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Abstract. In this paper, we study locally strongly convex centroaffine
hypersurfaces with parallel cubic form with respect to the Levi–Civita
connection of the centroaffine metric. As the main result, we obtain a
complete classification of such centroaffine hypersurfaces. The result of
this paper is a centroaffine version of the complete classification of locally
strongly convex equiaffine hypersurfaces with parallel cubic form due to
Hu et al. (J Differ Geom 87:239–307, 2011).
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1. Introduction

In centroaffine differential geometry, we study properties of hypersurfaces in
the (n+1)-dimensional affine space R

n+1 equipped with its standard affine flat
connection D, that are invariant under the centroaffine transformation group
G in R

n+1. Here, by definition, G is the subgroup of affine transformation
group in R

n+1 which keeps the origin O ∈ R
n+1 invariant. Let Mn be an

n-dimensional smooth manifold. An immersion x : Mn → R
n+1 is said to

be centroaffine hypersurface if the position vector x (from O) for each point
x ∈ Mn is transversal to the tangent plane of M at x. In this case, the position
vector x defines the so-called centroaffine normalization modulo orientation.
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For any vector fields X and Y tangent to M , we have the centroaffine formula
of Gauss:

DXx∗(Y ) = x∗(∇XY ) + h(X,Y )(−εx), (1.1)

where ε = 1 or −1. In this paper, we always assume that x : Mn → R
n+1 is

a non-degenerate centroaffine hypersurface, i.e., the bilinear 2-form h, defined
by (1.1), remains non-degenerate. Moreover, associated with (1.1) we call −εx,
∇ and h the centroaffine normal, the induced connection and the centroaffine
metric induced by −εx, respectively.

Let N(h) denote the dimension of the maximal negative definite sub-
spaces of the bilinear form h with respect to ε = −1. For a locally strongly
convex centroaffine hypersurface, i.e., N(h) = 0 or N(h) = n, we can choose
ε such that the centroaffine metric h is positive definite. In that situation,
if ε = 1 we say that the hypersurface is elliptic and, if ε = −1 we call the
hypersurface hyperbolic (cf. Section 2 of [14]). We refer to [7,18,23] for some
interesting studies on centroaffine hypersurfaces.

Given a non-degenerate centroaffine hypersurface x : Mn → R
n+1, we

denote by ∇̂ the Levi–Civita connection of h. Then the difference tensor K,
defined by K(X,Y ) := KXY := ∇XY − ∇̂XY , and the cubic form C := ∇h
are related by the equation

C(X,Y,Z) = −2h(KXY,Z) = −2h(KXZ, Y ). (1.2)

It is well-known (cf. [14,16,21]) that a centroaffine hypersurface immer-
sion is uniquely determined, up to a centroaffine transformation, by its cen-
troaffine metric and its cubic form (this means that the cubic form plays the
role of the affine second fundamental form). Hence, in centroaffine differential
geometry the problem of classifying affine hypersurfaces with parallel cubic
form (i.e., ∇̂C = 0) is quite natural and important. In [17], Li and Wang
considered this problem the first time by studying the so-called canonical cen-
troaffine hypersurface. Here, a centroaffine hypersurface is called canonical if
its centroaffine metric h is flat and its cubic form C satisfies ∇̂C = 0.

We should recall that in equiaffine differential geometry, the problem
of classifying locally strongly convex affine hypersurfaces with parallel cubic
form has been studied intensively, from the earlier beginning paper by Bokan
et al. [2], and then [5,6,9,10] by some others, to the very recent complete
classification of Hu et al. [12]. We also refer to the latest development due to
Hildebrand [8], however, from the geometric viewpoint the arguments in [8] is
difficult to be followed for us.

In centroaffine differential geometry, compared with its counterpart in
equiaffine differential geometry, the important apolarity condition does not
exist. The lack of the apolarity condition brings serious difficulties to the solu-
tion of the problem of classifying centroaffine hypersurfaces with parallel cubic
form. To our knowledge, besides Li and Wang [17], the only known results
concentrating on this problem is by Liu and Wang [19], where 2-dimensional
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centroaffine surfaces were classified under the condition that the traceless cubic
form C̃ is parallel, i.e. ∇̂C̃ = 0. As ∇̂C = 0 implies that ∇̂C̃ = 0, Liu and
Wang’s classification list should include all immersions satisfying ∇̂C = 0.

In this paper, restricting our attention to locally strongly convex cen-
troaffine hypersurfaces in R

n+1, we will solve the above problem by establish-
ing a complete classification of all centroaffine hypersurfaces with parallel cubic
form. Similar to the one in [10–12], our classification depends heavily on the
characterization of the so-called (generalized) Calabi product construction of
centroaffine hypersurfaces (cf. [14,17]). Indeed, such characterization tells how
to decompose a complicated centroaffine hypersurface into lower dimensional
ones that have been well known.

To state the main result of this paper, we first recall that if ψi : Mi →
R

ni+1, where i = 1, 2, are non-degenerate centroaffine hypersurfaces, then,
following [14,17], for a constant λ �= 0,−1, we can define the (generalized)
Calabi product of M1 and M2 by

ψ(u, p, q) = (euψ1(p), e−λuψ2(q)), p ∈ M1, q ∈ M2, u ∈ R. (1.3)

Similarly, the (generalized) Calabi product of M1 and a point is defined
by

ψ̃(u, p) = (euψ1(p), e−λu), p ∈ M1, u ∈ R. (1.4)

Note that a straightforward calculation shows that the Calabi product
of two centroaffine hypersurfaces with parallel cubic form (resp. the Calabi
product of a centroaffine hypersurface with parallel cubic form and a point)
again has parallel cubic form. The decomposition theorems, which can be
seen as the converse of the previous Calabi product constructions, were first
obtained in terms of h and K in [17] (Theorem 4.5 therein) and will be modified
more quantitatively in the present paper (cf. Theorems 3.2 and 3.4 below) for
maintaining consistency with Theorems 3 and 4 of [11]. In this paper, we
further develop the techniques, started in [10,12] when dealing with equiaffine
hypersurfaces, in order to obtain the following complete classification.

Theorem 1.1. Let Mn be an n-dimensional locally strongly convex centroaffine
hypersurface in R

n+1 with ∇̂C = 0. Then, we have either

(i) Mn is an open part of a locally strongly convex hyperquadric with C = 0;
or

(ii) Mn is obtained as the Calabi product of a lower dimensional locally
strongly convex centroaffine hypersurface with parallel cubic form and a
point; or

(iii) Mn is obtained as the Calabi product of two lower dimensional locally
strongly convex centroaffine hypersurfaces with parallel cubic form; or

(iv) n = 1
2m(m + 1) − 1, m ≥ 3, Mn is centroaffinely equivalent to the

standard embedding of SL(m, R)/SO(m) ↪→ R
n+1; or



422 X. Cheng et al. Results Math

(v) n = 1
4 (m + 1)2 − 1, m ≥ 5, Mn is centroaffinely equivalent to the

standard embedding SL(m+1
2 , C)/SU(m+1

2 ) ↪→ R
n+1; or

(vi) n = 1
8 (m+1)(m+3)− 1, m ≥ 9, Mn is centroaffinely equivalent to the

standard embedding SU∗(m+3
2 )/Sp(m+3

4 ) ↪→ R
n+1; or

(vii) n = 26, Mn is centroaffinely equivalent to the standard embedding
E6(−26)/F4 ↪→ R

27; or
(viii) Mn is locally centroaffinely equivalent to the canonical centroaffine

hypersurface xn+1 = 1
2x1

∑n
k=2 x2

k + x1 ln x1.

Remark 1.1. Compared to its counterpart of the Classification Theorem in
equiaffine situation [12], the case (viii) in Theorem 1.1 is exceptional and it is
completely newly appeared.

Remark 1.2. Theorem 1.1 implies that all canonical centroaffine hypersurfaces
but that in (viii) can be decomposed as the Calabi product.

Remark 1.3. Related to Theorem 1.1 we have established in [4] the classifica-
tion of locally strongly convex isotropic centroaffine hypersurfaces. From the
comparison of the main results in [1,4] one sees that the isotropic condition
again have different implications in both equiaffine theory of hypersurfaces
and centroaffine theory of hypersurfaces, just like Theorem 1.1 here and the
Classification Theorem in [12].

As direct consequence of Theorem 1.1, and without paying attention to
the Calabi product constructions, the classification of locally strongly convex
canonical centroaffine hypersurfaces can be formulated as follows:

Corollary 1.1 (cf. [17]). Let x : Mn → R
n+1 be a locally strongly convex canon-

ical centroaffine hypersurface. Then it is locally centroaffinely equivalent to one
of the following hypersurfaces:

(i) xα1
1 xα2

2 · · · xαn+1
n+1 = 1, where either αi > 0 (1 ≤ i ≤ n + 1), or

α1 < 0 and αi > 0 (2 ≤ i ≤ n + 1) such that

n+1∑

i=1

αi < 0.

(ii) xα1
1 xα2

2 · · · xαn−1
n−1 (x2

n + x2
n+1)

αn exp(αn+1 arctan xn

xn+1
) = 1, where

αi < 0 (1 ≤ i ≤ n − 1) such that 2αn +
n−1∑

i=1

αi > 0,

(iii) xn+1 = 1
2x1

(x2
2+ · · ·+x2

v−1)−x1(− ln x1+αv ln xv + · · ·+αn ln xn), where
2 ≤ v ≤ n + 1, αi (v ≤ i ≤ n) are real numbers satisfying

αi > 0 (v ≤ i ≤ n) and
n∑

i=v

αi < 1.
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Remark 1.4. More general canonical centroaffine non-degenerate hypersur-
faces have been discussed by Li and Wang [17], where the classification of
canonical centroaffine hypersurfaces in R

n+1 with N(h) ≤ 1 was established.
According to [17], it is easily seen that if N(h) = 0 then such hypersurfaces
are centroaffinely equivalent to the following hypersurfaces

xα1
1 xα2

2 · · · xαn+1
n+1 = 1,

where αi (1 ≤ i ≤ n + 1) are positive real numbers.

This paper is organized in twelve sections. In Sect. 2, we fix notations
and recall relevant material for centroaffine hypersurfaces in affine differen-
tial geometry. In Sect. 3, we study both the Calabi product of centroaffine
hypersurfaces and their characterizations. In Sect. 4, properties of centroaffine
hypersurfaces with parallel cubic form in terms of a typical basis are pre-
sented, so that the classification problem of such hypersurfaces is divided into
(n + 1) cases, namely: {Cm}1≤m≤n and an exceptional case B, depending on
the decomposition of the tangent space into three orthogonal distributions,
i.e., D1 (of dimension one), D2 and D3. The two cases C1 and Cn will be set-
tled in this section. In Sect. 5, we settle the exceptional Case B. In Sect. 6, we
classify locally strongly convex centroaffine surfaces in R

3 with parallel cubic
form. The result of Sect. 6 is necessary not only because it is indispensable to
the induction procedure of Theorem 1.1, but also because it fills in a gap in
the result of Liu and Wang [19].

To consider the cases {Cm}2≤m≤n−1, we follow closely the same procedure
as in [12]: we introduce two extremely important operators, i.e., an isotropic
bilinear map L : D2×D2 → D3 in Sect. 4.3, and, for any unit vector v ∈ D2, the
symmetric linear map Pv : D2 → D2 in Sect. 4.4. With the help of L and Pv,
we can give a remarkable decomposition of D2 in Sect. 4.5. Then in Sects. 7–11,
according to the decomposition of D2 we analyze these cases in much detail in
order to achieve the corresponding conclusion, respectively. Finally in Sect. 12
we complete the proof of Theorem 1.1.

2. Preliminaries

In this section, we recall basic facts about centroaffine hypersurfaces. For more
details see also [20,21]. Given a centroaffine hypersurface, let ∇, ∇̂, K and C
denote the induced connection, the Levi–Civita connection for the centroaffine
metric h, the difference tensor and the cubic form, respectively, and let X,Y,Z
denote the tangent vector fields. We define the Tchebychev form T̂ and the
Tchebychev vector field T , respectively, by

nT̂ (X) = Tr (KX), h(T,X) = T̂ (X). (2.1)

If T = 0, or equivalently, TrKX = 0 for any tangent vector X, then Mn is
reduced to be the so-called proper (equi-)affine hypersphere centered at the
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origin O (cf. also [16], p. 279, and for more details, in Sect. 1.15.2-3 therein).
Using the cubic form C and the Tchebychev form T̂ one can define a traceless
symmetric cubic form C̃ by

C̃(X,Y,Z) := − 1
2C(X,Y,Z)

− n
n+2

[
T̂ (X)h(Y,Z) + T̂ (Y )h(X,Z) + T̂ (Z)h(X,Y )

]
. (2.2)

It is well-known that C̃ vanishes if and only if f : Mn → R
n+1 is a

hyperquadric (cf. Section 7.1 in [21]; Lemma 2.1 and Remark 2.2 in [15]).
Let R̂ denote the curvature tensor of ∇̂. Then, according to the integra-

bility conditions, we have

R̂(X,Y )Z = ε(h(Y,Z)X − h(X,Z)Y ) − [KX ,KY ]Z, (2.3)

∇̂C(X,Y,Z,W ) = ∇̂C(Y,X,Z,W ), (2.4)

where ∇̂C(X,Y,Z,W ) := (∇̂XC)(Y,Z,W ).
We define the curvature tensor acting as derivation by

(R̂(X,Y )K)(Z,U) = R̂(X,Y )K(Z,U) − K(R̂(X,Y )Z,U) − K(Z, R̂(X,Y )U).

Notice that ∇̂C = 0 if and only if ∇̂K = 0. Thus if ∇̂C = 0, we have

R̂(X,Y )K(Z,U) = K(R̂(X,Y )Z,U) + K(Z, R̂(X,Y )U). (2.5)

3. Characterizations of the Generalized Calabi Product

To prove Theorem 1.1, we should study the (generalized) Calabi products of
centroaffine hypersurfaces as defined in (1.3) and (1.4). In this section, we first
state some elementary calculations on Calabi product, formulated as Proposi-
tions 3.1 and 3.2. Then, considering the converse of these propositions, we will
prove Theorems 3.1, 3.2, 3.3 and 3.4, which demonstrate the characterizations
of the Calabi product in terms of their centroaffine invariants.

Let ψi : Mi → R
ni+1 be a locally strongly convex centroaffine hyper-

surface of dimension ni (i = 1, 2). Denote by hi the centroaffine metric of ψi

(i = 1, 2), respectively. Given the Calabi product ψ and ψ̃ defined as in (1.3)
and (1.4), i.e., for constant λ �= 0,−1, we have

ψ(u, p, q) = (euψ1(p), e−λuψ2(q)), p ∈ M1, q ∈ M2, u ∈ R, (3.1)

ψ̃(u, p) = (euψ1(p), e−λu), p ∈ M1, u ∈ R. (3.2)

Let {u1, . . . , un1} and {un1+1, . . . , un1+n2} be local coordinates for M1

and M2, respectively. For simplicity, we use the following range of indices:

1 ≤ i, j, k ≤ n1, n1 + 1 ≤ α, β, γ ≤ n1 + n2.

According to Section 4 of Li and Wang [17], we can state the following
result.
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Proposition 3.1 (cf. [17]). The Calabi product of M1 and M2

ψ : Mn1+n2+1 := R × M1 × M2 → R
n1+n2+2,

defined by (3.1) is a non-degenerate centroaffine hyersurface, the centroaffine
metric h induced by ψ is given by

h = λdu2 ⊕ λ
1+λh1 ⊕ 1

1+λh2, (3.3)

with the property

N(h) =

⎧
⎨

⎩

N(h1) + N(h2), λ > 0,
n1 + 1 − N(h1) + N(h2), −1 < λ < 0,
n2 + 1 + N(h1) − N(h2), λ < −1.

(3.4)

The difference tensor K of ψ takes the following form:

K

(
ψu√
|λ| ,

ψu√
|λ|

)

= λ1
ψu√
|λ| , K

(
ψu√
|λ| , ψui

)

= λ2ψui
,

K

(
ψu√
|λ| , ψuα

)

= λ3ψuα
, K (ψui

, ψuα
) = 0,

(3.5)

where λ1, λ2, λ3 are constants satisfying

λ1 = λ2 + λ3, λ2λ3 = −sgn λ, λ2 �= λ3. (3.6)

Moreover, ψ is flat (resp. of parallel cubic form) if and only if both ψ1

and ψ2 are flat (resp. of parallel cubic form).

Similarly, the following result can be verified easily:

Proposition 3.2. The Calabi product of M1 and a point

ψ̃ : Mn1+1 = R × M1 → R
n1+2

defined by (3.2) is a non-degenerate centroaffine hyersurface, the centroaffine
metric h̃ induced by ψ̃ is given by

h̃ = λdu2 ⊕ λ
1+λh1, (3.7)

with the property

N(h̃) =

⎧
⎨

⎩

N(h1), λ > 0,
n1 + 1 − N(h1), −1 < λ < 0,
N(h1) + 1, λ < −1.

(3.8)

The difference tensor K̃ of ψ̃ takes the following form:

K̃

(
ψ̃u√
|λ| ,

ψ̃u√
|λ|

)

= λ1
ψ̃u√
|λ| , K̃( ψ̃u√

|λ| , ψ̃ui
) = λ2ψ̃ui

, (3.9)

where λ1, λ2 are constants satisfying

λ1 �= 2λ2, λ1λ2 − λ2
2 = −sgn λ. (3.10)

Moreover, ψ̃ is flat (resp. of parallel cubic form) if and only if ψ1 is flat
(resp. of parallel cubic form).
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Remark 3.1. From (3.4) and (3.8), it is easily seen that if the Calabi product
ψ (resp. ψ̃) is locally strongly convex, then the centroaffine metric of ψ (resp.
ψ̃) induced by −ε′ψ (resp. −ε′ψ̃) is positive, where ε′ = −sgn λ.

Next, as the converse of Proposition 3.1, we can prove the following the-
orem.

Theorem 3.1. Let ψ : Mn → R
n+1 be a locally strongly convex centroaffine

hypersurface. Assume that there exist distributions D1 (of dimension 1,
spanned by a unit vector field T ), D2 (of dimension n1) and D3 (of dimen-
sion n2) such that

(i) 1 + n1 + n2 = n,
(ii) the centroaffine metric h induced by −εψ (ε = ±1) is positive definite,
(iii) D1, D2 and D3 are mutually orthogonal with respect to the centroaffine

metric h,
(iv) there exist constants λ1, λ2, and λ3 such that

K(T, T ) = λ1T, K(T, V ) = λ2V, K(T,W ) = λ3W, K(V,W ) = 0,
∀V ∈ D2, W ∈ D3; λ1 = λ2 + λ3, λ2λ3 = ε, λ2 �= λ3.

(3.11)

Then ψ : Mn → R
n+1 can be locally decomposed as the Calabi product of

two lower dimensional locally strongly convex centroaffine hypersurfaces ψ1 :
Mn1

1 → R
n1+1 and ψ2 : Mn2

2 → R
n2+1.

Proof. First of all, we have the following lemma, whose proof can be given
exactly by following the proof of Lemmas 1, 2, 3 and 4 of [11].

Lemma 3.1. Under the assumptions of Theorem 3.1, for any vector X ∈
TM, V ∈ D2 and W ∈ D3, the following hold

∇̂XT = 0, ∇̂XV ∈ D2, ∇̂XW ∈ D3.

Lemma 3.1, together with the de Rham decomposition theorem, implies
that (M,h) is locally isometric to R × M1 × M2, where T is tangent to R,
whereas D2 (resp. D3) is tangent to M1 (resp. M2).

The product structure of M implies the existence of local coordinates
(u, p, q) for M based on an open subset containing the origin of R

n1+n2+1,
such that D1 is given by dp = dq = 0, D2 (resp. D3) is given by du = dq = 0
(resp. du = dp = 0). We may assume that T = λ2

∂
∂u . Put

ψ1 = f(T − λ3ψ), ψ2 = g(λ2ψ − T ), (3.12)

where f and g are assumed to be nonzero functions which depend only on the
variable u, and are given by

f(u) = 1
λ2−λ3

e−u, g(u) = 1
λ2−λ3

e
− λ3

λ2
u
.
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A straightforward computation, by (3.12) and (1.1), shows that
DT ψ1 = −λ2f(T − λ3ψ) + fDT (T − λ3ψ)

= f(λ3λ2 − ε)ψ + f(−λ2 + λ1 − λ3)T
= 0.

Similarly

DW ψ1 = 0, DT ψ2 = DV ψ2 = 0.

The above relations imply that ψ1 (resp. ψ2) reduces to a map of M1 (resp.
M2) in R

n+1. The facts
dψ1(V ) = DV ψ1 = f(λ2 − λ3)V,

dψ2(W ) = DW ψ2 = g(λ2 − λ3)W

show that both maps ψ1 and ψ2 are actually immersions. Denoting by ∇1

(resp. ∇2) the D2 (resp. D3) component of ∇, we further find that

DV dψ1(Ṽ ) = f(λ2 − λ3)DV Ṽ

= f(λ2 − λ3)
(
∇1

V Ṽ − εh(V, Ṽ )ψ + λ2h(V, Ṽ )T
)

= dψ1(∇1
V Ṽ ) + (λ2 − λ3)λ2h(V, Ṽ )ψ1.

Hence ψ1 can be interpreted as a centroaffine immersion contained in an
(n1 + 1)-dimensional vector subspace of R

n+1 with induced connection ∇1

and centroaffine metric

h1 = λ2(λ2 − λ3)h. (3.13)

Similarly, we obtain that ψ2 can be interpreted as a centroaffine immersion
contained in an (n2 + 1)-dimensional vector subspace of R

n+1 with induced
connection ∇2 and centroaffine metric

h2 = λ3(λ3 − λ2)h. (3.14)

As both subspaces are complementary, we may assume that, up to a linear
transformation, the (n1+1)-dimensional subspace is spanned by the first n1+1
coordinates of R

n+1, whereas the (n2 +1)-dimensional subspace is spanned by
the last n2 + 1 coordinates of R

n+1.
Solving (3.12) for the immersion ψ, we have

ψ = 1
(λ2−λ3)f

ψ1 + 1
(λ2−λ3)g

ψ2 = (euψ1, e
λ3
λ2

u
ψ2).

From Proposition 3.1 we see that ψ is given as the Calabi product of the
immersions ψ1 and ψ2. Moreover, from (3.13) and (3.14), we know that both
ψ1 and ψ2 are locally strongly convex.

We have completed the proof of Theorem 3.1. �
In Theorem 3.1, if additionally M has parallel cubic form, equivalently,

∇̂K = 0, then by the totally same proof as that of Theorem 3 in [11], we can
prove the following theorem.
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Theorem 3.2. Let ψ : Mn → R
n+1 be a locally strongly convex centroaffine

hypersurface. Assume that ∇̂K = 0 and there exist h-orthogonal distributions
D1 (of dimension 1, spanned by a unit vector field T ), D2 (of dimension n1)
and D3 (of dimension n2) such that

K(T, T ) = λ1T, K(T, V ) = λ2V, K(T,W ) = λ3W,

∀V ∈ D2, W ∈ D3; λ1 �= 2λ2, λ1 �= 2λ3, λ2 �= λ3.
(3.15)

Then ψ : Mn → R
n+1 can be locally decomposed as the Calabi product of

two locally strongly convex centroaffine hypersurfaces ψ1 : Mn1
1 → R

n1+1 and
ψ2 : Mn2

2 → R
n2+1 with parallel cubic form.

Similarly, as the converse of Proposition 3.2, we can prove the following
theorem.

Theorem 3.3. Let ψ : Mn → R
n+1 be a locally strongly convex centroaffine

hypersurface. Assume that there exist two distributions D1 (of dimension 1,
spanned by a unit vector field T ), D2 (of dimension n − 1) such that

(i) the centroaffine metric h induced by −εψ (ε = ±1) is positive definite,
(ii) D1 and D2 are orthogonal with respect to the centroaffine metric h,
(iii) there exist constants λ1 and λ2 such that

K(T, T ) = λ1T, K(T, V ) = λ2V, ∀V ∈ D2;

λ1 �= 2λ2, λ1λ2 − λ2
2 = ε.

(3.16)

Then ψ : Mn → R
n+1 can be locally decomposed as the Calabi product of a

locally strongly convex centroaffine hypersurface ψ1 : Mn−1
1 → R

n and a point.

Proof. First, it is easily seen from (3.16) that we have

λ2 �= 0.

Next, by a proof similar to those for Lemmas 5.6 and 5.7 in [9], we can prove
the following lemma.

Lemma 3.2. Under the assumptions of Theorem 3.3, for any vector X ∈ TM
and V ∈ D2, there hold

∇̂XT = 0, ∇̂XV ∈ D2.

From Lemma 3.2, applying the de Rham decomposition theorem, we see
that (M,h) is locally isometric with R × M1 such that T is tangent to R and
D2 is tangent to M1.

The above product structure of M implies the existence of local coordi-
nates (u, p) for M based on an open subset containing the origin of R

n, such
that D1 is given by dp = 0 and D2 is given by du = 0. We may assume that
T = λ2

∂
∂u . Put

ψ1 = f
(
T − ε

λ2
ψ

)
, ψ2 = g(λ2ψ − T ), (3.17)
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where f and g are assumed to be nonzero functions which depend only on the
variable u, and are given by

f(u) = 1
2λ2−λ1

e−u, g(u) = 1
2λ2−λ1

e
λ2−λ1

λ2
u
.

It follows from (3.17) that

DT ψ1 = −λ2f
(
T − ε

λ2
ψ

)
+ f

(
DT T − ε

λ2
DT ψ

)

= f
( − λ2 + λ1 − ε

λ2

)
T

= 0.

Similarly

DT ψ2 = DV ψ2 = 0,

dψ1(V ) = DV ψ1 = (2λ2 − λ1)fV.

The above relations imply that ψ1 reduces to a map of M1 in R
n+1. Whereas

ψ2 is a constant vector in R
n+1. Moreover, denoting by ∇1 the D2 component

of ∇, we find that

DV dψ1(Ṽ ) = f(2λ2 − λ1)DV Ṽ

= f(2λ2 − λ1)
(
∇1

V Ṽ − εh(V, Ṽ )ψ + λ2h(V, Ṽ )T
)

= dψ1(∇1
V Ṽ ) + (2λ2 − λ1)λ2h(V, Ṽ )ψ1.

Hence ψ1 can be interpreted as a centroaffine immersion contained in an n-
dimensional vector subspace of R

n+1 with induced connection ∇1 and affine
metric

h1 = λ2(2λ2 − λ1)h. (3.18)

As ψ2 is transversal to the immersion ψ1, we may assume by a linear
transformation that ψ1 lies in the space spanned by the first n coordinates of
R

n+1, whereas the constant vector ψ2 lies in the direction of the last coordinate.
Solving (3.17) for the immersion ψ, we have

ψ =
(

euψ1, e
λ1−λ2

λ2
u
ψ2

)

.

From Proposition 3.2 we see that ψ is given as the Calabi product of the
immersion ψ1 and a point. Moreover, from (3.18), we know that ψ1 is a locally
strongly convex centroaffine hypersurface.

This completes the proof of Theorem 3.3. �

Similarly, if M in Theorem 3.3 is assumed additionally having parallel
cubic form, then as deriving Theorem 4 in [11], we can prove the following
theorem.
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Theorem 3.4. Let ψ : Mn → R
n+1 be a locally strongly convex centroaffine

hypersurface. Assume that ∇̂K = 0 and there exist h-orthogonal distributions
D1 (of dimension 1, spanned by a unit vector field T ) and D2 (of dimension
n − 1) such that

K(T, T ) = λ1T, K(T, V ) = λ2V, ∀V ∈ D2; λ1 �= 2λ2. (3.19)

Then ψ : Mn → R
n+1 can be locally decomposed as the Calabi product of a

locally strongly convex centroaffine hypersurface ψ1 : Mn−1
1 → R

n with parallel
cubic form and a point.

4. Elementary Discussions in Terms of a Typical Basis

In this section, we consider an n-dimensional (n ≥ 2) locally strongly convex
centroaffine hypersurface Mn in R

n+1 with ∇̂C = 0 and we choose ε such that
the centroaffine metric h is positive definite. Our method here follows closely
that of [10,12].

Since ∇̂C = 0 implies that h(C,C) is constant, there are two cases.
First, if h(C,C) = 0, as h being positive definite we have C = 0 and Mn is
an open part of a hyperquadric which is centered at the origin. If otherwise,
h(C,C) �= 0, then C never vanishes. We assume this for the remainder of this
section.

4.1. The Construction of the Typical Basis

Let p ∈ M and UMp = {u ∈ TpM | h(u, u) = 1}. We define a function on UMp

by f(u) = h(Kuu, u). Let e1 be an element of UMp at which the function f(u)
attains an absolute maximum. The following lemma about the construction of
the typical basis can be proved totally similar to that of [10] (see also [22] for
its earlier version).

Lemma 4.1 (see p. 191 of [10]). There exists an orthonormal basis {e1, . . . , en}
of TpM satisfying:

(i) Ke1ei = λiei, for i = 1, . . . , n, where λ1 (λ1 > 0) is the maximum of f .
Moreover, for i ≥ 2, the value of λi satisfies

(λ1 − 2λi)(ε − λ1λi + λ2
i ) = 0. (4.1)

(ii) for i ≥ 2, if λ1 = 2λi, then f(ei) = 0; if λ1 �= 2λi, then λ2
1 − 4ε > 0 and

λi = μ := 1
2 (λ1 −

√
λ2
1 − 4ε).

According to Lemma 4.1, for a locally strongly convex centroaffine hyper-
surface with parallel cubic form, we have to deal with the following (n + 1)-
cases:

Case C1. λ2
1 − 4ε > 0 and λ2 = · · · = λn = μ.

Case Cm. λ2
1 − 4ε > 0 and for some m (2 ≤ m ≤ n − 1),

λ2 = · · · = λm = 1
2λ1, λm+1 = · · · = λn = μ.
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Case Cn. λ2
1 − 4ε �= 0 and λ2 = · · · = λn = 1

2λ1.
Case B. λ2

1 − 4ε = 0 and λ2 = · · · = λn = 1
2λ1.

In sequel of this paper, we are going to discuss these cases separately.

4.2. The Settlement of the Cases C1 and Cn

First of all, about Case C1, we have the following

Theorem 4.1. If Case C1 occurs, then Mn can be locally decomposed as the
Calabi product of an (n − 1)-dimensional locally strongly convex centroaffine
hypersurface in R

n with parallel cubic form and a point.

Proof. In Case C1, the difference tensor takes the following form:

K(e1, e1) = λ1e1, K(e1, ei) = μei, i = 2, . . . , n.

By parallel translation along geodesics (with respect to ∇̂) through p,
we extend {e1, . . . , en} to obtain a local h-orthonormal basis denoted by
{E1, . . . , En}. Then

K(E1, E1) = λ1E1, K(E1, Ei) = μEi, i = 2, . . . , n, λ1 �= 2μ,

where both λ1 and μ are defined in Lemma 4.1. Applying Theorem 3.4, we con-
clude that Mn can be decomposed as the Calabi product of a locally strongly
convex centroaffine hypersurface with parallel cubic form and a point. �
Theorem 4.2. Case Cn does not occur.

Proof. Suppose on the contrary that Case Cn does occur. From (ii) of Lemma
4.1, we have f(v) = 0 for any v ∈ span {e2, . . . , en}. Then, by polarization, we
can show that

h(Kei
ej , ek) = 0, 2 ≤ i, j, k ≤ n. (4.2)

Then, for any unit vector v ∈ span {e2, . . . , en}, we have

Ke1e1 = λ1e1, Ke1v = 1
2λ1v, Kvv = 1

2λ1e1.

Accordingly, by taking X = e1, Y = Z = U = v in (2.5), we will get λ1 = 0.
This contradiction completes the proof of Theorem 4.2. �
4.3. Intermediary Cases {Cm}2≤m≤n−1 and an Isotropic Mapping L

Now, we consider the cases {Cm}2≤m≤n−1. In these cases, we denote by D2

and D3 the two subspaces of TpM :

D2 = span{e2, . . . , em} and D3 = span{em+1, . . . , en}.

First of all, we have the following

Lemma 4.2. Associated with the direct sum decomposition TpM = D1 ⊕ D2 ⊕
D3, where D1 = span{e1}, there hold the relations:

(i) Ke1v = 1
2λ1v, for any v ∈ D2; Ke1w = μw, for any w ∈ D3.

(ii) Kv1v2 − 1
2λ1h(v1, v2)e1 ∈ D3, for any v1, v2 ∈ D2.

(iii) Kvw ∈ D2, for any v ∈ D2, w ∈ D3.
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Proof. By definition we have (i). The claim (ii) follows from (ii) of Lemma
4.1 or directly (4.2). In order to prove the third claim, we take X = v ∈ D2,
Y = w ∈ D3 and Z = U = e1 in (2.5) to obtain that

λ1R̂(v, w)e1 = 2K(R̂(v, w)e1, e1).

Thus we have R̂(v, w)e1 ∈ D2.
On the other hand, a direct calculation by (2.3) gives

R̂(v, w)e1 = −KvKwe1 + KwKve1 =
(
1
2λ1 − μ

)
Kvw.

Therefore, as μ �= 1
2λ1, combining with the preceding result we get Kvw ∈ D2.

�

With the remarkable conclusions of Lemma 4.2, similar to that in [12],
we can now introduce a bilinear map L : D2 × D2 → D3, defined by

L(v1, v2) := Kv1v2 − 1
2λ1h(v1, v2)e1, v1, v2 ∈ D2. (4.3)

The following lemmas show that the operator L enjoys remarkable prop-
erties and it becomes an important tool for exploring information of the dif-
ference tensor. As we have λ2

1 − 4ε > 0, for simplicity, from now on we denote
η := 1

2

√
λ2
1 − 4ε.

Lemma 4.3. The bilinear map L is isotropic in the sense that

h(L(v, v), L(v, v)) = 1
2λ1ηh(v, v)2, ∀ v ∈ D2. (4.4)

Moreover, linearizing (4.4), it follows for arbitrary v1, v2, v3, v4 ∈ D2 that

h(L(v1, v2), L(v3, v4)) + h(L(v1, v3), L(v2, v4)) + h(L(v1, v4), L(v2, v3))

= 1
2λ1η(h(v1, v2)h(v3, v4) + h(v1, v3)h(v2, v4) + h(v1, v4)h(v2, v3)). (4.5)

Proof. We use (2.5) and take X = e1 and Y = v1, Z = v2, U = v3 in D2. By
using (2.3) and the definition of L, it follows immediately that

K(L(v1, v2), v3) + K(L(v1, v3), v2) + K(L(v2, v3), v1)

= 1
2λ1η(h(v1, v2)v3 + h(v1, v3)v2 + h(v2, v3)v1). (4.6)

Taking the product of (4.6) with v4 ∈ D2, we can obtain (4.5). Finally, we
choose v1 = v2 = v3 = v4 = v in (4.5), then we get (4.4). �

Since L : D2 × D2 → D3 is isotropic, we see from (4.4) that, if dim D2 ≥
1, then the image space of L has positive dimension, i.e. dim (ImL) ≥ 1.
Moreover, the following well-known properties hold.

Lemma 4.4 (cf. [10,12]). If dim D2 ≥ 1, for orthonormal vectors v1, v2, v3 and
v4 ∈ D2, there hold

h(L(v1, v1), L(v1, v2)) = 0, (4.7)
h(L(v1, v1), L(v2, v2)) + 2h(L(v1, v2), L(v1, v2)) = 1

2λ1η, (4.8)
h(L(v1, v1), L(v2, v3)) + 2h(L(v1, v2), L(v1, v3)) = 0, (4.9)
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h(L(v1, v2), L(v3, v4)) + h(L(v1, v3), L(v2, v4))

+ h(L(v1, v4), L(v2, v3)) = 0. (4.10)

Lemma 4.5. In Cases {Cm}2≤m≤n−1, if it occurs that Im L �= D3, then for any
v1, v2 ∈ D2 and w ∈ D3 with w ⊥ Im L, we have

K(L(v1, v2), w) = ημh(v1, v2)w. (4.11)

Proof. For every v ∈ D2 and w ⊥ Im L, we apply (iii) of Lemma 4.2 and (2.3)
to obtain

K(v, w) =
m∑

i=2

h(K(v, w), ei)ei =
m∑

i=2

h(K(v, ei), w)ei

=
m∑

i=2

h(L(v, ei), w)ei = 0,

R̂(e1, v)w = −K(K(v, w), e1) + K(v,K(e1, w)) = 0.

Then, for v1, v2 and w as in the assumptions, the following equation

R̂(e1, v1)K(v2, w) = K(R̂(e1, v1)v2, w) + K(v2, R̂(e1, v1)w)

becomes equivalent to K(R̂(e1, v1)v2, w) = 0. On the other hand, direct cal-
culation gives that

R̂(e1, v1)v2 = εh(v1, v2)e1 − K(e1,K(v1, v2)) + K(v1,K(e1, v2))

= εh(v1, v2)e1 − K(e1, L(v1, v2) + 1
2λ1h(v1, v2)e1)

+ 1
2λ1(L(v1, v2) + 1

2λ1h(v1, v2)e1)

= −η2h(v1, v2)e1 + ηL(v1, v2).

Then (4.11) immediately follows. �

Lemma 4.6. In Cases {Cm}2≤m≤n−1, let v1, v2, v3, v4 ∈ D2 and {u1, . . . , um−1}
be an orthonormal basis of D2, then we have

K(L(v1, v2), L(v3, v4)) = μh(L(v1, v2), L(v3, v4))e1 + μηh(v1, v2)L(v3, v4)

+
m−1∑

i=1

h(L(v1, ui), L(v3, v4))L(ui, v2)

+
m−1∑

i=1

h(L(v2, ui), L(v3, v4))L(ui, v1). (4.12)

Proof. By (2.5), we have, for v1, v2, v3, v4 ∈ D2, that

R̂(e1, v1)K(v2, L(v3, v4))

= K(R̂(e1, v1)v2, L(v3, v4)) + K(v2, R̂(e1, v1)L(v3, v4)). (4.13)
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Applying (2.3) for v1, v2 ∈ D2, we obtain that

R̂(e1, v1)v2 = −η2h(v1, v2)e1 + ηL(v1, v2). (4.14)

Similarly, for v ∈ D2 and w ∈ D3, we have that

R̂(e1, v)w = −ηK(v, w). (4.15)

By Lemma 4.2, K(v2, L(v3, v4)) ∈ D2 and we can write

K(v2, L(v3, v4)) =
m−1∑

i=1

h(L(v2, ui), L(v3, v4))ui. (4.16)

Now, we can compute both sides of (4.13) to obtain

LHS = −η2h(L(v1, v2), L(v3, v4))e1 + η

m−1∑

i=1

h(L(v2, ui), L(v3, v4))L(ui, v1),

RHS = −μη2h(v1, v2)L(v3, v4) + ηK(L(v1, v2), L(v3, v4))

− 1
2λ1ηh(L(v1, v2), L(v3, v4))e1

− η

m−1∑

i=1

h(L(v1, ui), L(v3, v4))L(ui, v2).

From these computations we immediately get (4.12). �

We note that (4.12) has very important consequences which will be used
in sequel sections. For example, we have

Lemma 4.7. For Case Cm with m ≥ 3, let {u1, . . . , um−1} be an orthonormal
basis of D2, then for p �= j, we have

0 =
(
η(η + 1

2λ1) − 4h(L(uj , up), L(uj , up))
)
L(uj , up)

−
∑

i�=p

4h(L(uj , ui), L(uj , up))L(ui, uj). (4.17)

In particular, if L(u1, u2) �= 0 and L(u1, ui) is orthogonal to L(u1, u2) for all
i �= 2, then

h(L(u1, u2), L(u1, u2)) = 1
4η(η + 1

2λ1) =: τ. (4.18)
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Proof. By (4.12), interchanging the couples of indices {1, 2} and {3, 4} we find
the following condition:

0 = μη
(
h(v1, v2)L(v3, v4) − h(v3, v4)L(v1, v2)

)

+
m−1∑

i=1

h(L(v1, ui), L(v3, v4))L(ui, v2)

+
m−1∑

i=1

h(L(v2, ui), L(v3, v4))L(ui, v1)

−
m−1∑

i=1

h(L(v3, ui), L(v1, v2))L(ui, v4)

−
m−1∑

i=1

h(L(v4, ui), L(v1, v2))L(ui, v3). (4.19)

If we take v2 = v3 = v4 = uj and v1 = up with j �= p, then by using also
the isotropy condition, (4.19) reduces to (4.17). Taking j = 1 and p = 2 in
(4.17), we obtain (4.18). �
4.4. The Mapping Pv : D2 → D2 with Unit Vector v ∈ D2

We now define for any given unit vector v ∈ D2 a linear map Pv : D2 → D2

by

Pv ṽ = KvL(v, ṽ), ∀ ṽ ∈ D2. (4.20)

It is easily seen that Pv is a symmetric linear operator satisfying

h(Pv ṽ, v′) = h(L(v, ṽ), L(v, v′)) = h(Pvv′, ṽ), (4.21)

for any ṽ, v′ ∈ D2. Moreover, we have

Lemma 4.8. For any unit vector v ∈ D2, the operator Pv : D2 → D2 has
σ = 1

2λ1η as an eigenvalue with eigenvector v. In the orthogonal complement
{v}⊥ of {v} in D2 the operator Pv has at most two eigenvalues, namely 0 and
τ , defined as in (4.18).

Proof. By (4.4), we have

h(Pvv, v) = h(L(v, v), L(v, v)) = 1
2λ1η. (4.22)

Taking v′ ⊥ v, we get

h(Pvv, v′) = h(L(v, v′), L(v, v)) = 0. (4.23)

(4.22) and (4.23) imply that Pvv = 1
2λ1ηv.

Next, we take an orthonormal basis {u1, . . . , um−1} of D2 consisting of
eigenvectors of Pv such that Pvui = σiui, i = 1, . . . ,m − 1, with u1 = v and
σ1 = σ. We take the inner product of (4.17) with L(u1, up) for j = 1 and any
p ≥ 2. We obtain that

h(L(u1, up), L(u1, up))
(
τ − h(L(u1, up), L(u1, up))

)
= 0, p ≥ 2. (4.24)
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Here, to derive (4.24), we have used that

h(L(u1, up), L(u1, ui)) = h(up, Pu1ui) = 0, i �= p.

From (4.24), we immediately get the remaining assertion. �

In the following we denote by Vv(0) and Vv(τ) the eigenspaces of Pv (in
the orthogonal complement of {v}) with respect to the eigenvalues 0 and τ ,
respectively. Note that in exceptional cases it can happen that σ = τ .

Lemma 4.9. Let v, u ∈ D2 be two unit orthogonal vectors. Then the following
statements are equivalent:

(i) u ∈ Vv(0).
(ii) L(u, v) = 0.
(iii) L(u, u) = L(v, v).
(iv) v ∈ Vu(0).
Moreover, any of the previous statements implies that
(v) Pv = Pu on {u, v}⊥.

Proof. As h(Pvu, u) = h(L(v, u), L(v, u)) = h(Puv, v), the equivalence of (i),
(ii) and (iv) follows immediately. As u and v are orthogonal, (4.4) and (4.8)
imply that

h(L(v, v) − L(u, u), L(v, v) − L(u, u)) = 4h(L(v, u), L(v, u)).

It follows that (ii) is equivalent to (iii).
Now we assume that (i), (ii), (iii) and (iv) are satisfied. In order to prove

(v), we see that the space spanned by {u, v} is invariant by Pv and Pu, also
its orthogonal complement is invariant. By taking v1, v2 ∈ {u, v}⊥ and using
(4.6), we find

h(v1, Pvv2) = h(L(v, v1), L(v, v2))

= − 1
2h(L(v, v), L(v1, v2)) + 1

4λ1ηh(v1, v2)

= − 1
2h(L(u, u), L(v1, v2)) + 1

4λ1ηh(v1, v2)

= h(v1, Puv2).

This completes the proof. �

Lemma 4.10. Let v, ṽ ∈ D2 be two unit orthogonal vectors, then

h(L(v, ṽ), L(v, ṽ)) = τ (4.25)

holds if and only if ṽ ∈ Vv(τ). Moreover, if we assume u ∈ Vv(0) and the
equality in (4.25) holds, then u ∈ Vṽ(τ).

Proof. If ṽ ∈ Vv(τ), then h(L(v, ṽ), L(v, ṽ)) = h(ṽ, Pv ṽ) = τ .
Conversely, if h(L(v, ṽ), L(v, ṽ)) = τ , we should consider the following

three cases:
(i) Vv(0) = ∅. From Lemma 4.8, it is easily seen that ṽ ∈ Vv(τ).
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(ii) Vv(τ) = ∅. In this case, Lemma 4.8 implies that ṽ ∈ Vv(0). By Lemma
4.9, we have h(L(v, ṽ), L(v, ṽ)) = 0. This is a contradiction.

(iii) Vv(0) �= ∅ and Vv(τ) �= ∅. We can write

ṽ = cos θv0 + sin θv1, h(v0, v0) = h(v1, v1) = 1,

where v0 ∈ Vv(0) and v1 ∈ Vv(τ). Then we get

τ = h(L(v, ṽ), L(v, ṽ)) = sin2 θτ,

which means that sin θ = ±1 and cos θ = 0. Therefore, ṽ ∈ Vv(τ).
Taking unit vector u ∈ Vv(0), we have L(u, u) = L(v, v). Consequently,

h(L(ṽ, u), L(ṽ, u))

= − 1
2h(L(ṽ, ṽ), L(u, u)) + 1

4λ1η

= − 1
2h(L(v, v), L(ṽ, ṽ)) + 1

4λ1η

= h(v, Pṽv) = τ.

Applying the first assertion of Lemma 4.10, we have u ∈ Vṽ(τ). �

Lemma 4.11. Let v1, v2, v3 ∈ D2 be orthonormal vectors satisfying v1, v2 ∈
Vv3(τ), then for any vector v ∈ D2, we have h(L(v1, v2), L(v, v3)) = 0.

Proof. Using the linearity of the assertion with v, we may assume that v is an
eigenvector of Pv3 . Let {u1, . . . , um−1} be an orthonormal basis of D2 consisting
of eigenvectors of Pv3 such that u1 = v1, u2 = v2 and u3 = v3. We now use
(4.19) for v3 = v4 to obtain

0 = − μηL(v1, v2) +
m−1∑

i=1

h(L(v1, ui), L(v3, v3))L(ui, v2)

+
m−1∑

i=1

h(L(v2, ui), L(v3, v3))L(ui, v1)

− 2
m−1∑

i=1

h(L(v3, ui), L(v1, v2))L(ui, v3). (4.26)

On the other hand, from (4.7)–(4.9), we have

h(L(v1, ui), L(v3, v3)) = h(L(v2, uj), L(v3, v3)) = 0, i �= 1, j �= 2,

h(L(v1, v1), L(v3, v3)) = h(L(v2, v2), L(v3, v3)) = 1
2λ1η − 2τ.

Inserting the above into (4.26), we obtain

0 =
m−1∑

i=1

h(L(v3, ui), L(v1, v2))L(ui, v3). (4.27)
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Since h(L(ui, v3), L(uj , v3)) = h(Pv3ui, uj) = 0 if i �= j, the equation
(4.27) implies that h(L(v3, ui), L(v1, v2)) = 0 holds for all ui /∈ Vv3(0). Com-
bining with Lemma 4.9, this immediately shows that for any vector v ∈ D2,
we have h(L(v1, v2), L(v, v3)) = 0. �

4.5. Direct Sum Decomposition for D2

For our purpose, a crucial matter is to introduce a direct sum decomposition
for D2 based on the preceding Lemmas. First, pick any unit vector v1 ∈ D2

and recall that τ = 1
4η(η + 1

2λ1), then by Lemma 4.8, we have a direct sum
decomposition for D2:

D2 = {v1} ⊕ Vv1(0) ⊕ Vv1(τ),

where, here and later on, we denote also by {·} the vector space spanned by
its elements. If Vv1(τ) �= ∅, we take an arbitrary unit vector v2 ∈ Vv1(τ). Then
by Lemma 4.10 we have:

v1 ∈ Vv2(τ), Vv1(0) ⊂ Vv2(τ) and Vv2(0) ⊂ Vv1(τ).

From this we deduce that

D2 = {v1} ⊕ Vv1(0) ⊕ {v2} ⊕ Vv2(0) ⊕ (
Vv1(τ) ∩ Vv2(τ)

)
.

If Vv1(τ) ∩ Vv2(τ) �= ∅, we further pick a unit vector v3 ∈ Vv1(τ) ∩ Vv2(τ).
Then

D2 = {v3} ⊕ Vv3(0) ⊕ Vv3(τ),

and by Lemma 4.10 we have

v1, v2 ∈ Vv3(τ); Vv1(0), Vv2(0) ⊂ Vv3(τ).

It follows that
D2 = {v1} ⊕ Vv1(0) ⊕ {v2} ⊕ Vv2(0) ⊕ {v3} ⊕ Vv3(0)

⊕ (
Vv1(τ) ∩ Vv2(τ) ∩ Vv3(τ)

)
.

Considering that dim (D2) = m − 1 is finite, by induction, we get

Proposition 4.1. In Cases {Cm}2≤m≤n−1, there exists an integer k0 and unit
vectors v1, . . . , vk0 ∈ D2 such that

D2 = {v1} ⊕ Vv1(0) ⊕ · · · ⊕ {vk0} ⊕ Vvk0
(0). (4.28)

In what follows, we will study the decomposition (4.28) in more details.

Lemma 4.12. (i) For any unit vector u1 ∈ {v1} ⊕ Vv1(0), we have

{v1} ⊕ Vv1(0) = {u1} ⊕ Vu1(0).

(ii) For any orthonormal vectors u1, ũ1 ∈ {v1}⊕Vv1(0), we have L(u1, ũ1) =
0.
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Proof. (i) We first assume the special case that u1 ⊥ v1. Then we have
u1 ∈ Vv1(0) and thus L(u1, v1) = 0, hence v1 ∈ Vu1(0). Let u ∈ Vv1(0) and
write u = x1u1+u′ with u′ ⊥ u1. By (v) in Lemma 4.9 we have Pu1u

′ = Pv1u
′ =

Pv1(u − x1u1) = 0. Therefore, u′ ∈ Vu1(0) and {v1} ⊕ Vv1(0) ⊂ {u1} ⊕ Vu1(0).
Similarly, we obtain {u1} ⊕ Vu1(0) ⊂ {v1} ⊕ Vv1(0).

Next we consider the general case in three subcases. (a) If Vv1(0) = ∅,
there is nothing to prove. (b) If dim (Vv1(0)) ≥ 2, we can take a vector ũ ∈
Vv1(0) which is orthogonal to both u1 and v1. Applying twice the previous
result then completes the proof. (c) If dim (Vv1(0)) = 1, there exists v0 ∈ Vv1(0)
such that Vv1(0) = {v0}. Denote u1 = cos θv1 + sin θv0. By Lemma 4.9, we see
that

L(cos θv1 + sin θv0, cos θv0 − sin θv1) = 0,

thus cos θ v0 − sin θ v1 ∈ Vu1(0). Therefore, {v1} ⊕ Vv1(0) ⊂ {u1} ⊕ Vu1(0). If
{v1}⊕Vv1(0) � {u1}⊕Vu1(0), we have a unit vector x ∈ {u1}⊕Vu1(0) which is
orthogonal to both u1 and v1. As {v1}⊕Vv1(0) = {x}⊕Vx(0) = {u1}⊕Vu1(0),
we get a contradiction.

(ii) From (i) we have that {v1}⊕Vv1(0) = {u1}⊕Vu1(0). As u1 and ũ1 are
orthogonal, this implies that ũ1 ∈ Vu1(0). Consequently, we have L(u1, ũ1) = 0.

�

Lemma 4.13. In the decomposition (4.28), if we pick a unit vector u2 ∈ Vv2(0),
then there exists a unique vector u1 ∈ {v1} ⊕ Vv1(0) such that L(u1, v2) =
L(v1, u2). Moreover, u1 is a unit vector in Vv1(0) and L(v1, v2) = −L(u1, u2).

Proof. Let ul
1, . . . , u

l
pl

be an orthonormal basis of Vvl
(0), 1 ≤ l ≤ k0, such that

u2
1 = u2. Then

{v1, . . . , vk0 , u
1
1, . . . , u

1
p1

, . . . , uk0
1 , . . . , uk0

pk0
} =: {ũi}1≤i≤m−1

forms an orthonormal basis of D2. Now we use (4.12) with the vectors
v2, u2, v1, v2. As by Lemma 4.9 L(v2, u2) = 0 and by our decomposition
v1 ∈ Vv2(τ), we obtain

0 = K(L(v2, u2), L(v1, v2))

= μh(L(v2, u2), L(v1, v2))e1 +
m−1∑

i=1

h(L(v2, ũi), L(v1, v2))L(ũi, u2)

+
m−1∑

i=1

h(L(u2, ũi), L(v1, v2))L(v2, ũi)

= τL(v1, u2) +
m−1∑

i=1

h(L(u2, ũi), L(v1, v2))L(v2, ũi).
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Let us take

u1 = −1
τ

m−1∑

i=1

h(L(u2, ũi), L(v1, v2))ũi.

By Lemma 4.11, we have

h(L(u2, ũi), L(v1, v2)) = 0, ũi /∈ {v1} ⊕ Vv1(0) ⊕ {v2} ⊕ Vv2(0). (4.29)

Applying (4.7) and Lemma 4.9, we get

h(L(u2, ũi), L(v1, v2)) = 0, ũi ∈ {v2} ⊕ Vv2(0). (4.30)

Moreover, note that v2 ∈ Vv1(τ), thus we have

h(L(u2, v1), L(v1, v2)) = 0. (4.31)

It follows from (4.29), (4.30) and (4.31) that u1 ∈ Vv1(0).
In order to prove the uniqueness of u1 ∈ {v1}⊕Vv1(0), suppose that ũ1 ∈

{v1}⊕Vv1(0) such that L(ũ1, v2) = L(v1, u2), then we have L(u1 − ũ1, v2) = 0.
It follows from Lemma 4.9 that u1 − ũ1 ∈ Vv2(0). On the other hand, we also
have u1 − ũ1 ∈ {v1} ⊕ Vv1(0); so we must have u1 = ũ1.

From the following fact

Vv1(0) ⊂ Vv2(τ), Vv2(0) ⊂ Vv1(τ)

we have h(u1, u1)τ = h(L(u1, v2), L(u1, v2)) = h(L(v1, u2), L(v1, u2)) = τ .
Hence, u1 is a unit vector.

In order to prove the fact that L(u1, v2) = L(v1, u2) and L(v1, v2) =
−L(u1, u2) are equivalent, we use (4.5) and the Cauchy-Schwarz inequality. In
fact, if we first suppose L(u1, v2) = L(v1, u2), then applying (4.5) we get

h(L(v1, v2),−L(u1, u2)) = h(L(v1, u2), L(v2, u1)) = h(L(v2, u1), L(v2, u1)) = τ.

On the other hand, Lemma 4.12 implies that v1, u1 ∈ Vv2(τ) = Vu2(τ) and
thus

h(L(v1, v2), L(v1, v2)) = h(L(u1, u2), L(u1, u2)) = τ.

Then, by Cauchy-Schwarz inequality we immediately have L(v1, v2) =
−L(u1, u2).

The converse can be proved in a similar way. �

To state the next lemma, we denote Vl = {vl} ⊕ Vvl
(0) in the decompo-

sition (4.28) for each 1 ≤ l ≤ k0. Then we have

Lemma 4.14. With respect to the decomposition (4.28), the following hold.

(1) For any unit vector a ∈ Vj,

K(L(a, a), L(a, a)) = 1
2λ1μηe1 + η(μ + λ1)L(a, a). (4.32)
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(2) For j �= l and any unit vector a ∈ Vj , b ∈ Vl,

K(L(a, a), L(a, b)) = 1
2η(μ + λ1)L(a, b), (4.33)

K(L(a, a), L(b, b)) = 1
2ημ2e1 + ημ(L(a, a) + L(b, b)), (4.34)

K(L(a, b), L(a, b)) = μτe1 + τ(L(a, a) + L(b, b)). (4.35)

(3) For distinct j, l, q, s and any unit vector a ∈ Vj , b, b′ ∈ Vl, c ∈ Vq, d ∈
Vs, where b and b′ are orthogonal, the following relations hold

K(L(a, b), L(a, c)) = τL(b, c), (4.36)

K(L(a, a), L(b, c)) = ημL(b, c), (4.37)

K(L(a, b), L(a, b′)) = 0, (4.38)

K(L(a, b), L(c, d)) = 0. (4.39)

(4) For distinct j, l, q and orthogonal unit vector a1, a2 ∈ Vj and unit vectors
b ∈ Vl, c ∈ Vq, it holds

K(L(a1, b), L(a2, c)) = τL(b, c′), (4.40)

where c′ ∈ Vq is the unique unit vector satisfying L(a1, c
′) = L(a2, c).

Proof. Take an orthonormal basis of D2 such that it consists of the orthonormal
basis of all Vl, 1 ≤ l ≤ k0, the assertions are direct consequences of Lemma
4.6. Take for example, from the fact h(L(a, b), L(a, c)) = h(Pab, c) = 0, eq.
(4.6) and Lemma 4.6, we immediately get (4.36). As another example, from
(4.36), Lemmas 4.12 and 4.13 we can get (4.40). �

Proposition 4.2. In the decomposition (4.28), if k0 = 1, then dim (Im L) = 1.
If k0 ≥ 2, then dim Vv1(0) = · · · = dim Vvk0

(0) and the dimension which we
denote by p can only be equal to 0, 1, 3 or 7.

Proof. If k0 = 1, from Lemmas 4.9 and 4.12 we see that L(v1, v1) is a basis
of the image Im L, so we have dim (Im L) = 1. As a direct consequence of
Lemma 4.13, for any j �= l, we can define a one-to-one linear map from Vvj

(0)
to Vvl

(0), which preserves the length of vectors. Hence Vvj
(0) and Vvl

(0) are
isomorphic and have the same dimension which we denote by p. To make the
following discussion meaningful, we now assume p ≥ 1.

Let {vl, u
l
1, . . . , u

l
p} be an orthonormal basis of Vl. For each j = 1, . . . , p,

Lemmas 4.12 and 4.13 show that we can define a linear map Tj : V1 → V1

such that, for any unit vector v, the image Tj(v) satisfies

L(v, u2
j ) = L(v2,Tj(v)). (4.41)

The linear map Tj : V1 → V1 has the following properties:
(P1) For any v ∈ V1, h(Tj(v),Tj(v)) = h(v, v), i.e., Tj preserves the length

of vectors.
(P2) For all v ∈ V1, we have Tj(v) ⊥ v.
(P3) T2

j = −id.
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(P4) For any j �= l, we have h(Tj(v),Tl(v)) = 0 for all v ∈ V1.

(P1) and (P2) can be easily seen from Lemma 4.13 and the definition of
Tj(v). We now verify (P3) and (P4). For any unit vector v ∈ V1, we have

L(v2,T2
j (v)) = L(u2

j ,Tj(v)). (4.42)

Using the fact {Tj(v)}⊕VTj(v)(0) = V1 and u2
j ∈ Vv2(0) ⊂ VTj(v)(τ), we have

h(L(u2
j ,Tj(v)), L(u2

j ,Tj(v))) = h(L(v2,Tj(v)), L(v2,Tj(v)))

= h(L(v, v2), L(v, v2)) = τ.

Since v, Tj(v), v2, u2
j are orthonormal vectors, by (4.10), (4.41) and L(v2, u2

j )=
0, we see that

0 = h(L(v, v2), L(u2
j ,Tj(v))) + h(L(v,Tj(v)), L(v2, u2

j ))

+ h(L(v, u2
j ), L(Tj(v), v2))

= h(L(v, v2), L(u2
j , Tj(v))) + h(L(v2,Tj(v)), L(v2,Tj(v))).

Applying the Cauchy-Schwarz inequality we deduce

L(u2
j ,Tj(v)) = −L(v, v2). (4.43)

Combining (4.42) and (4.43), we get L(v2,T2
j (v) + v) = 0, which implies

that T2
j (v)+v ∈ Vv2(0). As T2

j (v)+v ∈ V1 ⊂ Vv2(τ), it follows that T2
j (v) = −v

for a unit vector v and then by linearity for all v ∈ V1, as claimed by (P3).
To verify (P4), we note that, if j �= l, and Tj(v), Tl(v) ∈ Vv(0), then by

definition

L(v2,Tj(v)) = L(v, u2
j ) ⊥ L(v, u2

l ) = L(v2,Tl(v)).

If we assume Tl(v) = aTj(v) + x, where x ⊥ Tj(v), then

0 = h(L(v2,Tj(v)), L(v2,Tl(v)))

= h(L(v2,Tj(v)), aL(v2,Tj(v)) + L(v2, x))
= aτ.

Hence, a = 0 and Tl(v) ⊥ Tj(v).
We look at the unit hypersphere Sp(1) ⊂ V1, the above properties (P1)–

(P4) show that at v ∈ Sp(1) one has

TvS
p(1) = span {T1(v), . . . ,Tp(v)}.

Hence, by the properties (P1)–(P4), the p-dimensional sphere Sp(1) is
parallelizable. Then, according to Bott and Milnor [3] and Kervaire [13], the
dimension p can only be equal to 1, 3 or 7. �
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5. The Exceptional Case B

In this section, we shall study an n-dimensional (n ≥ 2) locally strongly convex
centroaffine hypersurface Mn which has parallel cubic form, such that Case B
occurs. The main result of this section is the following theorem.

Theorem 5.1. Let x : Mn → R
n+1 (n ≥ 2) be a locally strongly convex cen-

troaffine hypersurface which has parallel cubic form. If Case B occurs, then
Mn is locally centroaffinely equivalent to the hypersurface:

xn+1 = 1
2x1

n∑

k=2

x2
k + x1 ln x1. (5.1)

To begin with, we prove the following lemma.

Lemma 5.1. In Case B, there exists an orthonormal basis {e1, . . . , en} of TpM
such that the difference tensor K satisfies

Ke1e1 = 2e1, Ke1ei = ei, Kei
ej = δije1, i, j = 2, . . . , n. (5.2)

Proof. Let {e1, . . . , en} be the orthonormal basis determined in Lemma 4.1.
By assumption, λ2

1 − 4ε = 0, we have

ε = 1, λ1 = 2. (5.3)

Similar to the proof of (4.2), we now have

h(Kei
ej , ek) = 0, 2 ≤ i, j, k ≤ n. (5.4)

From these results we easily get the assertion of Lemma 5.1. �

Next, as an extension of Lemma 5.1 we can prove the following lemma.

Lemma 5.2. If Case B occurs, then around p there exists a local orthonormal
basis {E1, . . . , En} such that ∇̂XE1 = 0 for all X ∈ TMn, and

KE1E1 = 2E1, KE1Ei = Ei, KEi
Ej = δijE1, i, j = 2, . . . , n. (5.5)

Moreover, (Mn, h) is locally isometric to the Euclidean space R
n.

Proof. Let {e1, . . . , en} be the orthonormal basis of TpM , given by Lemma 5.1.
By parallel translation of {ei}n

i=1 along geodesics through p, we can obtain an
h-orthonormal basis, denoted by {E1, . . . , En}, in a normal neighbourhood
around p. Since ∇̂K = 0, the difference tensor K takes the form of (5.5).

It follows from (2.3), (5.3) and (5.5) that (Mn, h) satisfies R̂(Ei, Ej)Ej =
0 for any i, j, i.e., (Mn, h) is flat and it is locally isometric to the Euclidean
space R

n.
To show that ∇̂XE1 = 0 for any X ∈ TMn, we denote ∇̂Ej

Ei =
∑

k Γk
ijEk, where Γk

ij = −Γi
kj , 1 ≤ i, j, k ≤ n. By using ∇̂K = 0 and (5.5),

straightforward calculations of the equations

0 = (∇̂Ei
K)(Ei, Ei) = (∇̂E1K)(Ei, Ei), i �= 1
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give that Γ1
ij = 0 for 1 ≤ i, j ≤ n. It follows that

∇̂Ei
E1 = 0, 1 ≤ i ≤ n. (5.6)

This completes the proof of Lemma 5.2. �

Now we will prove Theorem 5.1.

Proof of Theorem 5.1. As proved in Lemma 5.2, ∇̂XE1 = 0 and (M,h) is
locally isometric to R

n, we may choose local coordinates (u1, u2, . . . , un) on
Mn such that the metric h has the following expression:

h = du2
1 + du2

2 + du2
3 + · · · + du2

n, (5.7)

and that ∂
∂u1

= E1. It follows from (5.7) that

∇̂∂ui
∂uj = 0, 1 ≤ i, j ≤ n, (5.8)

where, and also later on, we use the notations ∂uk = ∂
∂uk

, k = 1, . . . , n.
By using (5.5), we get that

K∂u1X = X, KXY = h(X,Y )∂u1, X, Y ∈ {∂u1}⊥. (5.9)

By using (5.5), (5.7) and (5.9), we get that
{

K∂u1∂u1 = 2∂u1, K∂u1∂uk = ∂uk, 2 ≤ k ≤ n,

K∂uk
∂uj = δkj∂u1, 2 ≤ j, k ≤ n.

(5.10)

Write x = x(u1, . . . , un) ∈ R
n+1. From (5.10), (5.8), and using (1.1) with

the fact ε = 1, we have

xu1u1 = 2xu1 − x, (5.11)
xu1uk

= xuk
, 2 ≤ k ≤ n, (5.12)

xukuk
= xu1 − x, 2 ≤ k ≤ n, (5.13)

xukuj
= 0, 2 ≤ j, k ≤ n and j �= k. (5.14)

First of all, we can solve (5.11) to obtain that

x = P1(u2, . . . , un)eu1 + P2(u2, . . . , un)u1e
u1 , (5.15)

where P1(u2, . . . , un) and P2(u2, . . . , un) are R
n+1-valued functions.

Inserting (5.15) into (5.12), we obtain ∂P2
∂uk

= 0, 2 ≤ k ≤ n, which shows
that P2(u2, . . . , un) is a constant vector denoted by A1. Hence, we have

x = P1(u2, . . . , un)eu1 + A1u1e
u1 . (5.16)

Putting (5.16) into (5.13) for k = 2, we further obtain that
∂2P1

∂u2∂u2
= A1. (5.17)

Thus, we can write

x =
(

1
2u2

2A1 + P3(u3, . . . , un)u2 + P4(u3, . . . , un)
)
eu1 + u1e

u1A1. (5.18)
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From (5.14) and (5.18), we can derive that P3(u3, . . . , un) is a constant
vector denoted by A2. Hence, we have

x =
(
1
2u2

2A1 + u2A2 + P4(u3, . . . , un)
)
eu1 + u1e

u1A1.

If we carry out such procedure by induction for other uk with k ≥ 3, we
can finally obtain constant vectors {A1, A2, . . . , An+1} such that x(u1, . . . , un)
has the following expression:

x =
(

1
2

n∑

k=2

u2
k + u1

)
eu1A1 +

n∑

k=2

ukeu1Ak + eu1An+1. (5.19)

The nondegeneracy of x implies that it lies linearly full in R
n+1 and

thus A1, . . ., An+1 are linearly independent vectors. Thus, up to a centroaffine
transformation, x can be written as

x =
(
eu1 , u2e

u1 , . . . , uneu1 ,
(
1
2

n∑

k=2

u2
k + u1

)
eu1

)
,

which is easily seen to be locally centroaffinely equivalent to the hypersurface
given in Theorem 5.1.

We have completed the proof of Theorem 5.1. �

6. Centroaffine Surfaces in R
3 with ∇̂C = 0

Although Theorem 1.1 gives a complete classification of locally strongly con-
vex centroaffine hypersurfaces in R

n+1 with parallel cubic form, its statement
involving the Calabi product constructions actually makes use of the induc-
tion procedure. Therefore, in order to guarantee the validity of such induction
procedure, we need first consider the lowest dimension case (i.e. n = 2). This
problem will be settled by the following theorem.

Theorem 6.1. Let x : M2 → R
3 be a locally strongly convex centroaffine surface

which has parallel cubic form. Then x is locally centroaffinely equivalent to one
of the following hypersurfaces:

(i) quadrics with C = 0;
(ii) xα1

1 xα2
2 xα3

3 = 1, where {αi} are real numbers which satisfy

αi > 0, i = 1, 2, 3; or α1 < 0, α2, α3 > 0, α1 + α2 + α3 < 0;

(iii) xα1
1 (x2

2 + x2
3)

α2 exp(α3 arctan x2
x3

) = 1, α1 < 0, α1 + 2α2 > 0;
(iv) x3 = x1(ln x1 − α2 ln x2), 0 < α2 < 1;
(v) x3 = 1

2x1
x2
2 + x1 ln x1,

where α1, α2, α3 are constants and (x1, x2, x3) is the coordinate of R
3.
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Remark 6.1. Centroaffine surfaces with parallel cubic form have been studied
in [19], where the authors made use of Theorem 1.3 in [17]. Comparing our
theorem with the result in [19], one can see that the surface (v) of Theorem 6.1
is missing in [19]. This appearance is because in [17] the authors only obtained
the classification of canonical centroaffine hypersurfaces for N(h) ≤ 1, hence
in [19] the conclusion for the case N(h) = 2 is unfortunately not correct stated.
Here, the fact that the surface (v) corresponds to n = 2, v = 3 and N(h) = 2
in corollary 1.1 should be emphasized.

In order to prove Theorem 6.1, we first notice that, for n = 2, it follows
from Theorem 5.1 that in Case B the surface M2 is centroaffinely equivalent
to the surface (v). Thus, taking into consideration of Theorem 4.2, we see that
what we need to consider is Case C1 with n = 2 in a more explicit way, rather
than like the sketchy statement of Theorem 4.1.

To begin with, we state the following lemma which is a direct consequence
of Lemma 4.1.

Lemma 6.1 (cf. Lemma 4.1). If Case C1 occurs, then there exists an orthonor-
mal basis {e1, e2} of TpM

2 such that the difference tensor K takes the following
form:

Ke1e1 = λ1e1, Ke1e2 = μe2, Ke2e2 = μe1 + a1e2,

ε − λ1μ + μ2 = 0, λ1 > 0, λ2
1 − 4ε > 0, λ1 > 2μ.

To prove Theorem 6.1, we also need the following lemma.

Lemma 6.2. If Case C1 occurs, then there exists a local orthonormal basis
{E1, E2} around p, such that the difference tensor takes the following form:

KE1E1 = λ1E1, KE1E2 = μE2, KE2E2 = μE1 + a1E2, (6.1)

ε − λ1μ + μ2 = 0, λ1 > 0, λ2
1 − 4ε > 0, λ1 > 2μ,

where λ1, μ, a1 are constant numbers and ∇̂Ei
Ej = 0, i, j = 1, 2. Moreover,

(M2, h) is locally isometric to the Euclidean space R
2.

Proof. Let {e1, e2} be the orthonormal basis of TpM
2 given by Lemma 6.1.

By parallel translation of {e1, e2} along geodesics (with respect to ∇̂) through
p, we can obtain an h-orthonormal basis, denoted by {E1, E2}, in a normal
neighbourhood around p such that, thanks to ∇̂K = 0, the difference tensor
K takes the form stated in (6.1).

First, from the calculation

0 = (∇̂Ei
K)(E1, E1) = λ1∇̂Ei

E1 − 2K(∇̂Ei
E1, E1), i = 1, 2,

and noting that ∇̂Ei
E1 is h-orthogonal to E1, we have ∇̂Ei

E1 = 0, i = 1, 2.
Next, by computation of 0 = h((∇̂E2K)(E1, E2), E1) we obtain that

h(∇̂E2E2, E1) = 0. (6.2)
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This, together with h(∇̂Ei
E2, E2) = 0 and h(∇̂E1E2, E1) = −h(∇̂E1E1, E2) =

0, we will obtain

∇̂Ei
Ej = 0, i, j = 1, 2. (6.3)

It follows that R̂(Ei, Ej)Ek = 0 and (M2, h) is locally isometric to the
Euclidean space R

2. �

Proof of Theorem 6.1. According to Lemma 6.2, we can choose local coordi-
nates (u1, u2) for M2 such that the centroaffine metric h has the following
expression:

h = du2
1 + du2

2, (6.4)

and Ei = ∂
∂ui

for i = 1, 2. It follows from (6.4) that

∇̂∂ui
∂uj = 0, 1 ≤ i, j ≤ 2. (6.5)

For x = x(u1, u2) ∈ R
3, using (6.1), (6.4), (6.5) and (1.1) we can obtain:

xu1u1 = λ1xu1 − εx, (6.6)

xu1u2 = μxu2 , (6.7)

xu2u2 = μxu1 + a1xu2 − εx. (6.8)

We first solve the equation (6.6) to obtain that

x = P1(u2) exp{(λ1 − μ)u1} + P2(u2) exp(μu1), (6.9)

where P1(u2) and P2(u2) are R
3-valued functions.

Inserting (6.9) into (6.7), we obtain ∂P1
∂u2

= 0, showing that P1(u2) is a
constant vector, denoted by A1. Hence, we have

x = exp{(λ1 − μ)u1}A1 + P2(u2) exp(μu1). (6.10)

Combining (6.10) and (6.8), we get

d2P2
du2du2

= a1
dP2
du2

+ (μ2 − ε)P2. (6.11)

To solve (6.11), we will consider the following three cases, separately:

(a) a2
1 + 4(μ2 − ε) > 0.

(b) a2
1 + 4(μ2 − ε) < 0.

(c) a2
1 + 4(μ2 − ε) = 0.

(a) In this case, the solution of (6.11) is

P2 = exp
{

1
2

(
a1 +

√
a2
1 + 4(μ2 − ε)

)
u2

}

A2

+ exp
{

1
2

(
a1 −

√
a2
1 + 4(μ2 − ε)

)
u2

}

A3,

where A2, A3 are constant vectors.
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It follows that, up to a centroaffine transformation, x can be written as

x =
(

exp
{
(λ1 − μ)u1

}
, exp

{
1
2

(
a1 +

√
a2
1 + 4(μ2 − ε)

)
u2 + μu1

}

,

exp
{

1
2

(
a1 −

√
a2
1 + 4(μ2 − ε)

)
u2 + μu1

})

, (6.12)

which, due to its locally strongly convexity, is easily seen locally on the hyper-
surface (ii) of Theorem 6.1.

(b) In this case, we have ε = 1. The solution of (6.11) is given by

P2 = cos
(

1
2

√
−a2

1 − 4(μ2 − 1)u2

)
exp(12a1u2)A2

+ sin
(

1
2

√
−a2

1 − 4(μ2 − 1)u2

)
exp(12a1u2)A3,

where A2, A3 are constant vectors.
It follows that, up to a centroaffine transformation, x can be written as

x =
(

exp
{
(λ1 − μ)u1

}
, sin

(
1
2

√
−a2

1 − 4(μ2 − 1)u2

)
exp( 12a1u2 + μu1),

cos
(
1
2

√
−a2

1 − 4(μ2 − 1)u2

)
exp( 12a1u2 + μu1)

)
, (6.13)

which, due to its locally strongly convexity, is locally on the hypersurface (iii)
of Theorem 6.1.

(c) In this case, from the fact that a2
1 + 4(μ2 − ε) = 0 and Lemma 6.2,

we have

a1 �= 0, ε = 1. (6.14)

The solution of (6.11) is given by

P2 = exp
(
1
2a1u2

)
A2 + u2 exp

(
1
2a1u2

)
A3,

where A2, A3 are constant vectors.
It follows that, up to a centroaffine transformation, x can be written as

x =
(

exp(12a1u2 + μu1), exp
{
(λ1 − μ)u1

}
, 1
2a1u2 exp( 12a1u2 + μu1)

)
, (6.15)

which, according to (6.14), (6.15) and due to its locally strongly convexity, is
locally on the hypersurface (iv) of Theorem 6.1.

We have completed the proof of Theorem 6.1. �

7. Case {Cm}2≤m≤n−1 with k0 = 1

In this section, we consider Case Cm (2 ≤ m ≤ n − 1) with the condition that
in the decomposition (4.28), k0 = 1. We will prove the following theorem.
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Theorem 7.1. Let Mn be a locally strongly convex centroaffine hypersurface in
R

n+1 which has parallel and non-vanishing cubic form. If Cm with 2 ≤ m ≤
n − 1 occurs and the integer k0, as defined in Sect. 4.5, satisfies k0 = 1, then
Mn can be decomposed as the Calabi product of two locally strongly convex
centroaffine hypersurfaces with parallel cubic form, or the Calabi product of a
locally strongly convex centroaffine hypersurface with parallel cubic form and
a point.

To prove Theorem 7.1, we first note that if k0 = 1 then by Proposition
4.2 we have dim (Im L) = 1. Moreover, we can prove the following result.

Lemma 7.1. If dim (Im L) = 1, then there is a unit vector w1 ∈ Im L ⊂ D3

such that L has the expression

L(v1, v2) =
√

1
2λ1ηh(v1, v2)w1, ∀ v1, v2 ∈ D2. (7.1)

Proof. The fact dim (Im L) = 1 implies that we have a unit vector w̄ ∈ Im L ⊂
D3 and a symmetric bilinear form α over D2 such that

L(v1, v2) = α(v1, v2)w̄, ∀ v1, v2 ∈ D2. (7.2)

We define Q : D2 → D2 by h(Qv1, v2) := α(v1, v2). From Lemma 4.12 we have

L(v1, v2) = 0, if h(v1, v2) = 0. (7.3)

Now we see that h(Qv1, v2) = 0 if h(v1, v2) = 0. Hence, Qv =
√

1
2λ1η ε(v)v

for all v ∈ D2 and ε(v) = ±1. It follows that

L(v1, v2) = α(v1, v2)w̄ =
√

1
2λ1ηε(v1)h(v1, v2)w̄. (7.4)

This, together with the fact that both L and h are symmetric, implies that,
for any v1, v2 ∈ D2, ε(v1) = ε(v2) holds, i.e., ε(v) is independent of v.

We finally get the assertion by putting w1 := ε(v1)w̄. �
In sequel of this section, we will fix the unit vector w1 ∈ D3 as in Lemma

7.1. Then, besides Ke1w1 = μw1, the next three lemmas give all informations
about the difference tensor K.

Lemma 7.2. There exists an orthonormal basis {v1, . . . , vm−1} of D2 such that

K(e1, vi) = 1
2λ1vi, K(w1, vi) =

√
1
2λ1ηvi, 1 ≤ i ≤ m − 1, (7.5)

K(vi, vj) =
(

1
2λ1e1 +

√
1
2λ1ηw1

)

δij , 1 ≤ i, j ≤ m − 1. (7.6)

Proof. From Lemma 4.2, we see that Kw1 maps D2 to D2. Note that Kw1 is
self-adjoint, then there exists an orthonormal basis {v1, . . . , vm−1} of D2 such
that Kw1vi = αivi with eigenvalues αi. As vi ∈ D2, we have Ke1vi = 1

2λ1vi.
By Lemma 7.1 we get

αi = h(Kw1vi, vi) = h(L(vi, vi), w1) =
√

1
2λ1η.



450 X. Cheng et al. Results Math

Since

L(vi, vj) =
√

1
2λ1ηh(vi, vj)w1 =

√
1
2λ1η δijw1,

we get

K(vi, vj) =
(

1
2λ1e1 +

√
1
2λ1ηw1

)

δij .

This completes the proof of Lemma 7.2. �

Next, by (4.32) and Lemma 7.1 we get the following result.

Lemma 7.3. K(w1, w1) = μe1 + (λ1 + μ)
√

2η
λ1

w1.

Finally, in case D3 �= Rw1 and let {w2, . . . , wn−m} be an orthonormal
basis of D3\Rw1, by Lemmas 4.5 and 7.1, we immediately have:

Lemma 7.4. K(w1, wi) = μ̃wi, 2 ≤ i ≤ n − m, where μ̃ =
√

2η
λ1

μ.

Now, we are ready to complete the proof of Theorem 7.1.

Proof of Theorem 7.1. Based on Lemmas 7.1, 7.2, 7.3 and 7.4, by putting

t =
√

λ1
λ1+2η e1 +

√
2η

λ1+2η w1, v = −
√

2η
λ1+2η e1 +

√
λ1

λ1+2η w1,

we see that if D3 = Rw1, then {t, v, v1, . . . , vm−1} (or, resp. if D3 �= Rw1, then
{t, v, v1, . . . , vm−1, w2, . . . , wn−m}) forms an orthonormal basis of TpM

n, with
respect to which, the difference tensor K takes the following form:

{
K(t, t) = σ1t; K(t, v) = σ2v; K(t, vi) = σ2vi, 1 ≤ i ≤ m − 1;

if D3 �= Rw1, K(t, wi) = σ3wi, 2 ≤ i ≤ n − m,
(7.7)

where

σ1 = λ2
1+2ημ√

λ1(λ1+2η)
, σ2 =

1
2λ2

1+λ1η√
λ1(λ1+2η)

, σ3 = λ1μ+2ημ√
λ1(λ1+2η)

. (7.8)

It is easy to show that the constants σ1, σ2 and σ3 satisfy the relations:

σ1 �= 2σ2, σ1 �= 2σ3, σ2 �= σ3. (7.9)

By parallel translation along geodesics (with respect to ∇̂) through p, we
can extend {t, v, v1, . . . , vm−1} (if D3 = Rw1), or, resp. {t, v, v1, . . . , vm−1, w2,
. . . , wn−m} (if D3 �= Rw1) to obtain a local h-orthonormal basis {T, V, V1, . . . ,
Vm−1}, or, resp. {T, V, V1, . . . , Vm−1,W2, . . . ,Wn−m} such that

{
K(T, T ) = σ1T ; K(T, V ) = σ2V ; K(T, Vi) = σ2Vi, 1 ≤ i ≤ m − 1;

if D3 �= Rw1, K(T,Wi) = σ3Wi, 2 ≤ i ≤ n − m.

Now, the above fact implies that, if D3 �= Rw1 we can apply Theorem
3.2 to conclude that Mn is decomposed as the Calabi product of two locally
strongly convex centroaffine hypersurfaces with parallel cubic form. If D3 =
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Rw1, then we can apply Theorem 3.4 to conclude that M can be decomposed
as the Calabi product of a locally strongly convex centroaffine hypersurface
with parallel cubic form and a point. �

8. Case {Cm}2≤m≤n−1 with k0 ≥ 2 and p = 0

In this section, we will prove the following theorem.

Theorem 8.1. Let Mn be a locally strongly convex centroaffine hypersurface in
R

n+1 which has parallel and non-vanishing cubic form. If Cm with 2 ≤ m ≤
n − 1 occurs and the integers k0 and p, as defined in Sect. 4.5, satisfy k0 ≥ 2
and p = 0, then n ≥ 1

2m(m + 1) − 1. Moreover, we have either

(i) n = 1
2m(m+1), Mn can be decomposed as the Calabi product of a locally

strongly convex centroaffine hypersurface with parallel cubic form and a
point, or

(ii) n > 1
2m(m + 1), Mn can be decomposed as the Calabi product of two

locally strongly convex centroaffine hypersurfaces with parallel cubic form,
or

(iii) n = 1
2m(m + 1) − 1, Mn is centroaffinely equivalent to the standard

embedding of SL(m, R)/SO(m; R) ↪→ R
n+1.

In the present situation, the decomposition (4.28) reduces to D2 = {v1}⊕
· · · ⊕ {vk0}. Then dim D2 = k0 = m − 1, m ≥ 3, and {v1, . . . , vk0} forms an
orthonormal basis of D2.

According to (4.5), Lemma 4.11 and the fact that for j �= l, vj ∈ Vvl
(τ),

we have

h(L(vj , vl), L(vj , vl)) = τ, j �= l, (8.1)
h(L(vj , vl1), L(vj , vl2)) = 0, j, l1, l2 distinct, (8.2)

h(L(vj1 , vj2), L(vj3 , vj4)) = 0, j1, j2, j3, j4 distinct, (8.3)

h(L(vj , vj), L(vj , vj)) = 1
2λ1η, (8.4)

h(L(vj , vj), L(vl, vl)) = 1
2μη, j �= l, (8.5)

h(L(vj , vj), L(vj , vl)) = 0, j �= l, (8.6)
h(L(vj , vj), L(vl1 , vl2)) = 0, j, l1, l2 distinct. (8.7)

Denote Lj := L(v1, v1) + · · · + L(vj , vj) − jL(vj+1, vj+1), 1 ≤ j ≤ k0 − 1.
Then it is easy to check h(Lj , Lj) = 2j(j + 1)τ �= 0, and that

{
wj = 1√

2j(j+1)τ
Lj , 1 ≤ j ≤ k0 − 1,

wkl = 1√
τ
L(vk, vl), 1 ≤ k < l ≤ k0

(8.8)

give 1
2 (m + 1)(m − 2) orthonormal vectors in ImL ⊂ D3. Thus, we have the

estimate of the dimension
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n = 1 + dim (D2) + dim (D3)

≥ 1 + m − 1 + 1
2 (m + 1)(m − 2) = 1

2m(m + 1) − 1. (8.9)

Direct computations show that TrL = L(v1, v1) + · · · + L(vk0 , vk0) is
orthogonal to all vectors in (8.8), and by using (4.4), (4.8) and the fact that
vi ∈ Vvj

(τ), i �= j, we get

h(Tr L,Tr L) = 1
2k0η(λ1 + (k0 − 1)μ)

= 1
8 (m − 1)

√
λ2
1 − 4ε

(
mλ1 − (m − 2)

√
λ2
1 − 4ε

)

=: ρ2, (8.10)

where ρ ≥ 0. From (8.10) and that λ2
1 −4ε > 0, the following result is obvious.

Lemma 8.1. Tr L = 0 if and only if λ1 = m−2√
m−1

and ε = −1.

On the other hand, an implicit fact can be said about the statement
Tr L = 0.

Lemma 8.2. Tr L = 0 if and only if n = 1
2m(m + 1) − 1.

Proof. If Tr L = 0, then we claim that D3 = ImL. In fact, if D3 �= Im L, we
have a unit vector w ∈ D3 which is orthogonal to ImL. Then by Lemma 4.5
we get the contradiction

0 = K(Tr L,w) = k0ημw. (8.11)

Thus, according to this claim and (8.9), we have n = 1
2m(m+1)− 1, provided

that Tr L = 0.
Conversely, if n = 1

2m(m + 1) − 1, then by (8.9) we have

dim (D3) = 1
2 (m + 1)(m − 2)

which implies that D3 = Im L. This further implies that TrL = 0 due to the
fact that the vector Tr L, which belongs to D3, is orthogonal to all vectors in
(8.8). �

Now, we are ready to complete the proof of Theorem 8.1.

Proof of Theorem 8.1. We need to consider three cases:
Case (i) n = 1

2m(m + 1).
Case (ii) n > 1

2m(m + 1).
Case (iii) n = 1

2m(m + 1) − 1.
For Cases (i) and (ii), as Tr L �= 0, we can define a unit vector t := 1

ρTr L.
In Case (i), from the previous discussions we see that

{t, wj |1≤j≤k0−1, wkl |1≤k<l≤k0}
forms an orthonormal basis of ImL = D3. By direct calculations with the use
of Lemmas 4.2, 4.14 and (8.1)–(8.7), we have the following fact which we state
as
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Lemma 8.3. In Case (i), the difference tensor K satisfies
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K(t, e1) = μt, K(t, vi) = ρ
k0

vi, 1 ≤ i ≤ m − 1,

K(t, wj) = 2ρ
k0

wj , 1 ≤ j ≤ k0 − 1,

K(t, wkl) = 2ρ
k0

wkl, 1 ≤ k < l ≤ k0,

K(t, t) = μe1 +
(

2ρ
k0

+ k0μη
ρ

)
t.

(8.12)

Put

T = ρ√
ρ2+k2

0η2
e1 + k0η√

ρ2+k2
0η2

t, T ∗ = − k0η√
ρ2+k2

0η2
e1 + ρ√

ρ2+k2
0η2

t. (8.13)

It is easily to see that {T, T ∗, vj |1≤j≤k0 , wj |1≤j≤k0−1, wkl |1≤k<l≤k0}
is an orthonormal basis of TpM . By Lemmas 4.2 and 8.3 we have the following
lemma.

Lemma 8.4. In Case (i), under the above notations, we have
⎧
⎪⎨

⎪⎩

K(T, T ) = σ1T, K(T, vj) = σ2vj , 1 ≤ j ≤ k0;

K(T, T ∗) = σ2T
∗, K(T,wj) = σ2wj , 1 ≤ j ≤ k0 − 1;

K(T,wkl) = σ2wkl, 1 ≤ k < l ≤ k0,

(8.14)

where σ1 and σ2 are defined by

σ1 = ρ2λ1+k2
0η2μ

ρ
√

ρ2+k2
0η2

, σ2 =
(
1
2λ1+η)ρ√
ρ2+k2

0η2
, (8.15)

which satisfy σ1 �= 2σ2.

Given the parallelism of the difference tensor K, Lemma 8.4 and Theo-
rem 3.4, we conclude that in Case (i), M is locally the Calabi product of a
lower-dimensional locally strongly convex centroaffine hypersurface with par-
allel cubic form with a point.

In Case (ii), we proceed in the same way as in Case (i). We first see that

{t, wkl |1≤k<l≤k0 , wj |1≤j≤k0−1}
is still an orthonormal basis of ImL, even though we have ImL � D3.

Denote ñ = n − 1
2m(m + 1) and choose w̃1, . . . , w̃ñ in the orthogonal

complement of Im L in D3 such that

{t, wkl |1≤k<l≤k0 , wj |1≤j≤k0−1, w̃r |1≤r≤ñ}
is an orthonormal basis of D3. By Lemma 4.5, we obtain that

K(t, w̃r) = k0ημρ−1w̃r. (8.16)

We define T and T ∗ as in (8.13). Then

{T, T ∗, vj |1≤j≤k0 , wkl |1≤k<l≤k0 , wj |1≤j≤k0−1, w̃r|1≤r≤ñ}
is an orthonormal basis of TpM . Similar to Lemma 8.4, we can easily show the
following
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Lemma 8.5. In Case (ii), under the previous notations, we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K(T, T ) = σ1T, K(T, vj) = σ2vj , 1 ≤ j ≤ k0;

K(T, T ∗) = σ2T
∗, K(T,wj) = σ2wj , 1 ≤ j ≤ k0 − 1;

K(T,wkl) = σ2wkl, 1 ≤ k < l ≤ k0;

K(T, w̃r) = σ3w̃r, 1 ≤ r ≤ ñ,

(8.17)

where σ1 and σ2 are defined by (8.15), and

σ3 = ρ−1μ
√

ρ2 + k2
0η

2, (8.18)

which satisfy the relations σ1 �= 2σ2, σ1 �= 2σ3 and σ2 �= σ3.

Given the parallelism of the difference tensor K, Lemma 8.5 and Theorem
3.2, we conclude that in Case (ii), M is locally the Calabi product of two lower-
dimensional locally strongly convex centroaffine hypersurfaces with parallel
cubic form.

In Case (iii), we take the following basis of TpM :

{e1, vi|1≤i≤k0 , wj |1≤j≤k0−1, wjk |1≤j<k≤k0−1}. (8.19)

By Lemmas 8.1, 8.2, 4.14 and a direct computation, we obtain that

K(e1, e1) +
k0∑

j=1

K(vj , vj) +
k0−1∑

j=1

K(wj , wj) +
∑

1≤i<j≤k0

K(wij , wij) = 0.

(8.20)

This implies that in Case (iii) it holds Tr KX = 0 for any vector X. Thus
M is a proper affine hypersphere centered at the origin O. Then, according to
previous computations and the proof of Theorem 5.1 in [12], we can easily show
that in Case (iii) Mn is centroaffinely equivalent to the standard embedding
SL(m, R)/SO(m; R) ↪→ R

n+1.
The combination of the preceding three cases’ discussion then completes

the proof of Theorem 8.1. �

9. Case {Cm}2≤m≤n−1 with k0 ≥ 2 and p = 1

In this section, we will prove the following theorem.

Theorem 9.1. Let Mn be a locally strongly convex centroaffine hypersurface in
R

n+1 which has parallel and non-vanishing cubic form. If Cm with 2 ≤ m ≤
n − 1 occurs and the integers k0 and p, as defined in Sect. 4.5, satisfy k0 ≥ 2
and p = 1, then n ≥ 1

4 (m + 1)2 − 1. Moreover, we have either

(i) n = 1
4 (m + 1)2, Mn can be decomposed as the Calabi product of a locally

strongly convex centroaffine hypersurface with parallel cubic form and a
point, or
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(ii) n > 1
4 (m+1)2, Mn can be decomposed as the Calabi product of two locally

strongly convex centroaffine hypersurfaces with parallel cubic form, or
(iii) n = 1

4 (m+1)2−1, Mn is centroaffinely equivalent to the standard embed-
ding SL(m+1

2 , C)/SU(m+1
2 ) ↪→ R

n+1.

Now we have dim D2 = m − 1 = 2k0 and m ≥ 5. Similar to Lemma 6.1
of [12], we will prove the following

Lemma 9.1. In the decomposition (4.28), if we have k0 ≥ 2 and p = 1, then
there exist unit vectors uj ∈ Vvj

(0) (1 ≤ j ≤ k0) such that the orthonormal
basis {v1, u1, . . . , vk0 , uk0} of D2 satisfies the relations

L(ul, vj) = −L(vl, uj), L(vl, vj) = L(ul, uj), 1 ≤ j, l ≤ k0. (9.1)

Proof. As for each 1 ≤ j ≤ k0 it holds dim (Vvj
(0)) = 1, we assume Vv2(0) =

{u2} for a unit vector u2. Then, for each j �= 2, by Lemma 4.13, we have a
unique unit vector uj ∈ Vvj

(0) satisfying

L(u2, vj) = −L(v2, uj), L(v2, vj) = L(u2, uj), 1 ≤ j ≤ k0, j �= 2. (9.2)

Moreover, Lemma 4.9 implies that (9.2) also holds for j = 2. Next, we
state

Claim 1. L(ul, vj) = −L(vl, uj), L(vl, vj) = L(ul, uj), 1 ≤ j, l ≤ k0, j,
l �= 2.

To verify the claim, as uj ∈ Vvj
(0), we first see by Lemma 4.9 that

L(uj , vj) = 0 and L(vj , vj) = L(uj , uj). Hence the claim is true for j = l.
Now we fix j �= l such that j, l �= 2. By Lemma 4.13, there exists a unique

unit vector u
(l)
j ∈ Vvj

(0), such that

L(ul, vj) = −L(vl, u
(l)
j ), L(vl, vj) = L(ul, u

(l)
j ). (9.3)

Noting that dim (Vvj
(0)) = 1 and u

(l)
j , uj ∈ Vvj

(0) are unit vectors, we

have u
(l)
j = εuj with ε = ±1. Hence from (9.3) we have

L(ul, vj) = −εL(vl, uj), L(vl, vj) = εL(ul, uj). (9.4)

On the other hand, by using (4.36), (9.2) and (9.4), we get

K(L(vj , vl), L(v2, uj)) = K(L(vj , vl),−L(vj , u2)) = −τL(vl, u2),

K(L(vj , vl), L(v2, uj)) = K(εL(uj , ul), L(v2, uj)) = −ετL(vl, u2).

From the comparison of the above two equations we get ε = 1.
From (9.4) we have verified Claim 1 and the proof of Lemma 9.1 is ful-

filled. �

To continue the proof of Theorem 9.1, we now assume that k0 ≥ 2 and let
{v1, u1, . . . , vk0 , uk0} be the orthonormal basis of D2 as constructed in Lemma
9.1.



456 X. Cheng et al. Results Math

Given (4.5), Lemmas 4.9, 4.11 and that for j �= l, vj , uj ∈ Vvl
(τ) = Vul

(τ),
we have the following calculations:

h(L(vj , ul), L(vj , ul)) = h(L(vj , vl), L(vj , vl)) = τ, j �= l, (9.5)

h(L(uj , vl1), L(uj , vl2)) = h(L(vj , ul1), L(vj , ul2))

= h(L(vj , vl1), L(vj , vl2)) = 0, j, l1, l2 distinct, (9.6)

h(L(vj1 , vj2), L(vj3 , vj4)) = 0, j1, j2, j3, j4 distinct, (9.7)

h(L(vj , vl), L(vj1 , ul1)) = 0, j �= l and j1 �= l1, (9.8)

h(L(vj , vj), L(vj , vj)) = 1
2λ1η, 1 ≤ j ≤ k0, (9.9)

h(L(vj , vj), L(vl, vl)) = 1
2μη, 1 ≤ j �= l ≤ k0, (9.10)

h(L(vj , vj), L(vj , vl)) = h(L(vj , vj), L(vj , ul))

= h(L(vj , vj), L(vl, uj)) = 0, 1 ≤ j �= l ≤ k0; (9.11)

h(L(vj , vj), L(vl1 , vl2)) = h(L(vj , vj), L(vl1 , ul2)) = 0, (9.12)
1 ≤ j, l1, l2 distinct ≤ k0.

Similar as in the proof of Theorem 8.1, we denote

Lj := L(v1, v1) + · · · + L(vj , vj) − jL(vj+1, vj+1), 1 ≤ j ≤ k0 − 1.

Then direct calculations show that h(Lj , Lj) = 2j(j +1)τ �= 0 for each j, and
⎧
⎪⎪⎨

⎪⎪⎩

wj = 1√
2j(j+1)τ

Lj , 1 ≤ j ≤ k0 − 1,

wkl = 1√
τ
L(vk, vl), 1 ≤ k < l ≤ k0,

w′
kl = 1√

τ
L(vk, ul), 1 ≤ k < l ≤ k0

(9.13)

give 1
4 (m + 1)(m − 3) mutually orthogonal unit vectors in ImL ⊂ D3. Thus,

we have the estimate of the dimension

n = 1 + dim (D2) + dim (D3)

≥ 1 + m − 1 + 1
4 (m + 1)(m − 3) = 1

4 (m + 1)2 − 1. (9.14)

Moreover, direct computations show that TrL = 2[L(v1, v1) + · · · +
L(vk0 , vk0)] is orthogonal to all vectors in (9.13), and by using (4.4), (4.8)
and the fact that vi ∈ Vvj

(τ) for i �= j, we get

1
4h(Tr L,Tr L) = 1

2k0η(λ1 + (k0 − 1)μ)

= 1
32 (m − 1)

√
λ2
1 − 4ε

[
(m + 1)λ1 − (m − 3)

√
λ2
1 − 4ε

]

=: ρ2 (9.15)

for ρ ≥ 0. From (9.15) and that λ2
1 − 4ε > 0, the following result is obvious.

Lemma 9.2. TrL = 0 if and only if λ1 = m−3√
2(m−1)

and ε = −1.
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On the other hand, the statement TrL = 0 has an implicit characteriza-
tion with a proof totally similar to that of Lemma 8.2.

Lemma 9.3. Tr L = 0 if and only if n = 1
4 (m + 1)2 − 1.

Now, we are ready to complete the proof of Theorem 9.1.

Proof of Theorem 9.1. First, if n �= 1
4 (m + 1)2 − 1, we define a unit vector

t = 1
2ρTr L. We separate the discussions into three cases:
(i) If n = 1

4 (m + 1)2, the previous results show that

{t, wj |1≤j≤k0−1, wkl |1≤k<l≤k0 , w′
kl |1≤k<l≤k0}

is an orthonormal basis of ImL = D3.
(ii) If n > 1

4 (m + 1)2, we still have that {t, wkl |1≤k<l≤k0 , wj |1≤j≤k0−1}
is an orthonormal basis of ImL, but now ImL � D3. Denote ñ = n− 1

4 (m+1)2

and let {w̃1, . . . , w̃ñ} be an orthonormal basis of D3 \ Im L such that

{t, wj |1≤j≤k0−1, wkl |1≤k<l≤k0 , w′
kl |1≤k<l≤k0 , w̃r |1≤r≤ñ}

is an orthonormal basis of D3.
(iii) If n = 1

4 (m + 1)2 − 1, then an orthonormal basis of ImL = D3 is
given by

{wj |1≤j≤k0−1, wkl |1≤k<l≤k0 , w′
kl |1≤k<l≤k0}.

Now, following the proof of Theorem 6.1 in [12], we can proceed in the
same way as in the proof of Theorem 8.1 to obtain the following conclusions:

If n = 1
4 (m + 1)2, we can apply Theorem 3.4 to conclude that Mn can

be decomposed as the Calabi product of a locally strongly convex centroaffine
hypersurface with parallel cubic form and a point.

If n > 1
4 (m+1)2, we can apply Theorem 3.2 to conclude that Mn can be

decomposed as the Calabi product of two locally strongly convex centroaffine
hypersurfaces with parallel cubic form.

If n = 1
4 (m+1)2−1, then Mn is centroaffinely equivalent to the standard

embedding SL(m+1
2 , C)/SU(m+1

2 ) ↪→ R
n+1. �

10. Case {Cm}2≤m≤n−1 with k0 ≥ 2 and p = 3

In this section, we will prove the following theorem.

Theorem 10.1. Let Mn be a locally strongly convex centroaffine hypersurface
in R

n+1 which has parallel and non-vanishing cubic form. If Cm with 2 ≤ m ≤
n − 1 occurs and the integers k0 and p, as defined in Sect. 4.5, satisfy k0 ≥ 2
and p = 3, then n ≥ 1

8 (m + 1)(m + 3) − 1. Moreover, we have either

(i) n = 1
8 (m + 1)(m + 3), Mn can be decomposed as the Calabi product of a

locally strongly convex centroaffine hypersurface with parallel cubic form
and a point, or
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(ii) n > 1
8 (m + 1)(m + 3), Mn can be decomposed as the Calabi product of

two locally strongly convex centroaffine hypersurfaces with parallel cubic
form, or

(iii) n = 1
8 (m+1)(m+3)− 1, Mn is centroaffinely equivalent to the standard

embedding SU∗(m+3
2 )/Sp(m+3

4 ) ↪→ R
n+1.

Now we have dim D2 = m − 1 = 4k0 and m ≥ 9. Similar to Lemma 7.1
of [12], we will prove the following lemma.

Lemma 10.1. In the decomposition (4.28), if we have k0 ≥ 2 and p = 3, then
there exist unit vectors xj , yj , zj ∈ Vvj

(0) (1 ≤ j ≤ k0) such that the orthonor-
mal basis {v1, x1, y1, z1; . . . ; vk0 , xk0 , yk0 , zk0} of D2 satisfies the relations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L(vj , vl) = L(xj , xl) = L(yj , yl) = L(zj , zl),

L(vj , xl) = −L(xj , vl) = −L(yj , zl) = L(zj , yl),

L(vj , yl) = −L(yj , vl) = −L(zj , xl) = L(xj , zl),

L(vj , zl) = −L(zj , vl) = −L(xj , yl) = L(yj , xl),

1 ≤ j, l ≤ k0. (10.1)

Proof. As doing before, we denote Vj = {vj} ⊕ Vvj
(0), 1 ≤ l ≤ k0. Let us fix

two orthogonal unit vectors x1, y1 ∈ Vv1(0). By using Lemmas 4.12 and 4.13,
for each j �= 1, we have two unit vectors xj , yj ∈ Vvj

(0) such that
{

L(vj , v1) = L(xj , x1) = L(yj , y1),

L(vj , x1) = −L(xj , v1), L(vj , y1) = −L(yj , v1).
(10.2)

Then, according to Lemma 4.13, we further have unit vectors zj
1 ∈ Vx1(0)

and zj ∈ Vxj
(0) such that

{
L(vj , z

j
1) = L(yj , x1), L(vj , x1) = −L(yj , z

j
1),

L(zj , v1) = L(xj , y1), L(zj , y1) = −L(xj , v1).
(10.3)

The important is that we have the following

Claim 1. For each j �= 2, {x1, y1, z
j
1} is an orthonormal basis of Vv1(0) and

{xj , yj , zj} is an orthonormal basis of Vvj
(0).

To verify this claim, it suffices to show that

zj
1 ⊥ v1, zj

1 ⊥ y1, xj ⊥ yj , zj ⊥ yj , zj ⊥ vj .

In fact, by using (10.2) and (10.3), we obtain that

τh(zj
1, v1) = h(L(zj

1, vj), L(vj , v1)) = h(L(yj , x1), L(yj , y1)) = 0,

τh(zj
1, y1) = h(L(zj

1, vj), L(vj , y1)) = h(L(yj , x1), −L(yj , v1)) = 0,
τh(xj , yj) = h(L(xj , v1), L(yj , v1)) = h(L(vj , x1), L(vj , y1)) = 0,
τh(zj , yj) = h(L(zj , v1), L(yj , v1)) = h(L(xj , y1), −L(vj , y1)) = 0,
τh(zj , vj) = h(L(zj , v1), L(vj , v1)) = h(L(xj , y1), L(xj , x1)) = 0.
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From these relations, we immediately get the claim.
Next, by using Lemmas 4.12 and 4.13, (10.2) and (10.3), we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L(vj , v1) = L(xj , x1) = L(yj , y1) = L(zj , z
j
1),

L(vj , x1) = −L(xj , v1) = −L(yj , z
j
1) = L(zj , y1),

L(vj , y1) = −L(yj , v1) = −L(zj , x1) = L(xj , z
j
1),

L(vj , z
j
1) = −L(zj , v1) = −L(xj , y1) = L(yj , x1),

2 ≤ j ≤ k0. (10.4)

From these relations we can prove the following assertion:

Claim 2. z21 = · · · = zk0
1 =: z1.

In fact, by Claim 1, we know that for j �= l (j, l ≥ 2) we have zj
1 = εjlz

l
1

with εjl = ±1. From Lemma 4.14 and (10.4) we get

εjlτL(vj , vl) = K(L(zj
1, vj), L(zl

1, vl))
= K(L(yj , x1), L(yl, x1)) = τL(yj , yl). (10.5)

Similarly, we get

εjlL(xj , xl) = L(yj , yl) = L(zj , zl) = L(vj , vl). (10.6)

From (10.5) and (10.6) we have εjl = 1. Thus Claim 2 is verified.
Moreover, the following relations hold

L(vj , vl) = L(xj , xl) = L(yj , yl) = L(zj , zl), j �= l, j, l ≥ 2. (10.7)

From (10.4) and apply Lemma 4.14, we get

τL(xj , yl) = K(L(y1, xj), L(y1, yl))

= K(L(zj , v1), L(v1, vl)) = τL(zj , vl). (10.8)

Similarly, we have the following relations:

L(zj , xl) = L(yj , vl), L(yj , zl) = L(xj , vl). (10.9)

Combination of (10.4), Claim 2 and (10.7)–(10.9), we get (10.1) immedi-
ately. �

To continue the proof of Theorem 10.1, we now assume that k0 ≥ 2
and let {v1, x1, y1, z1; . . . ; vk0 , xk0 , yk0 , zk0} be the orthonormal basis of D2 as
constructed in Lemmas 4.9 and 10.1. According to (4.5), Lemma 4.11 and the
fact that for j �= l, vj , xj , yj , zj ∈ Vvl

(τ) = Vxl
(τ) = Vyl

(τ) = Vzl
(τ), we have
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h(L(vj , xl), L(vj , xl)) = h(L(vj , yl), L(vj , yl)) = h(L(vj , zl), L(vj , zl))
= h(L(vj , vl), L(vj , vl)) = τ, j �= l, (10.10)

h(L(vj , vl1), L(vj , vl2)) = h(L(vj , xl1), L(vj , xl2))
= h(L(xj , vl1), L(xj , vl2)) = h(L(yj , vl1), L(yj , vl2))
= h(L(vj , yl1), L(vj , yl2)) = h(L(zj , vl1), L(zj , vl2))
= h(L(vj , zl1), L(vj , zl2)) = 0, j, l1, l2 distinct, (10.11)

h(L(vj1 , vj2), L(vj3 , vj4)) = h(L(vj1 , xj2), L(vj3 , xj4))
= h(L(vj1 , yj2), L(vj3 , yj4)) = h(L(vj1 , zj2), L(vj3 , zj4))
= 0, j1, j2, j3, j4 distinct, (10.12)

h(L(vj , vl), L(vj1 , xl1)) = h(L(vj , vl), L(vj1 , yl1))
= h(L(vj , vl), L(vj1 , zl1)) = 0, j �= l and j1 �= l1, (10.13)

h(L(vj , vj), L(vj , vj)) = 1
2λ1η, 1 ≤ j ≤ k0, (10.14)

h(L(vj , vj), L(vl, vl)) = 1
2μη, j �= l, (10.15)

h(L(vj , vj), L(vj , vl)) = h(L(vj , vj), L(vj , xl)) = h(L(vj , vj), L(vj , yl))
= h(L(vj , vj), L(vj , zl)) = h(L(vj , vj), L(vl, xj))
= h(L(vj , vj), L(vl, yj)) = h(L(vj , vj), L(vl, zj))
= 0, j �= l, (10.16)

h(L(vj , vj), L(vl1 , vl2)) = h(L(vj , vj), L(vl1 , xl2))
= h(L(vj , vj), L(vl1 , yl2)) = h(L(vj , vj), L(vl1 , zl2))
= 0, j, l1, l2 distinct. (10.17)

As in preceding sections we denote

Lj := L(v1, v1) + · · · + L(vj , vj) − jL(vj+1, vj+1), 1 ≤ j ≤ k0 − 1.

Then we have h(Lj , Lj) = 2j(j + 1)τ �= 0 for each j. Moreover,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wj = 1√
2j(j+1)τ

Lj , 1 ≤ j ≤ k0 − 1,

wkl = 1√
τ
L(vk, vl), 1 ≤ k < l ≤ k0,

w′
kl = 1√

τ
L(vk, xl), 1 ≤ k < l ≤ k0,

w′′
kl = 1√

τ
L(vk, yl), 1 ≤ k < l ≤ k0,

w′′′
kl = 1√

τ
L(vk, zl), 1 ≤ k < l ≤ k0

(10.18)

give 1
8 (m + 1)(m − 5) mutually orthogonal unit vectors in ImL ⊂ D3. Thus

we have the estimate of the dimension

n = 1 + dim (D2) + dim (D3)
≥ 1 + m − 1 + 1

8 (m + 1)(m − 5) = 1
8 (m + 1)(m + 3) − 1. (10.19)
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Further direct computations show that TrL = 4[L(v1, v1) + · · · +
L(vk0 , vk0)] is orthogonal to all vectors in (10.18), and by using the fact that
vi ∈ Vvj

(τ) (i �= j), (4.4) and (4.8) we have the calculation
1
16h(Tr L,Tr L) = 1

2k0η(λ1 + (k0 − 1)μ)

= 1
128 (m − 1)

√
λ2
1 − 4ε

(
(m + 3)λ1 − (m − 5)

√
λ2
1 − 4ε

)

=: ρ2 (10.20)

for ρ ≥ 0. From (10.20) and that λ2
1 − 4ε > 0, the following result is obvious.

Lemma 10.2. Tr L = 0 if and only if λ1 = m−5
2
√

m−1
and ε = −1.

On the other hand, by similar proof of Lemmas 8.2 and 9.3, we also obtain
the following implicit characterization of the statement Tr L = 0.

Lemma 10.3. Tr L = 0 if and only if n = 1
8 (m + 1)(m + 3) − 1.

Now, we are ready to complete the proof of Theorem 10.1.

Proof of Theorem 10.1. We consider three cases:
(i) n = 1

8 (m + 1)(m + 3).
(ii) n > 1

8 (m + 1)(m + 3).
(iii) n = 1

8 (m + 1)(m + 3) − 1.
For Cases (i) and (ii), as Tr L �= 0, we can define a unit vector t := 1

4ρTr L.
For Case (i), from previous discussions we see that

{t, wj |1≤j≤k0−1, wkl|1≤k<l≤k0 , w′
kl|1≤k<l≤k0 , w′′

kl|1≤k<l≤k0 , w′′′
kl |1≤k<l≤k0}

forms an orthonormal basis of ImL = D3.
For Case (ii), as Im L � D3, we choose {w̃1, . . . , w̃ñ} in D3\Im L such

that
{t, wj |1≤j≤k0−1, wkl |1≤k<l≤k0 , w′

kl |1≤k<l≤k0 , w′′
kl |1≤k<l≤k0 ,

w′′′
kl |1≤k<l≤k0 , w̃r |1≤r≤ñ}

is an orthonormal basis of D3.
For Case (iii), we see that

{wj |1≤j≤k0−1, wkl|1≤k<l≤k0 , w′
kl|1≤k<l≤k0 , w′′

kl|1≤k<l≤k0 , w′′′
kl|1≤k<l≤k0}

is an orthonormal basis of ImL = D3.
Now, following the proof of Theorem 7.1 in [12], we can proceed in the

same way as in the proof of Theorem 8.1 to obtain the following conclusions:
If n = 1

8 (m + 1)(m + 3), we can apply Theorem 3.4 to conclude that
Mn can be decomposed as the Calabi product of a locally strongly convex
centroaffine hypersurface with parallel cubic form and a point.

If n > 1
8 (m + 1)(m + 3), we can apply Theorem 3.2 to conclude that

Mn can be decomposed as the Calabi product of two locally strongly convex
centroaffine hypersurfaces with parallel cubic form.
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If n = 1
8 (m + 1)(m + 3) − 1, then Mn is centroaffinely equivalent to the

standard embedding SU∗(m+3
2 )/Sp(m+3

4 ) ↪→ R
n+1. �

11. Case {Cm}2≤m≤n−1 with k0 ≥ 2 and p = 7

In this section, we will prove the following theorem.

Theorem 11.1. Let Mn be a locally strongly convex centroaffine hypersurface
in R

n+1 which has parallel and non-vanishing cubic form. If Cm with 2 ≤ m ≤
n − 1 occurs and the integers k0 and p, as defined in Sect. 4.5, satisfy k0 ≥ 2
and p = 7, then k0 = 2, m = 17 and n ≥ 26. Moreover, we have either

(i) n = 27, Mn can be decomposed as the Calabi product of a locally strongly
convex centroaffine hypersurface with parallel cubic form and a point, or

(ii) n > 27, Mn can be decomposed as the Calabi product of two locally
strongly convex centroaffine hypersurfaces with parallel cubic form, or

(iii) n = 26, Mn is centroaffinely equivalent to the standard embedding
E6(−26)/F4 ↪→ R

27.

To prove Theorem 11.1, a key ingredient is the following lemma whose
proof is similar to that of Lemma 8.1 in [12].

Lemma 11.1. If in the decomposition (4.28), k0 ≥ 2 and p = 7, then we can
choose an orthonormal basis {xj}1≤j≤7 for Vv1(0) and an orthonormal basis
{yj}1≤j≤7 for Vv2(0) so that by identifying ej(v1) = xj and ej(v2) = yj, we
have the relations

L(ej(v1), el(v2)) = −L(v1, ejel(v2)) = −L(elej(v1), v2), (11.1)

for 1 ≤ j, l ≤ 7, where ejel denotes a product defined by the following multi-
plication table.

· e1 e2 e3 e4 e5 e6 e7
e1 −id e3 −e2 e5 −e4 −e7 e6
e2 −e3 −id e1 e6 e7 −e4 −e5
e3 e2 −e1 −id e7 −e6 e5 −e4
e4 −e5 −e6 −e7 −id e1 e2 e3
e5 e4 −e7 e6 −e1 −id −e3 e2
e6 e7 e4 −e5 −e2 e3 −id −e1
e7 −e6 e5 e4 −e3 −e2 e1 −id

Proof. As before we denote Vj = {vj} ⊕ Vvj
(0), 1 ≤ j ≤ k0. First we fix any

two orthogonal unit vectors x1, x2 ∈ Vv1(0). Then, by Lemmas 4.12 and 4.13,
we can consecutively find unit vectors y1, y2 ∈ Vv2(0) and x3 ∈ Vx2(0), such
that

L(y1, v1) = −L(x1, v2), L(y1, x1) = L(v1, v2), (11.2)
L(y2, v1) = −L(x2, v2), L(y2, x2) = L(v1, v2), (11.3)
L(y1, x2) = −L(x3, v2), L(y1, x3) = L(x2, v2). (11.4)
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From the computation

τh(x3, v1) = h(L(x3, v2), L(v1, v2)) = h(−L(y1, x2), L(y1, x1)) = 0, (11.5)

we get x3 ∈ Vv1(0). Thus, we can further take unit vector y3 ∈ Vv2(0) such
that

L(y3, v1) = −L(x3, v2), L(y3, x3) = L(v1, v2). (11.6)

Claim 1. {x1, x2, x3, v1} are orthonormal vectors. Similarly, {y1, y2, y3, v2} are
orthonormal vectors.

In fact, by using (11.2) and (11.4), we have

τh(x3, x1) = h(L(x3, v2), L(x1, v2)) = h(L(y1, x2), L(y1, v1)) = 0,

so we have x3 ⊥ x1, and the mutual orthogonality of {x1, x2, x3, v1} immedi-
ately follows. The assertion that {y1, y2, y3} are mutually orthogonal vectors
can be proved using Lemmas 4.12 and 4.13. Hence we have the Claim 1.

By (11.2), (11.3) and (11.6), we get the relation

L(y1, x1) = L(y2, x2) = L(y3, x3) = L(v1, v2), (11.7)

which together with Lemmas 4.12, 4.13, Claim 1 and (11.4), imply that

L(y1, x3) = −L(x1, y3) = L(x2, v2), (11.8)
L(x1, y2) = −L(y1, x2) = L(x3, v2), (11.9)
L(y3, x2) = −L(x3, y2) = −L(y1, v1). (11.10)

Now we pick an arbitrary unit vector x4 ∈ Vv1(0) such that it is orthog-
onal to all x1, x2 and x3. Then, inductively and following the preceding argu-
ment, we can find unit vectors x5, x6, x7 ∈ Vv1(0) and y4, y5, y6, y7 ∈ Vv2(0)
such that the following relations hold:

L(x4, y1) = −L(x1, y4) = −L(x5, v2) = L(y5, v1),

L(x4, y4) = L(x1, y1) = L(x5, y5) = L(v1, v2), L(x4, v2) = L(x5, y1),
(11.11)

{
L(x4, y2) = −L(x6, v2) = L(y6, v1),

L(x4, v2) = L(x6, y2), L(x6, y6) = L(v1, v2),
(11.12)

{
L(x4, y3) = −L(x7, v2) = L(y7, v1),

L(x4, v2) = L(x7, y3), L(x7, y7) = L(v1, v2).
(11.13)

Similar to Claim 1, applying Lemmas 4.12, 4.13, (11.2)–(11.4) and (11.6)–
(11.13), we obtain:

Claim 2. {x1, . . . , x7, v1} are orthonormal vectors. Similarly, {y1, . . . , y7, v2}
are orthonormal vectors.

From (11.7), (11.11)–(11.13), it follows immediately that

L(xi, yi) = L(v1, v2), i = 1, . . . , 7, (11.14)
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and therefore, by Lemmas 4.12 and 4.13, we obtain

L(xi, yj) = −L(yi, xj), L(xi, v2) = −L(yi, v1), 1 ≤ i �= j ≤ 7. (11.15)

Finally, based on the relations (11.2)–(11.4) and (11.6)–(11.15), the fol-
lowing relations can be established (cf. proof of Lemma 8.1 in [12]):

L(x4, y5) = −L(v1, y1), L(x4, y6) = −L(v1, y2),

L(x4, y7) = −L(v1, y3),
(11.16)

L(x5, y1) = −L(v1, y4), L(x5, y2) = L(v1, y7),

L(x5, y3) = −L(v1, y6), L(x5, y6) = L(v1, y3),

L(x5, y7) = −L(v1, y2),
(11.17)

L(x6, y1) = −L(v1, y7), L(x6, y2) = −L(v1, y4),

L(x6, y3) = L(v1, y5), L(x6, y7) = L(v1, y1),
(11.18)

L(x7, y1) = L(v1, y6), L(x7, y2) = −L(v1, y5),

L(x7, y3) = −L(v1, y4).
(11.19)

In a similar way as above, all relations in (11.1) can be verified, and thus
we complete the proof of Lemma 11.1. �

Now, we can present the following crucial and remarkable lemma with a
simplified proof (comparing to that of Lemma 8.2 in [12]) included.

Lemma 11.2. Suppose that in the decomposition (4.28) we have k0 ≥ 2 and
p = 7. Then it must be the case that k0 = 2.

Proof. Suppose on the contrary that k0 ≥ 3. Following the same argu-
ment as in the proof of Lemma 11.1 for Vv1(0) and Vv2(0), we choose a
basis {x1, x2, x̃3, x4, x̃5, x̃6, x̃7} of Vv1(0) and a basis {z1, z2, z3, z4, z5, z6, z7}
of Vv3(0) such that all the following relations hold:

L(ej(v1), el(v3)) = −L(v1, ejel(v3)) = −L(elej(v1), v3), 1 ≤ j, l ≤ 7.

(11.20)

Now, we have two orthonormal bases of Vv1(0), i.e. {x1, x2, x̃3, x4, x̃5, x̃6,
x̃7} and {x1, x2, x3, x4, x5, x6, x7}. We first show that x̃i = xi for i = 3, 5, 6, 7:

By (4.36) and (11.20), we get

τL(y1, z1) = K(L(y1, x2), L(x2, z1))=K(−L(x3, v2),−L(x3, v3))=τL(v2, v3).

Thus, similarly, we can prove that

L(y1, z1) = · · · = L(y7, z7) = L(v2, v3). (11.21)

Since {x1, x2, x̃3, x4, x̃5, x̃6, x̃7} and {x1, x2, x3, x4, x5, x6, x7} are two
orthonormal bases for Vv1(0), we may assume that x3 = b3x̃3 + b5x̃5 + b6x̃6 +
b7x̃7. Then we have the following calculation
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τL(y2, z2) = K(L(v1, y2), L(v1, z2)) = −K(L(x3, y1), L(v1, z2))
= b3K(L(x̃3, y1), L(x̃3, z1)) + b5K(L(x̃5, y1), L(x̃5, z7))

−b6K(L(x̃6, y1), L(x̃6, z4)) − b7K(L(x̃7, y1), L(x̃7, z5))
= b3τL(y1, z1) + b5τL(y1, z7) − b6τL(y1, z4) − b7τL(y1, z5).

(11.22)

On the other hand, by (11.21) and that L(y1, z1), L(y1, z4), L(y1, z5) and
L(y1, z7) are mutually orthogonal, (11.22) implies that b3 = 1, b5 = b6 = b7 = 0
and hence x3 = x̃3. Similarly, we can verify that xi = x̃i for i = 5, 6, 7.

In order to complete the proof of Lemma 11.2, we will first use (11.1) and
(11.20) to show that we have also similar relations between Vv2(0) and Vv3(0),
i.e.,

L(ej(v2), el(v3)) = −L(v2, ejel(v3)) = −L(elej(v2), v3), 1 ≤ j, l ≤ 7.

(11.23)

In fact, for j = l, by Lemma 4.14, (11.1) and (11.20), we have

τL(ej(v2), ej(v3)) = K(L(ej(v2), ek(v1)), L(ek(v1), ej(v3)))

= K(L(v2, ejek(v1)), L(ejek(v1), v3)) = τL(v2, v3).

For j �= l, according to the multiplication table in Lemma 11.1, there
exists a unique k and ε = ±1 such that elej = εek, ejek = εel, ekel = εej . It
follows, by applying (4.36), (11.1) and (11.20), that

τL(ej(v2), el(v3)) = K(L(ej(v2), v1), L(v1, el(v3)))

= K(L(−εelek(v2), v1), L(v1, el(v3)))

= εK(L(ek(v2), el(v1)),−L(v3, el(v1)))

= −ετL(ek(v2), v3) = −τL(elej(v2), v3)

and that
τL(v2, ejel(v3)) = K(L(ek(v1), v2), L(ejel(v3), ek(v1)))

= K(L(v2, εelej(v1)), L(−εek(v3), ek(v1)))

= K(L(v1,−εelej(v2)), L(−εv3, v1)) = τL(elej(v2), v3).

Thus, (11.23) holds indeed.
From (11.1), (11.20), (11.23) and Lemma 4.14, we have

K(L(v1, y6) + L(x1, y7), L(x2, v3)) = 0. (11.24)

On the other hand, we have

K(L(v1, y6), L(x2, v3)) = K(L(v1, y6),−L(v1, z2)) = −τL(z2, y6),

K(L(x1, y7), L(x2, v3)) = K(L(x1, y7),−L(x1, z3)) = −τL(z3, y7).

These, together with (11.24), give that

L(z2, y6) + L(z3, y7) = 0. (11.25)
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(11.23) implies that L(z2, y6) = L(z3, y7), and by (11.25) we get L(z2, y6) = 0.
However, we also have the relation h(L(z2, y6), L(z2, y6)) = τ , which gives

the contradiction.
This completes the proof of Lemma 11.2. �

Now, we are ready to complete the proof of Theorem 11.1.

Proof of Theorem 11.1. First, Lemma 11.2 implies that k0 = 2 and dim (D2) =
16.

Let {v1, v2, xj , yj , 1 ≤ j ≤ 7} be the orthonormal basis of D2 as con-
structed in Lemma 11.1 such that all relations in (11.1) hold. Then we easily
see that the image of L is spanned by

{L(v1, v1), L(v1, v2), L(v2, v2); L(v1, yj) |1≤j≤7}.

Define L1 = L(v1, v1) − L(v2, v2), then we have

h(L1, L1) = 4τ �= 0. (11.26)

We now easily see that there exist nine orthonormal vectors in ImL ⊂ D3:

w0 = 1√
4τ

L1, w1 = 1√
τ
L(v1, v2), wj+1 := 1√

τ
L(v1, yj), 1 ≤ j ≤ 7.

Note that TrL = 8(L(v1, v1) + L(v2, v2)) is orthogonal to {w0, w1,
wj+1 |1≤j≤7}, by using (4.4), (4.8) and the fact v1 ∈ Vv2(τ), we obtain

1
64h(Tr L,Tr L) = η(λ1 + μ) = 1

4

√
λ2
1 − 4ε

(
3λ1 −

√
λ2
1 − 4ε

)
=: ρ2

(11.27)

for ρ ≥ 0. Then we have the estimate of the dimension

n = 1 + dim (D2) + dim (D3) ≥ 26. (11.28)

From (11.27) and the fact λ2
1 − 4ε > 0, we have the following result.

Lemma 11.3. Tr L = 0 if and only if 2λ2
1 = 1 and ε = −1.

On the other hand, by similar proof of Lemma 8.2, we also obtain the
following implicit characterization of the statement Tr L = 0.

Lemma 11.4. Tr L = 0 if and only if n = 26.

Then, if n = 27 or n ≥ 28, we can define a unit vector t = 1
8ρTr L so

that we can construct an orthonormal basis for D3 and TpM
n, respectively,

and we get the similar expressions as in Lemmas 8.3, 8.4 and 8.5 which allows
us to conclude that Mn can be decomposed as the Calabi product of a locally
strongly convex centroaffine hypersurface with parallel cubic form and a point,
or the Calabi product of two locally strongly convex centroaffine hypersurfaces
with parallel cubic form.

If n = 26, by calculating the difference tensor K with respect to the pre-
ceding typical basis of TpM

n totally similar to previous sections as in Sects. 8–
10, we can also show that Tr (KX) = 0 for any X ∈ TpM

n. Then, according to
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Theorem 8.1 of [12], we can finally conclude that Mn is locally centroaffnely
equivalent to the standard embedding E6(−26)/F4 ↪→ R

27 that was introduced
in [1] and also [12].

In conclusion, we have completed the proof of Theorem 11.1. �

12. Completion of the Proof of Theorem 1.1

If C = 0, according to subsection 7.1.1 of [21], and also Lemma 2.1 of [15], we
have (i).

For hypersurfaces with C �= 0, according to Lemma 4.1, it is necessary
and sufficient to consider the cases {Cm}1≤m≤n as well as the exceptional case
B.

Firstly, by Theorems 4.1 and 4.2, we have settled the two cases, C1 and
Cn, from which we have (ii).

Next, case B is settled by Theorem 5.1, from which we have (viii).
Then, being of independent meaning we have Theorem 6.1, by which a

complete classification is given for the lowest dimension n = 2. Theorem 6.1
verifies the assertion of Theorem 1.1 explicitly for n = 2.

The remaining cases, i.e. Cm with 2 ≤ m ≤ n − 1, are completely settled
by Proposition 4.2 and subsequent five theorems, i.e. Theorems 7.1, 8.1, 9.1,
10.1 and 11.1. In these cases, we have (ii)–(vii).

From all of above discussions, we have completed the proof of Theorem
1.1.
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