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Abstract. In the present paper, we introduce the Bezier-variant of Dur-
rmeyer modification of the Bernstein operators based on a function T,
which is infinite times continuously differentiable and strictly increasing
function on [0, 1] such that 7(0) = 0 and 7(1) = 1. We give the rate of
approximation of these operators in terms of usual modulus of continu-
ity and K-functional. Next, we establish the quantitative Voronovskaja
type theorem. In the last section we obtain the rate of convergence for
functions having derivative of bounded variation.
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1. Introduction

In 1912, Bernstein [6] defined a sequence of positive linear operators for f €
C0,1], as

Bo(f;z) = kznjzof (S) (Z)xk(l —a)"k oz e0,1]

which preserves linear functions. To make convergence faster, King [12] intro-
duced a modification of these operators as

(Buf) or) () = X_:f (5) () om0 (= o

which depends on a sequence 7, (z) of continuous functions on [0, 1] with 0 <
rn(z) < 1, for each z € [0, 1] and considered a particular case for the sequence
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rn(x) such that the corresponding operators preserve the test function ey and
eo of the Bohman—Korovkin theorem. Gonska et al. [10] constructed sequences
of King-type operators which are based on a strictly increasing continuous
function 7 such that 7(0) = 0 and 7 (1) = 1. These operators are defined by
V., :C[0,1] — C[0,1]

Vi f = (Buf) o = (Buf) o (Bur) 'om.
Inspired by the above ideas, for any function 7 being infinite times continuously
differentiable on [0, 1], such that 7(0) = 0, 7(1) = 1 and 7/(z) > 0 for z € [0, 1],
Morales et al. [13] defined the sequence of linear Bernstein type operators for
f € Clo,1] by

n
B0 =3 o) (5) () @a-r@r, a
k=0

and also investigated its shape preserving and convergence properties as well as
its asymptotic behavior and saturation. This type of approximation operators
generalizes the Korovkin set from {1,e;,es} to {1, T, 7'2} and also presents a
better degree of approximation depending on 7. To approximate the Lebesgue
integrable functions on [0, 1], Acar et al. [1] defined the Durrmeyer type mod-
ication for the operators (1.1) as

n 1
T = )Y g /fw Dpup(®)dt,  (12)
k=0 0

where

and

P )= (Z)  (1-2)",

and studied Voronovskaya type asymptotic formula as well as its quantitative
version and the local approximation properties of D] in quantitative form in
terms of K-functional and Ditzian—Totik moduli of smoothness.

A Bezier curve is a parametric curve frequently used in computer graphics
and image processing. These are mainly used in interpolation, approximation,
curve fitting etc. Zeng and Piriou [16] pioneered the study of Bezier-variant of
Bernstein operators. Subsequently, many researchers defined the Bezier-variant
of several operators ([7,11,14,15] etc.).

Motivated by these ideas, we introduce the Bezier-variant of the operators
given by (1.2) as

n 1
DY (fiz)=(n+1)Y_ Q% /fOT Hpni (B)dt,  (1.3)
k=0 0
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where Q74 ()= [17,(@)]  [174 1 @)] . 02 Lwith 17 (2) = 3 o7 (0),
when k < n and 0 otherwise.

The aim of this paper is to study the degree of approximation in terms
of the modulus of continuity and the K-functional for the operators given by
(2.1). The quantitative Voronoskaja type theorem and the rate of convergence
of the functions having derivatives of bounded variation for these operators is
also investigated.

2. Auxiliary Results

Lemma 1 [1]. For the operators D], one has

_ 14 Dre? 2n(n—1)+4nt + 2
T =
n+2’ " (n+2)(n+3)

Consequently, for the m-th order central moment of operators D] defined as

P () = Dp (7 () = 7 (2))" 52), m €N,

T T
D,,LE() = €p, D

there follows

1 =27 (x)
n+2

T(x)(1—7(2))(2n —6) +2

fin2 () = SIS , (2.2)

for all m € N.
By a simple calculation, we have

4903(3;){(3712 + 251 — 210)¢2(x) + (6n + 12)} +24

na (7) = (n+2)(n+3)(n+4)(n+5)
Remark 1 [1]. For all n € N we have
a0 < —02 (@), (23)

whereéfm(x) =2 (x )—|—n+3, P2 (x):=71(x)(1—7(x)), z€[0,1].
Lemma 2 [1]. For every f € C0,1], we have
D7 (F5 )< (11

Applying Lemmal , the proof of this lemma easily follows. Hence the
details are omitted.

Lemma 3 Let f € C[0,1]. Then, we have
[DReF <ol f -
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Proof. Using the inequality | a® — 4% |< 0| a—b|with0<a,b<1,0 > 1 and
from the definition of Q;’i, we have

T 0 T 0 T T T
0< [ nk(z)] - [In,k-l—l(x)} < 6( nk(x) - In,k+1(x) = Gpn,k(‘r)'
Hence from the definition D¢ and Lemma 2, we obtain

DR < oIDLHOI <O f1-

Remark 2. We have

Dy (esx) = > QWL (x) = [Juo(x))’

3. Main Results

Throughout this paper we assume that iI[lf ]T'(:z:) >a,a € RT.
z€(0,1

Theorem 1. For f € C[0,1] and x € [0,1], there holds

[D7#(f50) ~ £ ()] < {1 - \/20 (w30 + nl+3)}” (f; i) ,

where w(f;0) is the usual modulus of continuity.

Proof. By linearity of the operators D7/, we get

1DR0(fi2) — f(2)] < (n+1) QS (@)

By applying Holder’s inequality and Lemma2, we obtain

IDLY(f;0) — f(x)] < {1 + % (D,T;e ((T(t) —7(x)) ;w))l/Q} w(f;0)
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1 - 9 1/2
< {1+ 5 (607 () = r@))s2) ) fwlfi0)

< {”Nﬁ)? (¢z<x>+nig>}w<f;a>.

Taking 6 = \/g , we get the desired result. O

Now let us recall the definitions of the Ditzian-Totik first order modulus
of smoothness and the K-functional [8]. Let ¢ (x) := y/7(z)(1—7(z)) and
f € C[0,1]. The first order modulus of smoothness is given by

o= s {7 (o4 2500 g (- ) o B ),

0<h<t 2

Further, the appropriate K-functional is defined by

K it) = inf - tlorg' ||} (¢
o (fit) = _nf (IS = gll + tllerg/I1} (2> 0),

where Wi, [0,1] = {g : g € ACi0:[0,1],||¢-¢'|| < oo} and g € AC}c[0, 1] means
that g is absolutely continuous on every interval [a, b] C (0, 1). It is well known
[8, p. 11] that there exists a constant C' > 0 such that

K, (f;t) < Cw, (f;t). (3.1)
Theorem 2. Let f € C[0,1]. Then for every x € (0,1), we have

O Cfn) ¥ 1] e v
D71 (i) = F(@)] < CO)wy, (f’a\/n+z<”<n+3>soz(x>>>'

Proof. Using the representation

h(t) = (hOTfl) (r(¥)) = (hOTfl) (r(x)) + /( : (hOTil)/ (u)du

we get
(1) )
| D30 (hs ) — h(z)| = ‘DZ’G (/ (hor™") (“)d“>|~ (32)
7(x)
But,
o TR | ferly) M),
/Tu) (o) (udu = /z T’(y)T(y)dy’ - /x pr(y) T’(y)T(y)dy‘
Rl | [* 7' (y)
= /z o)) 39)

a
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and

"7 (y) i 1 1 )
/m ‘PT(Z:’JJ) dy‘ = /m <\/T(y) + \/1 _ T(y)) ' (y)dy
=2 (‘m_ \/T(m)‘ + ‘\/1 —7(t)— /1 —T(:E)D

— 27 (t) - ()] ! " !
\/T(t)+\/7‘($) \/lf'r(t)+\/lf7'(x)

1 1 2V/2|7(t) — 7(z)|
<2l7(t) - 7(x)] (%T(x) i T(x)) =T @

hence from relations (3.2)—(3.4) and using Cauchy—Schwarz inequality, we ob-
tain

i

(3.4)

h” 7,0 (o):
()D (Ir(#) = 7(@)[; )

IIwrhII 20 (r(8) — ()2 )] 2
< 22 2 DR ((7(0) - (@) )]

<2f”‘p7h ” T 007 (G (1) = 7))

a

e
*Ilsof ’\/ +2 n+3 g >>. (3.5)

Using Lemma 3 and (3.5) it follows that
D70 (fs2) = f(2)] < [DRP(f = hs2)| + | f(2) = h(x)| + | DL (hs ) — h(z)]

< {<9+1>Hf—hll + i%h"%ﬁz 1+ <+31>@<>)}
e T i

where C(0) = max {(0 + 1),4}.
Taking infimum on the right hand side of the above inequality over all
g € W,_[0,1], we get

T, . _ o ;
D50 - f(2)] < CLO)E, @’Vmu@+m+mﬂm»'

Using the relation (3.1), the theorem is proved. O

(D3 (hs ) — ()] < 2v2 127

1/2
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4. Quantitative Voronovskaja Type Theorem

In this section we prove a quantitative Voronovskaja type theorem for the
operator D7:%. This result is given using the first order Ditzian-Totik modulus
of smoothness. In the recent years, several researchers have made significant
contribution in this area [1-4,9].

Theorem 3. For any f € C?[0,1] and z € [0,1] the following inequalities hold

WA D (fi) = F@)] | < \/2e{soz<x> + ey

(for ) ||jﬁsoi<x>

+ ((f o 1)'s mwx)> +o(n )

[V DL (i) = f(@)] | < \/2e{soz<x> + ni?)}| (for )l

(for ) ||jﬁsoi<x>

+ oy, <(forl)”; fff) Fo(n™),

where C is a constant depending on 0.
Proof. Let f € C?[0,1] and x,t € [0,1]. Then by Taylor’s expansion, we have
F) = (For™t) (r(1)
=(for ) @)+ (for ™) (@) (r(t) - (=)
+ /TT(t)(T(t) —u) (for )" (u)du.
Hence

F@&) = f@) = (for™) (7(2) (r(t) = 7(2)) — = (for )" (r(2)) (r(¢t) — 7(x))?

[N

7(t)
—Uu 0771 " u)du
+ / L 0= (for)

7(t)
- [ e =0 (rer ) G
= (for V) (r(x)) (r(t) — 7())

1

—5 (for™) (@) (r(t) — 7(x))*
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T(t) 1" "
[ ew-w[rer) @ = (ror ) wwy]an
Applying D7-? to both sides of the above relation, we get
DR (fi2) = f(@)] = (f o) (r@) DR (r(t) = 7(x)) )
5 (For ) (HENDF (1) — (@) )

D’ ( / ey -w [(For™)" ()

(@)
— (for )" (T(w))} du; w) ’ (4.1)

+

For g € W, [0,1), we have

7(t)
/ I7(t) —
T(x)
7(t)
/ I7(t) —
7(x)

7(t)
/ =l l(ge ) = (gor ) (7))

T(t)
/ 7 (8) — ]
7(x)

J 17 ) = 960 10~ 7l
[ 1) = g 70 - 7)1 7 e

/

(for™ )H (u) — (fOT*l)N (T(x))‘du

<

(For )" () = (gor ") (w)|du

_|_

+

(gor™ ) (r(@) = (for™)" (T(m))‘ du

+

+

9@~ (For ) (r(a \ 7(t) - r(y)h'(y)dy\

<o (for ) — gl /|T \
L /zlg v)ldv| |7(t) = 7(y)I7' (y)d y‘
< (For )" — gll(r(t) - m(2))?

t
+ lle-g'l

() T<y>|7'<y>dy‘ .

x
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Using the inequality [8, p. 141]

ly—vl o ly—=|

v(i=0) S 2(i—a)’ v is between y and =,

we can write

I7(y) = 7(v)|
7(0)(1 = 7(v))

7(y) = 7(2)]
7(@)(1 = 7(x))

<

Therefore,

/ ) —ul|(For ) (W) - (o) (r(e))|

7(x)

<llror) ~alit () ( )2
iy >|1/2, ON
/ @ ) -t

x |7(t) = T(y)|7 (y)dy
< (For™)" = gl(r(t) = 7(x))?
/ () — (@) r(6) - )l i
< (For™)" = gll(r(t) — (x)?

lorg'll _
+ QTQOT 1(93)

w2 [ et - ) ay
< I(For) —glir@) — o) + 22t @) @ (2)

Now combining the relations (4.1)—(4.2), applymg Lemma 1, Remark 1,
Lemma 3 and the Cauchy—Schwarz inequality, we get

[D7(f22) — @] < | (Fo7™) (@) DF*(7(1) ~ 7(2)] )
+ ol (For™) @)D ((r(t) — (a))?s2)
(o — gl DR () — (2)s )

+ 288 o0y Do (1) — (@)

<oy (22 (e - T<m>>2;x>)1/2

+ I (For™) 1D ((r(t) — 7)) )
(o — gl DR’ ((r(6) — 7(a))?s2)
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, 1/2
+ 200y (079 (ot0) - @) )

1/2
x (D:;@ ((r(t) — 7())*:2) )

) 1/2
< (For )| (9D;<<<T<t> (@) ;m>)
+ 5l (070 - () ) )
FlFor )y — gl (eD; (1) — () ) )

/ 1/2

+ ) (007 (1) - r@)0) )

x (9172 ((r(t) = 7(@) % @) >1/2

_ \/n2f2{s03(:v)+l}ll (For )l
Fl(For )" ||+2{sof< '+ 13

20 s
+ n+2{tpz(x) }| (fOT ) 7g||+(p;1(x)M.

n+3

(n+2)(n+3)(n+4)(n+5)

\/29 {wf(mH 1 }\le{4¢%(w){(3n2+25n210)¢3(x)+(6n+12)}+24}

< n%fg{‘ﬁz(w) +3}‘|(f07—1)"|+\| (for ) ||?SOT( 2)
+ s {%( W(ror™) — gl + 1270 ) £}+o<n—3/2).

Because ¢2(z) < ¢, (z) < 1, 2 € [0,1] we obtain

7'9
]D (f:x) ‘_\/n+2{(‘02($)+n+3

+ | (fof1>” ||—soi<z>

bior

2V6

{(fOT b —g||+cm1/2<p7(z)l%g’ll}+0(n3/2); (4.3)

n—|—2
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T, 1 — 4
D7 (f:2) \_\/n+2{w2(w)+m}l(f07 'l
. " 9
I (For™) Il i)
20 26

= r(a) {(f o) — gl + Cmmmg’n} Fo(n2). (44)

Taking the infimum on the right hand side of (4.3) and (4.4) over all g €
W, [0,1], we get

-

VD (fi) = f@)] | < \/29{<p3(x) s el

(for )" ||jﬁsoi<x>

W [DR?(fiz)—f(2)] | < \/29{¢3(x) + nig}” (For )|

(for )" ||jﬁso3<x>

c 1 26 .
+ @K, ((f or 1), w) o).
Using (3.1), we reach the desired result. O

Lastly we discuss the approximation of functions with a derivative of
bounded variation on [0,1]. Let DBV]0, 1] denote the class of differentiable
functions f defined on [0, 1], whose derivative f are of bounded variation on
[0,1]. The functions
f € DBV|0, 1] has the following representation

f(x) = /01 g(t)dt + £(0),

where g € BV([0,1], i.e., g is a function of bounded variation on [0, 1].
The operators D7:% can be expressed in an integral form as follows:

1
DI (fsa) = / K79 (e, 1)(f o 1) ()dt, (4.5)
0

where the kernel K% is given by

K70z, t) = (n+1) > Qr% () puk (1) -
k=0
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Lemma 4. For a fized x € (0,1) and sufficiently large n, we have

20 0y . (x)
: 7,0 — (Y gT,0 < n,T <
(1) &z, y) = [y K70 (x,t)dt < n 2 () -y 0<y<r(x),
52
(i) 1— €09z 2) = [P KT nar < 20 OneD oy oo,

n+2(z—7(x))?
where 62 (2) is defined in Remark 1.

Proof. (i) Using Remark 1 and Lemma 3, we get

&%) = [ Ko [ (jgg‘;)gfq%,t)dt

DLO((r(t) — r(@)a) _  DL((r(t) — r(@))a) 02 ()
S ) R o P By Ry o ey gy

The proof of (ii) is similar hence the details are omitted. O

<

Theorem 4. Let f € DBV[0,1]. Then, for every x € (0,1) and sufficiently
large n, we have

DL (fr) - £(a)
<{qaz|rer @ +os o ey
# | o ) = (o7 (rlo-)| }y 725000
20 57217_(1,) [vn] 7(x) v T(:L') 7(x) .
+ : (for™), (for™ ),
n+2 7(x) = r(z)\—/f(,f) vn T(x)\_/fy%)
20 62.(x) VO 7(@)+ S L
+n+2(1_7_(x))kz:1 T\({) (fOT ):v
() + A=)
a-rte ("
(fOT )1 )
vn 7(x)

where \/Z f denotes the total variation of f on [a,b] and (f o 7*1); is defined
by

!

(for™h),() =10, t=r(z) (4.6)

{(fOTl)'(t) —(for H(r(@-), 0<t<r(w)
(for ™)) = (for ™) (r(z+)) 7(x)<t<L
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Proof. Since D7(1;2) = 1, using (2.3), for every = € (0,1) we get

DR (f;x) - f(z) :/0 K0, t)((for™h)(t) — (for h)(r(x))dt
:/ K;’e(m,t)/ (fOT_l)/(u)dudt. (4.7)
0 7(x)

For any f € DBV[0, 1], from (4.6) we may write

(For ) (u)
= (For )+ o ((For™) () +0(7 077 ()

45 (or Y ) - (rorY (r(-)) (somlu— @) + 551 )
#a) | (For ) (@) = ((£or ) rlor) + (For) ()]

(4.8)
where
s ={ 5T
Obviously,
[/ (werm-g(rer it

+(fo Tl)’(T(x—))>>5x(u)du) K70z, t)dt =0 (4.9)

Let us take
/ (/ N 0+1 Y (@) + 0(f o™ )(T(a:—)))du>K,Z’0(m,t)dt

(foT Y (+ () +0(fo7'71)/(7'(a:7))> /Ol(tr(x))K;ﬂ(x,t)dt
7l

(for ) (r(zt) +9(fOT_l)I(T(x—))>DZ’0((T(t)—T(x));x)
(4.10)
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and
Ay = i KTH (z,t) (/ ((fOTl)/(T(x—F))

—(for )’(T(x))> (sgn(u —7(z)) + Z+1>du) dt

— (e - oY e

X {— /OT(I) (/;(1) (sgn(u —7(x)) + z:rbdu) K9 (x, t)dt
(] (ot >>+g+1>du)m 1l

()

<‘(f07‘1)'(( )= (For \/u—T K79, )t

/

B ‘(fwl)’wxﬂ) —(for ™V (r(z-))

D7 (1) = @]
(4.11)

Combining Egs. (4.7-4.11), on an application of Cauchy—Schwarz inequality
and Remark 1, we obtain

DI (0) ~ 1 < (P o Gl + 07 077 ey 2500
+l(ror )~ orY( ]\/zu

+ /T(m)</(z) (for ™) (u) )KTG(m t)dt‘

+ /Z (/( (For ™) (u) )KTe(m t)dt' (4.12)

Now, let

7(x) t
AT ((f o —1;, = ( o —1; d)K;”’ ,t)dt,
((for).,x) / /ﬂ@(f P, (u)du | K59, )

and

B((for ) = [ ;) (/ ;) (70771, ) ) K ).
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Now to calculate the estimates of the terms AT ((f o 7*1);, x), using the def-
inition of ¢7? given in Lemma4, we can write

() t

Af(for e = [ ([ er e ) et par
0 7(x) ot

Applying the integration by parts, we get

/ T(w) /
A (For pa] < [ I om0l (ot
0
r(x)

T(m)7 n
< / Yo Y (1) €70 (1)t
0

7(x)
+ / rer D O (@, )t = Iy + L.
(z)—

Since (f o T_l);(T(.’E)) =0 and f;’e(x,t) <1, we have

()
IQ = /
T(CL‘)fL\/%)

7(x) 7(z) ,
</ i \ (For ), | at
(z)— % t

(for 1)L (t) — (for Y, (r(x))| & (z, t)dt

< por | [ di= I
() - =2 (@)= vn () — T2
(x)— @)-T%
By applying Lemma4 and considering ¢t = 7(x) — @, we get
U
n<2 8 () / o (F om0 — (F o 7. ()] s
1= n -+ 2 n,t 0 T x T 7(z) (T(I) —t)Q
20 (@)= (1) , at
< 534@")/ (for™ )| s
2o @ ) Vv GOEDE
29 6727, N LL’ "'(I)
= / (fo 7_1); du
(@) ﬂz)
20 5721 N [x/ﬂ 7(x)
< - Vo (fer

k=1 7(z)— "(1)
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Therefore,

IN

/ o 52 ([ @ /
ATO((f o YY) < 20 Dnar (D) (\/ (for,

@) [ ,
+—= \V  (For |- (4.13)
Ve

!
xT

Also, using integration by parts in B7-%(
z=1(x)+ (1 = 7(x))/\/n, we have

L[ i)

o ( IE r-1>;<u>du> S €0

_ ‘ [/T;w((f or 1), (wdu)(1 - & (a, t))} jw

x) and applying Lemma 4 with

IBLO((for ™), 2)| =

-/ ( (o0 - 6 )

| ;)((f 0 7Y, (u)edu)(1 - g,cv%,t))I

- (for )L =& (@, 0))dt
/ |

[, Gor i - gt mar
1
- (fOT1);(t)(1—€£’9(x,t))dt'

t
<

< et | (\/ (f w%) (t — 7)) 2t

()
o
()

t

(for ),dt
)
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20 ! k Y

< 52 t— —2dt

< 250 [ N G [

T(m)_;'_(l \}'%I))
1— T(CU) RN
vl B A A
By substituting u = (1 — 7(x))/(t — 7(x)), we get
T(w)+(1*T(Tr))
- 20 v g L _
B2 £ < 250 o) | Vo (erh | - re)
()

(z)+ (1*\;;(@))

+1_77($) \/ (fOT_l);

— () A= (@)
20 82, [T
< —y 21_’77_@) \/ (for™),
k=1 ()
(z)+ (1*;(3))
1-— T(.r) —1y/
+T \/) (for ). ]. (4.14)
Collecting the estimates (4.12—4.14), we get the required result. This completes
the proof. ]
Acknowledgements

The third author is thankful to the “Ministry of Human Resource Develop-
ment” India for financial support to carry out the above research work.

References

[1] Acar, T., Aral, A., Rasa, I.: Modified Bernstein-Durrmeyer operators. Gen.
Math. 22, 27-41 (2014)

[2] Acar, T.: Asymptotic formulas for generalized Szasz—Mirakyan operators. Appl.
Math. Comput. 263, 223-239 (2015)

[3] Acar, T., Aral, A., Raga, I.: The new forms of Voronovskaya’s theorem in
weighted spaces. Positivity 20, 25-40 (2016)

[4] Acu, A.M., Agrawal, P.N., Neer, T.: Approximation properties of the mod-
ified Stancu operators. Numer. Funct. Anal. Optim. doi:10.1080/01630563.
20161248564

[5] Agrawal, P.N., Ispir, N., Kajla, A.: Approximation properties of Bezier-
summation-integral type operators based on Polya—Bernstein functions. Appl.
Math. Comput. 259, 533-539 (2015)


http://dx.doi.org/10.1080/01630563.20161248564
http://dx.doi.org/10.1080/01630563.20161248564

1358 T. Acar et al. Results Math

[6] Bernstein, S.N.: Démonstration du théorém de Weierstrass fondée sur la calcul
des probabilitiés. Commun. Soc. math. Charkow Sér.2 t 13, 1-2 (1912)

[7] Chang, G.: Generalized Bernstein—Bezier polynomials. J. Comput. Math. 1, 322
327 (1983)

[8] Ditzian, Z., Totik, V.: Moduli of smoothness. Springer, New York (1987)

[9] Finta, Z.: Remark on Voronovskaja theorem for g-Bernstein operators. Stud.
Univ. Babes Bolyai Math. 56, 335-339 (2011)

[10] Gonska, H., Pitul, P., Rasa, I.: General King-type operators. Results Math. 53,
279-286 (2009)

[11] Guo, S.S., Liu, G.F., Song, Z.J.: Approximation by Bernstein—-Durrmeyer—Bezier
operators in L, spaces. Acta Math. Sci. Ser. A Chin. Ed. 30, 1424-1434 (2010)

[12] King, J.P.: Positive linear operators which preserve z2. Acta Math. Hung. 99,
203-208 (2003)

[13] Morales, D.C., Garrancho, P., Rasa, I.: Bernstein-type operators which preserve
polynomials. Comput. Math. Appl. 62, 158-163 (2011)

[14] Wang, P., Zhou, Y.: A new estimate on the rate of convergence of Durrmeyer—
Bezier operators. J. Inequal. Appl. 2009, 702680 (2009). doi:10.1155/2009/
702680

[15] Zeng, X.M.: On the rate of convergence of two Bernstein—Bezier type operators
for bounded variation functions II. J. Approx. Theory 104, 330-344 (2000)

[16] Zeng, X.M., Piriou, A.: On the rate of convergence of two Bernstein—Bezier type
operators for bounded variation functions. J. Approx. Theory 95, 369-387 (1998)

Tuncer Acar

Department of Mathematics
Faculty of Science and Arts
Kirikkale University

71450 Yahsihan, Kirikkale
Turkey

e-mail: tunceracar@ymail.com

P. N. Agrawal and Trapti Neer
Department of Mathematics

Indian Institute of Technology Roorkee
Roorkee 247667

India

e-mail: pna_iitr@yahoo.co.in

Trapti Neer
e-mail: triptineeriitr@gmail.com

Received: September 22, 2016.
Accepted: December 15, 2016.


http://dx.doi.org/10.1155/2009/702680
http://dx.doi.org/10.1155/2009/702680

	Bezier variant of the Bernstein–Durrmeyer  type operators
	Abstract
	1. Introduction
	2. Auxiliary Results
	3. Main Results
	4. Quantitative Voronovskaja Type Theorem
	Acknowledgements
	References




