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Abstract. In this paper, we use p-adic Gamma function and certain formu-
las on hypergeometric series to establish several new supercongruences.
In particular, we give a generalization of a p-adic supercongruence con-
jecture due to van Hamme and Swisher.
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1. Introduction

Following Andrews et al. [3], we define the hypergeometric series by

r+1Fs

(
a0, a1, . . . , ar

b1, b2, . . . , bs
; z

)
:=

∞∑
k=0

(a0)k(a1)k · · · (ar)k

k!(b1)k · · · (bs)k
zk,

where (z)n is the Pochhammer symbol given by

(z)0 = 1, (z)n = z(z + 1) · · · (z + n − 1) for n ≥ 1.

The truncated hypergeometric series, defined by

r+1Fs

(
a0, a1, . . . , ar

b1, b2, . . . , bs
; z

)
n

:=
n∑

k=0

(a0)k(a1)k · · · (ar)k

k!(b1)k · · · (bs)k
zk,

are of importance in many fields including algebraic varieties, differential equa-
tions, Fuchsian groups, elliptic functions, modular forms and special functions,
see, for example, [3,4,8].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-016-0635-7&domain=pdf
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Recall that the function Γ(x) is defined by the formula [3]: for Re x > 0,

Γ(x) =
∫ ∞

0

tx−1e−tdt.

One of the most important properties of Γ(z) is the following Euler’s reflection
formula:

Γ(z)Γ(1 − z) =
π

sin πz
.

Let p be an odd prime and n a positive integer. We define the p-adic Gamma
function as

Γp(n) := (−1)n
∏
j<n

p�j

j.

Then we extend this to all x ∈ Zp by setting

Γp(x) = lim
n→x

Γp(n),

where n runs through any sequence of positive integers p-adically approaching
x and Γp(0) = 1.

Congruences which happen to hold modulo some higher power of a prime
p are called supercongruences. Various supercongruences were obtained and
conjectured by many mathematicians including Beukers [5,6], van Hamme
[25], Zudilin [26], and Sun [21–23].

In [6], Beukers made the following conjecture: for all odd primes p, there
holds

p−1
2∑

k=0

(−1)k

(p−1
2

k

)(
2k

k

)2 1
16k

≡
{

4x2 − 2p if p ≡ 1 mod 4, p = x2 + y2 with x odd
0, if p ≡ 3 mod 4 mod p2. (1.1)

Here and below, we use the notation A ≡ B (mod pl) if (A − B)/pl is a p-
integer for A,B ∈ Q. Beukers only proved this congruence in the modulus p
case, which is equivalent to
p−1
2∑

k=0

(
2k

k

)3 1
64k

≡
{

4x2 if p ≡ 1 mod 4, p = x2 + y2 with x odd
0 if p ≡ 3 mod 4 mod p.

Congruence (1.1) was proved completely by Ahlgren [1], Ishikawa [10] and
Mortenson [18]. It should be pointed out that van Hamme [25] established the
following company congruence of (1.1):

p−1
2∑

k=0

(
2k

k

)3
1

64k
≡

{
4x2−2p if p ≡ 1 mod 4, p=x2+y2 with x odd
0 if p ≡ 3 mod 4

mod p2.

(1.2)
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We shall give a new proof of congruence (1.2) by using a 3F2 summation
formula.

13 congruences linking the partial sums of certain hypergeometric series
to the values of the p-adic Gamma function were presented by van Hamme [25].
He proved 3 congruences and gave a weaker result of another one. Based on the
result of Ahlgren and Ono [2], Kilbourn [12] proved the conjecture [25, (M.2)].
In [15], McCarthy and Osburn settled van Hamme’s conjecture [25, (A.2)].
Mortenson [16] confirmed the following conjecture [25, (B.2)] by placing it in
the context of the Beukers-like supercongruences of Rodriguez-Villegas. Later,
Long [13] proved the following conjecture [25, (J.2)] for each p > 3 and gave a
weaker form of [25, (L.2)]. In 2014, Long and Ramakrishna [14] established a
stronger result of [25, (D.2)]. The author in [9, Theorem 1.3] set up a congru-
ence that includes as special cases the conjectures [25, (B.2), (E.2) and (F.2)].
Recently, Osburn and Zudilin [19] proved the conjecture [25, (K.2)]. Swisher
in [24] handled the cases [25, (A.2), (C.2), (E.2), (F.2), (G.2) and (L.2)] and
in particular proved the cases [25, (A.2), (C.2), and (G.2)] to higher powers of
p than those conjectured by van Hamme.

In this article, we shall establish the following supercongruence which
includes as special cases [25, (C.2) and (G.2)] as well as some new results.

Theorem 1.1. Let l ≥ 2 be an integer and p ≥ 5 a prime with p ≡ ±1 mod l.
Then

εp−1
l∑

k=0

(2lk + 1)
(− 1

l

k

)4

≡ εp
Γp

(
1
l

)
Γp

(
1 − 2

l

)
Γp

(
1 − 1

l

) mod p4, (1.3)

where ε =
{

1 if p ≡ 1 mod l
l − 1 if p ≡ −1 mod l

.

Letting l = 2 in (1.3) and noting that Γp(0) = 1, we get the following
result on supercongruence.

Corollary 1.2. Let p ≥ 5 be a prime. Then
p−1
2∑

k=0

(4k + 1)
(−1/2

k

)4

≡ p mod p4. (1.4)

Congruence (1.4) is a special case of [13, Theorem 1.1]. (1.4) in the mod-
ulus p3 case was confirmed by L. van Hamme (see [25, (C.2)]). In that paper
[25], he used a sequence of orthogonal polynomials.

Taking l = 3 in (1.3) and using (2.5), we are led to the following congru-
ences which appear to be new.

Corollary 1.3. Let p ≥ 5 be a prime. If p ≡ 1 mod 3, then
p−1
3∑

k=0

(6k + 1)
(−1/3

k

)4

≡ −pΓp

(
1
3

)3

mod p4;
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if p ≡ 2 mod 3, then

2p−1
3∑

k=0

(6k + 1)
(−1/3

k

)4

≡ 2pΓp

(
1
3

)3

mod p4.

Setting l = 4 in (1.3), we obtain the following interesting results.

Corollary 1.4. Let p ≥ 5 be a prime. If p ≡ 1 mod 4, then

p−1
4∑

k=0

(8k + 1)
(−1/4

k

)4

≡ p
Γp( 1

2 )Γp( 1
4 )

Γp( 3
4 )

mod p4; (1.5)

if p ≡ 3 mod 4, then

3p−1
4∑

k=0

(8k + 1)
(−1/4

k

)4

≡ 3p
Γp( 1

2 )Γp( 1
4 )

Γp( 3
4 )

mod p4.

Congruence (1.5) in the modulus p3 case was conjectured by van Hamme
[25, (G.2)]. The result given here is a refinement of that of van Hamme.

Rodriguez-Villegas [20] proposed 22 conjectured supercongruences which
are related to the truncated hypergeometric function associated to a Calabi-
Yau manifold at a prime p and the number of its Fp-points. We mention one
of them below.

p−1∑
k=0

(
2k

k

)2

16−k ≡
(−4

p

)
mod p2. (1.6)

The above congruence was first confirmed by Mortenson [17].
We give another supercongruence which includes (1.6) as a special case.

Theorem 1.5. Let l ≥ 2 be an integer and p ≥ 5 a prime with p ≡ ±1 mod l.
Then

εp−1
l∑

k=0

(−1/l

k

)2

≡ −Γp

(
1
l

)2

Γp

(
1 − 2

l

)
mod p2, (1.7)

where ε =
{

1 if p ≡ 1 mod l
l − 1 if p ≡ −1 mod l

.

Letting l = 2 in (1.7) and noting that Γp(0) = 1 and
(−1/2

k

)
= (2k

k )
(−4)k , we

get the congruence (1.6).
Taking l = 3, l = 4 and l = 6 in (1.7), we are led to the following three

congruences which seem to be new.
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Corollary 1.6. Let p ≥ 5 be a prime. Then
p−1∑
k=0

(−1/3
k

)2

≡ −Γp

(
1
3

)3

mod p2,

p−1∑
k=0

(−1/4
k

)2

≡ −Γp

(
1
4

)2

Γp

(
1
2

)
mod p2,

p−1∑
k=0

(−1/6
k

)2

≡ −Γp

(
1
6

)2

Γp

(
2
3

)
mod p2.

Theorem 1.7. Let p ≡ 1 mod 4 be a prime and p = x2 + 4y2 with x, y ∈ Z.
Then

3F2

(
1
4 , 1

4 , 1
2

1, 1 ; 1
)

p−1

≡ 4x2 − 2p mod p2.

In the next section, we shall provide some lemmas which will be used in
the derivation of Theorems 1.1 and 1.5. A new proof of (1.2) will be given in
the third section. Section 4 is devoted to our proof of Theorems 1.1, 1.5 and
1.7.

2. Preliminaries

Let ζ = e
2πi
3 . Then from the fact that

(a + bζjp)k = (a + bζjp)(a + bζjp + 1) · · · (a + bζjp + k − 1)

= (a)k

(
1 + bζjpA(k) + b2ζ2jp2B(k)

)
mod p3,

where

A(k) =
k∑

l=1

1
a + l − 1

and

B(k) =
∑

1≤l<m≤k

1
(a + l − 1)(a + m − 1)

,

for a �= 0 and j ∈ {0, 1, 2}, we have

(a + bp)k(a + bζp)k(a + bζ2p)k = (a)3k mod p3. (2.1)

Another important result we need is the following congruence which is similar
to (2.1), namely

(a + bp)k(a − bp)k ≡ (a)2k mod p2. (2.2)
Now we recall some basic properties of the Morita p-adic Gamma func-

tion.
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Lemma 2.1 (See [7, §11.6]). Let p be an odd prime and x ∈ Zp. Then
(i)

Γp(1) = −1. (2.3)
(ii)

Γp(x + 1)
Γp(x)

=
{−x, if vp(x) = 0;

−1, if vp(x) > 0; (2.4)

where vp(x) denotes the p-adic evaluation of x.
(iii)

Γp(x)Γp(1 − x) = (−1)a0(x), (2.5)
where a0(x) ∈ {1, 2, . . . , p} such that a0(x) ≡ x mod p.

We need the following important result, which follows readily from the
definition of Γp(x) and Long and Ramakrishna [14] used but did not state
explicitly (see [14, Lemma 17]).

Lemma 2.2. Let p be an odd prime, m ≥ 3 an integer and ζ a m-th primitive
root of unity. Suppose a ∈ Zp[ζ] and n ∈ N such that a + k �∈ pZp[ζ] for all
k ∈ {0, 1, . . . , n − 1}. Then

(a)n = (−1)n Γp(a + n)
Γp(a)

.

The following result on the (p-adic) expansion of p-adic Gamma function
is very important in the proof of Theorems 1.1 and 1.5.

Lemma 2.3 (See [14, Theorem 14]). For p ≥ 5, r ∈ N, a ∈ Zp,m ∈ Cp satisfying
vp(m) ≥ 0 and t ∈ {0, 1, 2} we have

Γp(a + mpr)
Γp(a)

≡
t∑

k=0

Gk(a)
k!

(mpr)k mod p(t+1)r,

where Gk(a) = Γ(k)
p (a)

Γp(a) ∈ Zp and Γ(k)
p (x) is the k-th derivative of Γp(x).

We conclude this section with the following result which is similar to [13,
Lemma 2.8].

Consider a (t + 1)-variable formal power series F (x1, x2, . . . , xt; z). For
example, maybe it is a scalar multiple of a terminating hypergeometric series

C · r+1Fr

(
a1, a2, . . . , ar −n
b1, . . . , br−1 br

; z
)

.

We assume that by setting xi = ai for i = 1, . . . , t and z = z0, we have
F (a1, a2, . . . , at; z0) ∈ Zp. Fix z0 and deform the parameters ai into polyno-
mials ai(x) ∈ Zp[x] such that ai(0) = ai for each i ∈ {1, 2, . . . , t}, and assume
that the function F (a1(x), a2(x), . . . , at(x); z0) is a formal power series in x3

with coefficients in Zp, namely,

F (a1(x), a2(x), . . . , at(x); z0) = A0 + A3x
3 + A6x

6 + · · ·
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for Ai ∈ Zp, where A0 = F (a1, a2, . . . , at; z0). Setting x = p in the above
expansion of F , we obtain

Lemma 2.4. Under the setting above, if ps|A3 for s ∈ {1, 2, 3}, then
F (a1(p), a2(p), . . . , at(p); z0) ≡ A0 mod p3+s.

3. A New Proof of (1.2)

Recall from [3, Theorem 3.4.1] the following summation formula:

3F2

(
a,−b,−c

1 + a + b, 1 + a + c
; 1

)

=
Γ(a/2 + 1)Γ(a + b + 1)Γ(a + c + 1)Γ(a/2 + b + c + 1)
Γ(a + 1)Γ(a/2 + b + 1)Γ(a/2 + c + 1)Γ(a + b + c + 1)

.

Letting a = 1
2 , b = p−1

2 , c = −1−p
2 yields

3F2

(
1
2 , 1−p

2 , 1+p
2

1 + p
2 , 1 − p

2

; 1
)

=
Γ

(
5
4

)
Γ

(
1
4

)
Γ

(
1 + p

2

)
Γ

(
1 − p

2

)
Γ

(
3
4 + p

2

)
Γ

(
3
4 − p

2

)
Γ

(
3
2

)
Γ

(
1
2

) . (3.1)

By (2.2) and the fact ( 1
2 )k

k! = (2k
k )
4k ,

3F2

(
1
2 , 1−p

2 , 1+p
2

1 + p
2 , 1 − p

2

; 1
)

≡ 3F2

(
1
2 , 1

2 , 1
2

1, 1 ; 1
)

p−1
2

=

p−1
2∑

k=0

(
2k

k

)3 1
64k

mod p2.

(3.2)
We now consider Γ( 5

4 )Γ( 1
4 )Γ(1+ p

2 )Γ(1− p
2 )

Γ( 3
4+ p

2 )Γ( 3
4− p

2 )Γ( 3
2 )Γ( 1

2 )
mod p2. It is easily seen from the fact

Γ(x + 1) = xΓ(x) and the Euler’s reflection formula that

Γ(1 + p
2 )Γ(1 − p

2 )
Γ( 3

2 )Γ( 1
2 )

= (−1)
p−1
2 p. (3.3)

When p ≡ 1 mod 4, it is easy to see from Lemma 2.2 that

Γ
(

1
4

)
Γ

(
3
4 − p

2

) =
(

3
4

− p

2

)
p−1
2

=
Γp

(
1
4

)
Γp

(
3
4 − p

2

) . (3.4)

But note that ( 1
4 ) p+1

2
has exactly a multiple of p which is p

4 . So by Lemma 2.2,

Γ
(

3
4 + p

2

)
Γ

(
5
4

) =
4Γ

(
3
4 + p

2

)
Γ

(
1
4

) = 4
(

1
4

)
p+1
2

= −p
Γp

(
3
4 + p

2

)
Γp

(
1
4

) . (3.5)

It follows from (3.3)–(3.5) that

Γ
(

5
4

)
Γ

(
1
4

)
Γ

(
1 + p

2

)
Γ

(
1 − p

2

)
Γ

(
3
4 + p

2

)
Γ

(
3
4 − p

2

)
Γ

(
3
2

)
Γ

(
1
2

) =
Γp

(
1
4

)2

Γp

(
3
4 + p

2

)
Γp

(
3
4 − p

2

) (3.6)
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By Lemma 2.3,

Γp

(
3
4

+
p

2

)
≡ Γp

(
3
4

)(
1 +

G1

(
3
4

)
p

2

)
mod p2,

Γp

(
3
4

− p

2

)
≡ Γp

(
3
4

)(
1 − G1( 3

4 )p
2

)
mod p2.

Then

Γp

(
3
4

+
p

2

)
Γp

(
3
4

− p

2

)
≡ Γp

(
3
4

)2

mod p2. (3.7)

Using (3.7) and (2.5) in (3.6), we get

Γ
(

5
4

)
Γ

(
1
4

)
Γ

(
1 + p

2

)
Γ

(
1 − p

2

)
Γ

(
3
4 + p

2

)
Γ

(
3
4 − p

2

)
Γ

(
3
2

)
Γ

(
1
2

) ≡ −Γp

(
1
4

)4

mod p2. (3.8)

Hence, by (3.1), (3.2) and (3.8),
p−1
2∑

k=0

(
2k

k

)3 1
64k

≡ −Γp

(
1
4

)4

mod p2. (3.9)

According to a result in [11, p. 200], we have if p ≡ 1 mod 4 is a prime and
p = x2 + y2 with x odd, then

λp = 4x2 − 2p, (3.10)

where λp is defined by
∞∑

n=1

λnqn = q

∞∏
k=1

(1 − q4k)6.

In view of (3.9), (3.10) and [25, Proposition 1], we obtain
p−1
2∑

k=0

(
2k

k

)3 1
64k

≡ 4x2 − 2p mod p2.

When p ≡ 3 mod 4, noticing that (3
4 − p

2 ) p−1
2

has a multiple of p which is −p
4

and using Lemma 2.2, we find Γ( 1
4 )

Γ( 3
4− p

2 )
≡ 0 mod p and Γ( 3

4+ p
2 )

Γ( 5
4 )

�≡ 0 mod p.
Then, by (3.3),

Γ
(

5
4

)
Γ

(
1
4

)
Γ

(
1 + p

2

)
Γ

(
1 − p

2

)
Γ

(
3
4 + p

2

)
Γ

(
3
4 − p

2

)
Γ

(
3
2

)
Γ

(
1
2

) ≡ 0 mod p2. (3.11)

In view of (3.1), (3.2) and (3.11), we deduce that
p−1
2∑

k=0

(
2k

k

)3 1
64k

≡ 0 mod p2.

This completes the proof. �
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4. Proof of Theorems 1.1, 1.5 and 1.7

Proof of Theorem 1.1. We first consider the case p ≡ 1 (mod l). Recall the
following important identity on hypergeometric series (see [3, Corollary 3.4.3]):

5F4

(
a, a

2 + 1, c, d,−m
a
2 , a − c + 1, a − d + 1, a + m + 1; 1

)
=

(a + 1)m(a − c − d + 1)m

(a − c + 1)m(a − d + 1)m
,

(4.1)
where m is a positive integer.

Let ζ = e
2πi
3 . Applying (4.1) with a = 1

l , c = 1−ζp
l , d = 1−ζ2p

l ,m = p−1
l

gives

5F4

(
1
l ,

1
2l + 1, 1−p

l , 1−ζp
l , 1−ζ2p

l
1
2l ,

p
l + 1, ζp

l + 1, ζ2p
l + 1

; 1

)
=

(
1
l + 1

)
p−1

l

(
1 − 1+p

l

)
p−1

l(
1 + ζp

l

)
p−1

l

(
1 + ζ2p

l

)
p−1

l

. (4.2)

With the help of (2.1) and the identity
(
x
k

)
= (−1)k (−x)k

k! , we get

5F4

(
1
l ,

1
2l + 1, 1−p

l , 1−ζp
l , 1−ζ2p

l
1
2l ,

p
l + 1, ζp

l + 1, ζ2p
l + 1

; 1

)
≡

p−1
l∑

k=0

(2lk + 1)
(− 1

l

k

)4

mod p3. (4.3)

By Lemma 2.2 and (2.4), we have

(
1 − 1 + p

l

)
p−1

l

= (−1)
p−1

l
Γp

(
1 − 2

l

)
Γp

(
1 − 1+p

l

) ,

(
1 +

ζp

l

)
p−1

l

= (−1)
p−1

l

Γp

(
1 − 1+ζ2p

l

)

Γp

(
1 + ζp

l

) ,

(
1 +

ζ2p

l

)
p−1

l

= (−1)
p−1

l

Γp

(
1 − 1+ζp

l

)

Γp

(
1 + ζ2p

l

) ,

and
(

1
l

+ 1
)

p−1
l

= p

(
1
l

)
p−1

l

= (−1)
p−1

l p
Γp

(
p
l

)
Γp

(
1
l

) = (−1)1+
p−1

l p
Γp

(
1 + p

l

)
Γp

(
1
l

) .

Then

(
1
l

+ 1
)

p−1
l

(
1 − 1+p

l

)
p−1

l(
1 + ζp

l

)
p−1

l

(
1 + ζ2p

l

)
p−1

l

= −p
Γp

(
1 − 2

l

)
Γp

(
1 + p

l

)
Γp

(
1 + ζp

l

)
Γp

(
1 + ζ2p

l

)

Γp

(
1
l

)
Γp

(
1 − 1+p

l

)
Γp

(
1 − 1+ζp

l

)
Γp

(
1 − 1+ζ2p

l

) .
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By Lemma 2.3,

Γp

(
1 +

ζjp

l

)
≡ Γp(1)

(
1 +

G1(1)ζj

l
p +

G2(1)ζ2j

2l2
p2

)
mod p3,

Γp

(
1− 1+ζjp

l

)
≡Γp

(
1 − 1

l

) (
1 +

G1

(
1 − 1

l

)
ζj

l
p +

G2

(
1 − 1

l

)
ζ2j

2l2
p2

)
mod p3,

for j ∈ {0, 1, 2}. It follows that

Γp

(
1 +

p

l

)
Γp

(
1 +

ζp

l

)
Γp

(
1 +

ζ2p

l

)
≡ Γp(1)3 mod p3,

Γp

(
1− 1+p

l

)
Γp

(
1 − 1 + ζp

l

)
Γp

(
1 − 1 + ζ2p

l

)
≡ Γp

(
1 − 1

l

)3

mod p3.

Hence, by (2.3) and (2.5), we arrive at

(
1
l + 1

)
p−1

l

(
1 − 1+p

l

)
p−1

l(
1 + ζp

l

)
p−1

l

(
1 + ζ2p

l

)
p−1

l

≡ −p
Γp

(
1 − 2

l

)
Γp(1)3

Γp

(
1
l

)
Γp

(
1 − 1

l

)3

= p
Γp

(
1 − 2

l

)
Γp

(
1
l

)
Γp

(
1 − 1

l

) mod p4. (4.4)

In view of (4.2)–(4.4), we obtain

p−1
l∑

k=0

(2lk + 1)
(− 1

l

k

)4

≡ p
Γp

(
1 − 2

l

)
Γp

(
1
l

)
Γp

(
1 − 1

l

) mod p3.

Below we consider the following truncated hypergeometric series:

5F4

(
1
l ,

1
2l + 1, 1−x

l , 1−ζx
l , 1−ζ2x

l
1
2l ,

x
l + 1, ζx

l + 1, ζ2x
l + 1

; 1

)
p−1

l

.

By symmetry,

5F4

(
1
l ,

1
2l + 1, 1−x

l , 1−ζx
l , 1−ζ2x

l
1
2l ,

x
l + 1, ζx

l + 1, ζ2x
l + 1

; 1

)
p−1

l

= 5F4

(
1
2l + 1, 1

l ,
1
l ,

1
l ,

1
l

1
2l , 1, 1, 1 ; 1

)
p−1

l

+ A3x
3 + A6x

6 + · · · (4.5)
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for some A3 ∈ Zp. In addition, we consider the following transformation of
hypergeometric series (see [3, Theorem 3.4.5]):

7F6

(
a, a

2 + 1, b, c, d, e, f
a
2 , a − b + 1, a − c + 1, a − d + 1, a − e + 1 a − f + 1; 1

)

=
Γ(a − d + 1)Γ(a − e + 1)Γ(a − f + 1)Γ(a − d − e − f + 1)
Γ(1 + a)Γ(a − e − f + 1)Γ(a − d − e + 1)Γ(a − d − f + 1)

× 4F3

(
a − b − c + 1, d, e, f

a − b + 1, a − c + 1, d + e + f − a
; 1

)
, (4.6)

provided the series on the right side is terminating and the one on the left
converges.

Taking a = 1
l , b = 1−x

l , c = 1−ζx
l , d = 1−ζ2x

l , e = 1−p
l , f = 1 in (4.6),

we find

7F6

(
1
2l + 1, 1

l ,
1−x

l , 1−ζx
l , 1−ζ2x

l , 1−p
l , 1

1
2l , 1 + x

l , 1 + ζx
l , 1 + ζ2x

l , 1 + p
l ,

1
l

; 1

)

=
Γ

(
1+ ζ2x

l

)
Γ

(
p−1+ζ2x

l

)
Γ

(
1+ p

l

)
Γ

(
1
l

)
Γ

(
1+ p−1+ζ2x

l

)
Γ

(
ζ2x

l

)
Γ

(
1+ 1

l

)
Γ

(
p
l

) 4F3

(
1 − 1+ζ2x

l , 1−ζ2x
l , 1−p

l , 1
1 + x

l , 1 + ζx
l , 1 + 1+ζp

l

; 1

)
.

By the fact Γ(x + 1) = xΓ(x),

Γ
(
1 + ζ2x

l

)
Γ

(
p−1+ζ2x

l

)
Γ

(
1 + p

l

)
Γ

(
1
l

)
Γ

(
1 + p−1+ζ2x

l

)
Γ

(
ζ2x

l

)
Γ

(
1 + 1

l

)
Γ

(
p
l

) =
pζ2x

p − 1 + ζ2x
,

which implies that each coefficient of xl for l ≥ 0 on the left side is in pZp. On
the other hand, modulo p, the left side is congruent to that of (4.5). So when
we expand the left side of (4.5) in terms of powers of x, the coefficients are all
in pZp. In particular, A3 ∈ pZp. Then, setting x = p in (4.5), by Lemma 2.4
we are led to the congruence:

5F4

(
1
l , 1

2l + 1, 1−p
l , 1−ζp

l , 1−ζ2p
l

1
2l ,

p
l + 1, ζp

l + 1, ζ2p
l + 1

; 1

)
p−1

l

≡ 5F4

(
1
2l + 1, 1

l , 1
l , 1

l , 1
l

1
2l , 1, 1, 1

; 1

)
p−1

l

mod p4

On the other hand, by (4.2) and (4.4),

5F4

(
1
l ,

1
2l + 1, 1−p

l , 1−ζp
l , 1−ζ2p

l
1
2l ,

p
l + 1, ζp

l + 1, ζ2p
l + 1

; 1

)
p−1

l

≡ p
Γp

(
1 − 2

l

)
Γp

(
1
l

)
Γp

(
1 − 1

l

) mod p4.

Hence,

5F4

(
1
2l + 1, 1

l ,
1
l ,

1
l ,

1
l

1
2l , 1, 1, 1 ; 1

)
p−1

l

≡ p
Γp

(
1 − 2

l

)
Γp

(
1
l

)
Γp

(
1 − 1

l

) mod p4,
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namely,
p−1

l∑
k=0

(2lk + 1)
(− 1

l

k

)4

≡ p
Γp

(
1 − 2

l

)
Γp

(
1
l

)
Γp

(
1 − 1

l

) mod p4.

Similarly, Theorem 1.1 in the case p ≡ −1 (mod l) follows from (4.1) and
(4.6). So we omit the details. �

Proof of Theorem 1.5. Recall the following Chu–Vandermonde identity (see
[3, Corollary 2.2.3]):

2F1

(−n, a
c

; 1
)

=
(c − a)n

(c)n
, (4.7)

where n is a nonnegative integer.
Applying (4.7) with a = 1+εp

l , c = 1, n = εp−1
l , we have

2F1

(
1−εp

l , 1+εp
l

1
; 1

)
=

(
1 − 1+εp

l

)
εp−1

l

(1) εp−1
l

. (4.8)

With the help of (2.2) and the identity
(
x
k

)
= (−1)k (−x)k

k! , we get

2F1

(
1−εp

l , 1+εp
l

1
; 1

)
≡

εp−1
l∑

k=0

(−1/l

k

)2

mod p2. (4.9)

By Lemma 2.2, we find(
1 − 1 + εp

l

)
εp−1

l

= (−1)
εp−1

l
Γp(1 − 2

l )
Γp

(
1 − 1+εp

l

) ,

(1) εp−1
l

= (−1)
εp−1

l
Γp

(
1 + εp−1

l

)
Γp(1)

.

Then (
1 − 1+εp

l

)
εp−1

l

(1) εp−1
l

=
Γp(1)Γp

(
1 − 2

l

)
Γp

(
1 − 1

l − εp
l

)
Γp

(
1 − 1

l + εp
l

)
By Lemma 2.3,

Γp

(
1 − 1

l
− εp

l

)
≡ Γp

(
1 − 1

l

)(
1 − G(1 − 1

l )ε
l

p

)
mod p2,

Γp

(
1 − 1

l
+

εp

l

)
≡ Γp

(
1 − 1

l

)(
1 +

G(1 − 1
l )ε

l
p

)
mod p2.

It follows that

Γp

(
1 − 1

l
− εp

l

)
Γp

(
1 − 1

l
+

εp

l

)
≡ Γp

(
1 − 1

l

)2

mod p2.
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Hence, by (2.3) and (2.5), we arrive at(
1 − 1+εp

l

)
εp−1

l

(1) εp−1
l

≡ −Γp

(
1
l

)2

Γp

(
1 − 2

l

)
mod p2. (4.10)

In view of (4.8)–(4.10), we obtain
εp−1

l∑
k=0

(−1/l

k

)2

≡ −Γp

(
1
l

)2

Γp

(
1 − 2

l

)
mod p2.

This completes the proof of Theorem 1.5. �

Proof of Theorem 1.7. Recall the following formula (see [3, p. 177, 5(b)]):

3F2

( −2n, 2b, c
−n + b + 1

2 , d
; 1

)
= 4F3

( −n, b, c, d − c
−n + b + 1

2 , d/2, (d + 1)/2; 1
)

,

where n is a nonnegative integer.
Taking n = p−1

4 , b = p+1
4 , c = 1/2, d = 1 in the above identity, we have

3F2

(
1−p
2 , 1+p

2 , 1
2

1, 1
; 1

)
= 3F2

(
1−p
4 , 1+p

4 , 1
2

1, 1
; 1

)
.

By (2.2) and the fact ( 1
2 )k

k! = (2k
k )
4k ,

p−1
2∑

k=0

(
2k
k

)3

64k
= 3F2

(
1
2 , 1

2 , 1
2

1, 1 ; 1
)

p−1
2

≡ 3F2

(
1
4 , 1

4 , 1
2

1, 1 ; 1
)

p−1
4

mod p2. (4.11)

In view of (4.11) and (1.2), we obtain

3F2

(
1
4 , 1

4 , 1
2

1, 1 ; 1
)

p−1
4

≡ 4x2 − 2p mod p2,

which implies

3F2

(
1
4 , 1

4 , 1
2

1, 1 ; 1
)

p−1

≡ 4x2 − 2p mod p2,

since ( 1
4 )k ≡ 0 mod p for p/4 < k < p. This finishes the proof of Theorem 1.7.
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195–202 (1990)

[12] Kilbourn, T.: An extension of the Apéry number supercongruence. Acta Arith.
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