In terms of (25), the rotation surface generated by rotating the generating
line LZ

0,j(s;λ1,j , λ2,j , λ3,j , ωj) around the z-axis with one revolution is
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� Figure 7. The composite SG-Bézier rotation surfaces with
different shape parameters. a λ1,j = 4, λ2,j = 3, λ3,j = 4;ωj =
0(j = 1, 2, 3). b λ1,j = 4, λ2,j = 3, λ3,j = 4;ωj = 1/3(j =
1, 2, 3). c λ1,j = 4, λ2,j = 3, λ3,j = 4;ωj = 2/3(j = 1, 2, 3).
d λ1,j = 4, λ2,j = 3, λ3,j = 4;ωj = 1(j = 1, 2, 3). e λ1,j =
4, λ2,j = 3, λ3,j = 4(j = 1, 2, 3);ω1 = ω2 = 1, ω3 = 0. f
λ1,j = 4, λ2,j = 3, λ3,j = 4(j = 1, 2, 3);ω1 = ω2 = 0, ω3 = 1.
g λ1,1 = 4, λ2,1 = 3, λ3,1 = 4, ω1 = 1;λ1,2 = 0, λ2,2 = 0. h
λ1,1 = 0, λ2,1 = 3, λ3,1 = 0, ω1 = 1;λ1,2 = 0, λ2,2 = 6, λ3,2 =
0, ω2 = 1;λ1,3 = 4, λ2,3 = 3, λ3,3 = 4, ω3 = 0λ3,2 = 0, ω2 =
1;λ1,3 = 0, λ2,3 = 6, λ3,3 = 0, ω3 = 1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

RZ
j (s, t;λ1,j , λ2,j , λ3,j , ωj)

=
{

1−2t
2t2−2t+1x0,j(s), 2t−2t2

2t2−2t+1x0,j(s), z0,j(s)
}

R̃
Z

j (s, t;λ1,j , λ2,j , λ3,j , ωj)

=
{

1−2t
2t2−2t+1x0,j(s), − 2t−2t2

2t2−2t+1x0,j(s), z0,j(s)
}

0 ≤ s, t ≤ 1, j = 1, 2, 3

(35)

where RZ
j (s, t;λ1,j , λ2,j , λ3,j , ωj) and R̃

Z

j (s, t;λ1,j , λ2,j , λ3,j , ωj) constitute a
whole rotation surface, and they are symmetrical about the plane xoz;x0,j(s),
z0,j(s)(j = 1, 2, 3) can be calculated according to the formulas in (34).

Figure 7 shows graphics of the SG-Bézier rotation surfaces represented
by (35) with the shape parameters λ1, λ2, λ3, ω taking different values, whose
generating line represented by (33) is made up of three SG-Bézier curves with
G1 continuity. Thus the whole rotation surface achieves the G1smooth conti-
nuity along the direction of its generating line. As can be seen from Fig. 7,
it can be handy, effective and flexible to modify the shape of the composite
SG-Bézier rotation surfaces represented by (35) by adjusting its twelve shape
control parameters.

5.3. SG-Bézier Rotation Ellipsoid Surfaces

In this section, we give a numerical example of using a SG-Bézier rotation
surface to approximately represent an ellipsoid surface (or a sphere surface). In
order to facilitate our discussion, given a set of control points Pj(j = 0, 1, 2, 3)
in the plane xoz whose coordinates are as follows⎧⎪⎪⎨

⎪⎪⎩

P0 = (0, 0, 0)
P1 = (1.2, 0, 0)
P2 = (1.2, 0, 0)
P3 = (0, 0, 2)

(36)

Then a SG-Bézier curve LZ
0 (s;λ1, λ2, λ3, ω) can be defined by these control

points in (36), which can be used to approximate the semicircle arc x2 + (z −
1)2 = 1 and the semi-elliptical arc x2/b2 + (z − 1)2/a2 = 1 (a = 1, 0.45 ≤ b ≤
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Figure 8. Approximation of a semicircle arc and a semi-
elliptical arc by using a SG-Bézier curve. a Approximation of
a semicircle arc. b Approximation of a semi-elliptical arc

1.05) as shown in Fig. 8. In this figure, the two black dots are the centers of the
circle and ellipse respectively, whose coordinates are fixed as (0, 1), the blue
and the red dotted line are the approximated semicircle arc and semi-elliptical
arc respectively; the red dots are the four control points of the curve LZ

0 . Fi-
nally, we can construct a sphere surface or ellipsoid surface by rotating the
approximated curve LZ

0 around the z-axis with one revolution. Obviously, how
to better approximate the semicircle arc and the semi-elliptical arc is trouble-
some, so we can adopt the following method: 1© Since both semicircle arcs and
semi-elliptical arcs are symmetrical curves, the shape adjustable Bézier-like
curve LZ

0 need to be symmetrical about the line z = 1, combined with the
conclusion in 4.4, the parameters should satisfy λ2 = 3 and λ1 = λ3 �= 1. 2©
In order to simplify the calculation, we can fix the values of the parameters
λ1, λ3 and treat the parameter ω as a optimization variable, and then adopt
the method in [24] to approximate the semicircle arc x2 +(z − 1)2 = 1 and the
semi-elliptical arc x2/b2+(z−1)2/a2 = 1 by using the curve LZ

0 (s;λ∗
1, 3, λ∗

3, ω),
where λ∗

1, λ
∗
3 are constants.

The results calculated by the above method indicate that the curve
LZ
0 (s; 0, 3, 0, 0.671) can better approximate the semicircle arc with λ1 = λ3 = 0

and ω = 0.671. Finally, we can construct an approximated sphere surface by
rotating the curve LZ

0 (s; 0, 3, 0, 0.671) as the generating line around the x-axis
with one revolution. In Fig. 9, the yellow curve is the generating line LZ

0 and
the blue polygonal line is the control polygon of the generating line.

Similarly, we have: 1© When λ1 = λ3 = 4, ω = 0.222, the curve LZ
0 (s; 4, 3,

4, 0.222) can better approximate the semi-elliptical arc x2

b2 + (z−1)2

a2 = 1 (a =
1, b = 0.8); 2© When λ1 = λ3 = 4, ω = 0.667, the curve LZ

0 (s; 4, 3, 4, 0.667)
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Figure 9. Approximation of a sphere surface by using a SG-
Bézier rotation surface

Figure 10. The approximation of two ellipsoid surfaces by
using a SG-Bézier rotation surface. a a = 1, b = 0.8. b a =
1, b = 0.6

can better approximate the semi-elliptical arc x2

b2 + (z−1)2

a2 = 1 (a = 1, b = 0.6).
Figure 10 shows the approximation of the generated ellipsoid surfaces in above
cases by using a SG-Bézier rotation surface. In Fig. 10a, the generating line of
the rotation surface is LZ

0 (s; 4, 3, 4, 0.222), and in Fig. 10b, the generating line
of the rotation surface is LZ

0 (s; 4, 3, 4, 0.222).

5.4. SG-Bézier Rotation Ring Surfaces

In this section, we give a numerical example of using a SG-Bézier rotation
surface to approximately represent a rotation ring surface. If the control poly-
gon of the SG-Bézier curves is closed, then the curve will also be closed and
a rotation ring surface can be constructed by rotating the closed curve as the
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Figure 11. SG-Bézier rotating ring surfaces with different
shape parameters. a λ1,j = 4, λ2,j = 3, λ3,j = 4;ωj = 0(j =
1, 2). b λ1,j = 4, λ2,j = 3, λ3,j = 4;ωj = 1/3(j = 1, 2). c
λ1,j = 4, λ2,j = 3, λ3,j = 4;ωj = 2/3(j = 1, 2). d λ1,j =
4, λ2,j = 3, λ3,j = 4;ωj = 1(j = 1, 2). e λ1,1 = 4, λ2,1 =
3, λ3,1 = 4, ω1 = 1;λ1,2 = 0. f λ1,1 = 0, λ2,1 = 3, λ3,1 =
0, ω1 = 1;λ1,2 = 4, λ2,2 = 3, λ3,2 = 0, ω2 = 1λ2,2 = 3, λ3,2 =
4, ω2 = 1
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Figure 12. The asymmetrical generalized rotation surfaces
with transmutative generating line. a λ1,j=4, λ2,j=3, λ3,j= 4
(j=1,2). b λ1,1=4,λ2,1=3, λ3,1= 4; λ1,2=0,λ2,2=3, λ3,2= 0

generating line around a rotation axis with one revolution. In order to facili-
tate our discussion, given a set of control points P i,j(i = 0, 1, 2, 3; j = 1, 2) in
the plane xoz whose coordinates are as follows

⎧⎪⎪⎨
⎪⎪⎩

P0,1 = (2, 0, 0),P1,1 = (3.2, 0, 0)
P2,1 = (3.2, 0, 2),P3,1 = (2, 0, 2)
P0,2 = (2, 0, 0),P1,2 = (0.8, 0, 0)
P2,2 = (0.8, 0, 2),P3,2 = (2, 0, 2)

(37)

Then we can construct a closed SG-Bézier curve LZ
0,j(s;λ1,j , λ2,j , λ3,j , ωj)(j =

1, 2) and obtain the rotation surface generated by rotating LZ
0,j as the gener-

ating line around the z-axis with one revolution according to (25).
⎧⎨
⎩

RZ
j (s, t;λ1,j , λ2,j , λ3,j , ωj) =

{
1−2t

2t2−2t+1x0,j(s), 2t−2t2

2t2−2t+1x0,j(s), z0,j(s)
}

R̃
Z

j (s, t;λ1,j , λ2,j , λ3,j , ωj) =
{

1−2t
2t2−2t+1x0,j(s), − 2t−2t2

2t2−2t+1x0,j(s), z0,j(s)
}

(38)
where 0 ≤ s, t ≤ 1, 0 ≤ λ1,j , λ3,j ≤ 4, 0 ≤ λ2,j ≤ 6, 0 ≤ ωj ≤ 1(j =

1, 2);RZ
j (s, t) and R̃

Z

j (s, t) constitute a whole rotation ring surface, and the
calculating formulas for x0,j(s), z0,j(s)(j = 1, 2) are as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0,1(s) = 2 + (185 + 6
5ω1 − 6

5λ1,1ω1)s − ( 185 − 18
5 λ1,1ω1 + 18

5 ω1)s2

+ (245 ω1 − 18
5 λ1,1ω1 − 6

5ω1λ3,1)s3 + (65λ1,1ω1 + 6
5λ3,1ω1 − 12

5 ω1)s4

z0,1(s) = (−6 − 6ω1 + 2λ2,1ω1)s2 + (4 + 12ω1 − 4λ2,1ω1)s3

+ (2λ2,1ω1 − 6ω1)s4

x0,2(s) = 2 − ( 185 + 6
5ω2 − 6

5λ1,2ω2)s + (185 − 18
5 λ1,2ω2 + 18

5 ω2)s2

− ( 245 ω2 − 18
5 λ1,2ω2 − 6

5ω2λ3,2)s3 − ( 65λ1,2ω2 + 6
5λ3,2ω2 − 12

5 ω2)s4

z0,2(s) = (−6 − 6ω2 + 2λ2,2ω2)s2 + (4 + 12ω2 − 4λ2,2ω2)s3

+ (2λ2,2ω2 − 6ω2)s4

(39)
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� Figure 13. Designing rotation surface graphs of rounded
ceramic pot. a Original rotation surfaces. b Deformed rotation
surfaces-1. c Deformed rotation surfaces-2. d Texture map-
ping surface. e Colored drawing surface-1. f Colored draw-
ing surface-2. g Colored drawing surface-3. h Colored drawing
surface-4 (color figure online)

Figure 11 shows some graphics of the SG-Bézier rotation ring surfaces in (38)
with different shape parameters. In this figure, the blue curve is the generating
line of the rotation ring surface, which is a closed curve composed of two
SG-Bézier curves. Obviously, the shape of the rotation ring surface can be
modified handily by adjusting its eight shape control parameters, reducing
both time and effort.

5.5. Asymmetrical Generalized Rotation Surfaces with Transmutative Gener-
ating Line

For a traditional rotation surface, its generating line will not deform in the
process of rotation, making the surface is symmetrical about its rotation axis.
Such as the rotation surfaces in [3–19] (except for [10]) and the SG-Bézier
rotation surfaces in this paper. A rotation surface whose generating line de-
forms in the process of rotation is called a generalized rotation surface, which
is asymmetrical [10]. The following discussion is focused on how to use the
SG-Bézier curves to generate this kind of asymmetrical generalized rotation
surface, and the concrete approach is as follows: since the generating line
L̃0 : L0,j(s;λ1,j , λ2,j , λ3,j , ωj)(j = 1, 2, . . . , n) of the SG-Bézier rotation sur-
faces contains four different shape parameters λ1,j , λ2,j , λ3,j , ωj , the generating
line could modify its shape in the process of rotation, thus generating a asym-
metrical generalized rotation surface with the generating line deforming. For
instance, fixing the values of the parameters λ1,j , λ2,j , λ3,j , an asymmetrical
generalized rotation surface can be constructed by modifying the value of the
parameter ωj of the generating line L̃0 in the process of rotation. In order
to facilitate our discussion, the parameters λ1,j , λ2,j , λ3,j and ωj are called
the shape control parameters and the generatrix deforming parameter of the
generalized rotation surface respectively. It should be noted that the distinc-
tion of the two kinds of parameters is, the shape control parameters need to
be given before the asymmetrical generalized rotation surface is constructed;
while the generatrix deforming parameter is not a constant any more, but a
variable of the rotation surface. Figure 12 gives a numerical example to show
graphics of an asymmetrical generalized rotation surface with its generating
line deforming. In Fig. 12, the control points of the generating line L̃0 of the
asymmetrical generalized rotation surfaces are the same as those in Fig. 11;
ωj and λ1,j , λ2,j , λ3,j(j = 1, 2) are the generatrix deforming parameter and
shape control parameters of the asymmetrical generalized rotation surfaces
respectively.
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6. Applications

As an extension of classic Bézier rotation surfaces, the SG-Bézier rotation
surfaces provide a new class of mathematical theory for the development of
CAD/CAM application software, and its application range includes manu-
facturing industry, computer graphics, computer vision, computer animation,
multimedia technology, etc. In CAD/CAM, if the apparent surface of a product
is a complex rotation surface, the surface need to be considered as a piecewise
rotation surface composed of multiple ones. Figure 13 gives an example to de-
sign the rotation surface of rounded ceramic pot. In this figure, the blue curve
is the generatrix of the rotation surface, which is composed of four SG-Bézier
curves.

In recent years, how to realize the 3D modeling and rendering of ancient
buildings by using computer technology has always been a research hot topic
in computer graphics, game software development and digital preservation of
cultural heritage sites and objects, etc. Ancient Hakka earthen buildings are a
unique architectural style in ancient Chinese buildings with their construction
having some significant geometric features, such as the Hall of Prayer for Good

Harvest in Beijing’s Temple of Heaven. Figure 14 gives an example to
design the rotation surface of rounded Ancient Hakka earthen building by
using the proposed method in this paper. In this figure, the generatrix of the
rotation surface is composed of ten SG-Bézier curves, each of which satisfies
G0 or G1 continuity with its adjacent one.

7. Conclusions

In order to tackle the problem that the shape of a traditional rotation surface
often can not be modified expediently, we present a method to construct a
new kind of SG-Bézier rotation surfaces in this paper based on the basic idea
of BTVRI function. Furthermore, we analyze the properties of this kind of ro-
tation surfaces and discuss the influence rules of their shape parameters. The
SG-Bézier rotation surfaces possess the following advantages: 1© They inherit
the outstanding properties of the traditional Bézier rotation surfaces, but their
shape adjustability is superior to that of the traditional Bézier rotation sur-
faces. So without redefining the generating line, the local or global shape of a
SG-Bézier rotation surface can be modified handily only by adjusting its shape
parameters; 2© We introduce multiple shape parameters in the construction of
the rotation surfaces, which increases the flexibility in rotation surface design
and overcomes the problem that the shape of a traditional rotation surface
often can not be modified expediently; 3© They possess their explicit function
expression, making the coordinate of any point on the surface can be easily
got and the speed of generating rotation surfaces raised. In this paper, the the-
oretical analysis and modeling examples show that the method for generating
SG-Bézier rotation surfaces is intuitive and easy to implement. Furthermore,
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Figure 14. Rotational surface modeling of ancient Hakka
earthen buildings. a Original rotation surfaces. b Deformed
rotation surfaces. c Colored lighting surface. d Texture map-
ping surface. e Colored drawing surface-1. f Colored drawing
surface-2 (color figure online)

the proposed method provides appearance shaping design of rotation surfaces
with additional degrees of freedom. Thus they can be used to construct com-
plex surfaces of revolution with different degrees of smoothness. We will focus
on studying the problem of how to construct a SG-Bézier rotation surface with
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minimal bending energy in future work. In addition, how to apply the proposed
method to 3-D reconstruction and modeling of complex rotation surfaces in
reverse engineering is worthy for further study.
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