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Abstract. The one-dimensional phase retrieval problem consists in the re-
covery of a complex-valued signal from its Fourier intensity. Due to the
well-known ambiguousness of this problem, the determination of the orig-
inal signal within the extensive solution set is challenging and can only be
done under suitable a priori assumptions or additional information about
the unknown signal. Depending on the application, one has sometimes ac-
cess to further interference intensity measurements between the unknown
signal and a reference signal. Beginning with the reconstruction in the
discrete-time setting, we show that each signal can be uniquely recovered
from its Fourier intensity and two further interference intensity measure-
ments between the unknown signal and a modulation of the signal itself.
Afterwards, we consider the continuous-time problem, where we obtain
an equivalent result. Moreover, the unique recovery of a continuous-time
signal can also be ensured by using interference intensity measurements
with a known or an unknown reference which is unrelated to the unknown
signal.
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1. Introduction

Phase retrieval problems occur in a wide range of applications in physics and
engineering such as crystallography [15,20,25], astronomy [11,14], and laser
optics [33,34]. All of these applications have in common that one needs to
recover an unknown signal from the intensity of its Fourier transform. Because
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of the well-known ambiguousness of this problem, the recovery of an analytic
or a numerical solution is generally challenging. To determine a meaningful
solution within the solution set, one therefore needs further a priori information
or additional data.

In this paper, we consider the one-dimensional phase retrieval problem for
discrete-time and continuous-time signals. In both cases, we restrict ourselves
to the recovery of an unknown signal with finite or compact support. The
ambiguities of these problems can be explicitly specified by an appropriate
factorization of the corresponding autocorrelation signal, see [7,11,28] for the
discrete-time and [1,2,17,35] for the continuous-time setting.

Depending on the application, one can sometimes superpose the unknown
signal x with an appropriate reference signal h. In the discrete-time setting,
the additional Fourier intensity of the interference x+h can be used to reduce
the solution set to merely two different signals or even to ensure uniqueness
for particularly known references [7,18,19]. Under some further assumptions,
it is also possible to use unknown references to recover the wanted signal [7,21,
31,32]. Besides considering reference signals being unrelated to the unknown
signal, one may also employ a modulation of the unknown signal itself as
reference in order to guarantee uniqueness [13]. Here we extent the results in
[13] from the interference intensities |x̂(2πk/M)+ x̂(2π(k−�)/M)| and |x̂(2πk/M)−
i x̂(2π(k−�)/M)| with k = 0, . . . , M − 1, where M is the length of the unknown
signal and � ∈ Z, to interference intensities of the form |x̂(ωk) + eiα x̂(ωk −
μ)| with α ∈ [−π, π) and μ ∈ R for finitely many sample points ωk ∈ R.
At the same time, we show that neither the support of x has to be known
beforehand nor that the samples of the interference intensity have to be non-
zero as required in [13].

A different approach to ensure uniqueness by additional data in the fre-
quency domain is presented in [26,27]. Here the Fourier transform is replaced
by the so-called short-time Fourier transform, where the unknown signal is
overlapped with a small analysis window at different positions.

If we normalize the support of the unknown signal x to {0, . . . , M − 1},
we can interpret x as an M -dimensional vector. Further, the Fourier intensities
|x̂(ωk)| at different points ωk ∈ [−π, π) can now be written as the intensity
measurement |〈x, vk〉| with vk := (eiωkm)M−1

m=0 . Generalizing this idea, here the
question arises how the vectors vk have to be chosen, and how many vectors
vk are required to ensure the recovery of x from the intensities |〈x, vk〉|, see for
instance [4–6,10] and references therein. To reconstruct the signal x explicitly,
one can again exploit suitable interference intensity measurements of the form
|〈x, vk + v�〉|, see [3].

Besides employing interference intensity measurements, the ambiguities
can also be avoided by further information about the unknown signal in the
time domain. In [8], it has been shown that almost every complex-valued
discrete-time signal x is uniquely determined by its Fourier intensity |x̂| and
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one absolute value |x[n]| for a fixed n within the support of x. A similar state-
ment holds if two phases arg x[n] and arg x[m] for appropriate n and m are
known beforehand.

The continuous-time phase retrieval problem, however, has a completely
different behavior than the discrete-time equivalent. Nonetheless, also here the
ambiguousness is a challenging problem. If the additional Fourier intensity of
an appropriate modulation of the unknown signal is available, one can here
solve the corresponding phase retrieval problem uniquely by comparing the
zeros of the analytic continuation of the given intensities [36]. Using a combi-
nation of oversampling and modulations, Pohl et al. show that the unknown
signal can be recovered up to a global phase [29]. Similarly to the discrete-
time setting, the unknown signal can also be uniquely recovered by exploiting
interference intensity measurements. For this purpose, Burge et al. have con-
structed suitable reference signals depending on the given Fourier intensity
[12].

Besides these approaches, we show that the well-known uniqueness results
using interference intensity measurements with known and unknown reference
signals [7,18,19,21,31,32] can be generalized from the discrete-time to the
continuous-time phase retrieval problem. More precisely, we observe that the
additional Fourier intensity of the signal f + h, where f is the true signal and
h a known reference signal, reduces the set of usually infinitely many non-
trivial solutions to merely two signals. Furthermore, the second solution can
be explicitly constructed from f and h. In the case that the reference signal is
also unknown, we can ensure the uniqueness under some slight assumptions,
which are comparable to the discrete-time setting. More precisely, we assume
that the Laplace transformed signals L [f ] and L [h] have no common zeros.
Finally, we transfer our uniqueness results based on the interference with a
modulated version of the unknown signal itself to the continuous-time phase
retrieval problem.

The paper is organized as follows. In Sect. 2, we introduce the discrete-
time phase retrieval problem. Here we investigate interference intensity mea-
surements of the unknown signal with a modulation of the signal itself. Using
Prony’s method, we adapt and extend the uniqueness results in [3,13] to our
specific problem formulation and show that each discrete-time signal with fi-
nite support can always be recovered uniquely. Moreover, we can drop the
assumption that the support of the unknown signal must be known before-
hand as supposed in [3,13], since we can recover the support from the given
Fourier intensities.

In Sect. 3, we transfer our findings from the discrete-time to the
continuous-time setting. Moreover, we consider interference intensity measure-
ments where the reference signal is known beforehand. Similar to the discrete-
time setting, these measurements reduce the solution set to two different sig-
nals. Giving a novel proof of the corresponding results in [22], we can here
explicitly represent the second possible solution. Furthermore, we show that
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the uniqueness results for an unknown reference signal [7,21,31] can also be
transferred. For this purpose, we will employ the characterization of the arising
ambiguities in [17].

2. Discrete-Time Phase Retrieval

2.1. Trivial and Non-Trivial Ambiguities

We begin with the one-dimensional discrete-time phase retrieval problem,
where we wish to recover a complex-valued signal x := (x[n])n∈Z from its
Fourier intensity |x̂|, where x̂ denotes the discrete-time Fourier transform given
by

x̂(ω) :=F [x](ω) :=
∑

n∈Z

x[n] e−iωn (ω ∈ R).

In the following, we assume that the unknown signal x has a finite support
of length N . In other words, we always find an n0 ∈ Z such that x[n] = 0
for n < n0 and n ≥ n0 + N . As a consequence of this a priori condition, the
corresponding autocorrelation signal

a[n] :=
∑

k∈Z

x[k] x[k + n] (n ∈ Z)

possesses the finite support {−N +1, . . . , N −1}. Moreover, the autocorrelation
function

â(ω) =
∑

n∈Z

a[n] e−iωn =
∑

n∈Z

∑

k∈Z

x[n] x[k] e−iω(n−k) = |x̂(ω)|2

is here always a non-negative trigonometric polynomial of degree N − 1, and
the support length N of the unknown signal x is hence explicitly encoded in
the given Fourier intensity |x̂|.

On the other side, since the autocorrelation function â = |x̂|2 is trigono-
metric polynomial of degree N −1 and is thus completely determined by 2N −1
samples at different points in [−π, π), our phase retrieval problem is equivalent
to the task to recover the unknown signal x from the 2N − 1 values

|x̂(

2πk
N

)| (k = −N + 1, . . . , N − 1)

if the support length N or an upper bound of the support length of the un-
known signal is known beforehand.

It is well known that the (discrete-time) phase retrieval problem is not
uniquely solvable in general. The simplest occurring ambiguities are caused by
rotation (multiplication with a unimodular constant), time shift, and conju-
gation and reflection [7].

Proposition 1. Let x be a complex-valued signal with finite support. Then
(i) the rotated signal (eiα x[n])n∈Z for α ∈ R

(ii) the time shifted signal (x[n − n0])n∈Z for n0 ∈ Z
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(iii) the conjugated and reflected signal (x[−n])n∈Z

have the same Fourier intensity |x̂|.
Although the ambiguities in Proposition 1 always occur, they are of mi-

nor interest since they are closely related to the original signal. Usually, besides
the rotations, shifts, and conjugation and reflection, the discrete-time phase
retrieval problem has an extensive set of further solutions, which can com-
pletely differ from the original signal. Similarly to [7], we distinguish between
trivial and non-trivial ambiguities.

Definition 1. A trivial ambiguity of the discrete-time phase retrieval problem
is caused by a rotation, time shift, conjugation and reflection, or by a combi-
nations of these. All other occurring ambiguities are called non-trivial.

Unlike the trivial ambiguities, where we have infinitely many possibilities
to choose the rotation parameter α ∈ R and the shift parameter n0 ∈ Z, the
phase retrieval problem to recover a signal with finite support can only pos-
sess finitely many non-trivial solutions, see [7, Corollary 2.6]. More precisely,
depending on the support length N of the unknown signal, the solution set
can consists of at most 2N−2 non-trivially different signals.

2.2. Interference Intensity Measurements in the Discrete-Time Setting

Considering the large number of non-trivial solutions, how can we determine
the original signal within the set of ambiguities? One possibility to reduce the
solution set significantly is the exploitation of additional interference intensity
measurements of the form |F [x + h]|, where h is a suitable reference signal
with finite support. If h is a known reference signal unrelated to x, then the
corresponding phase retrieval problem has at most two non-trivially different
solutions, see [7,19]. If h is also an unknown signal, under some additional
assumption, both signals x and h can be uniquely recovered from |x̂|, |̂h|, and
|x̂ + ̂h|, see [7,21,31], where in [31] the additional measurements |x̂ + îh| are
employed.

In this section, we examine interference intensity measurements of a
slightly different kind. More precisely, we replace the reference signal h with a
modulated version of the unknown signal x itself. This idea goes back to [3,13],
where the phase retrieval of a finite-dimensional vector from the intensities of
the discrete Fourier transform or the intensities of a suitably constructed frame
is considered.

Transferring this approach to the discrete-time phase retrieval problem,
we try to recover the complex-valued signal x with finite support from its
Fourier intensity |x̂| and a set of interference intensity measurements of the
form

|F [

x + eiα eiμ· x
]|, (1)
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where the modulations and rotations are described by μ ∈ R and α ∈ R. Since
the Fourier transform of the modulated signal is given by

F
[

eiα eiμ· x
]

(ω) = eiα
∑

n∈Z

x[n] e−i(ω−μ)n = eiα x̂(ω − μ),

we can also interpret the considered interference intensity measurements as
interferences with certain shifts of the Fourier transform x̂ in the frequency
domain.

2.2.1. Phase Reconstruction by Using a Polarization Identity. Our first ap-
proach to recover x is to apply a suitable polarization identity, which allows
us to determine the unknown phase of x̂. For this purpose, we generalize the
Mercedes-Benz polarization identity introduced by Alexeev et al. [3]. In the
following, the primitive Kth root of unity is denoted by ζK := e2πi/K .

Lemma 1. Let z1 and z2 be two complex numbers. Then the polarization iden-
tity

z1z2 =
1
K

K−1
∑

k=0

ζk
K |z1 + ζ−k

K z2|2 (2)

holds for every integer K > 2.

Proof. The assertion can be proven by generalizing the ideas in [3, p. 38]. We
expand the right-hand side of (2) and obtain

1
K

K−1
∑

k=0

ζk
K |z1 + ζ−k

K z2|2 =
1
K

K−1
∑

k=0

ζk
K

(|z1|2 + 2�[

ζ−k
K z1z2

]

+ |z2|2
)

=
2
K

K−1
∑

k=0

ζk
K �[

ζ−k
K z1z2

]

since the sum over all roots ζk
K is zero. Writing the real part of the product

ζ−k
K z1z2 as

�[

ζ−k
K z1z2

]

= �[

ζ−k
K

] �[

z1z2
] − �[

ζ−k
K

] �[

z1z2
]

,

and using the identities �ζ−1
K = �ζk

K and �ζ−k
K = −�ζk

K , we further have

1
K

K−1
∑

k=0

ζk
K |z1 + ζ−k

K z2|2 =
2
K

K−1
∑

k=0

ζk
K

(�[

ζk
K

] �[

z1z2
]

+ �[

ζk
K

]�[

z1z2
])

.

We consider the real and imaginary part of this equation separately. Here
the substitution ζk

K := �ζk
K + i�ζk

K yields
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�
[

1

K

K−1
∑

k=0

ζk
K |z1 + ζ−k

K z2|2
]

=
2

K

(

�[

z1z2
]

K−1
∑

k=0

[�ζk
K

]2
+ �[

z1z2
]

K−1
∑

k=0

�ζk
K �ζk

K

)

and

�
[

1

K

K−1
∑

k=0

ζk
K |z1 + ζ−k

K z2|2
]

=
2

K

(

�[

z1z2
]

K−1
∑

k=0

�ζk
K �ζk

K + �[

z1z2
]

K−1
∑

k=0

[�ζk
K

]2

)

.

Rewriting the real and imaginary parts as �ζk
K = 1/2(ζ−k

K + ζk
K) and �ζk

K =
i/2(ζ−k

K − ζk
K), we can compute the occurring sums by

K−1
∑

k=0

[�ζk
K

]2 =
1
4

K−1
∑

k=0

(

ζ−2k
K + 2 + ζ2k

K

)

=
K

2
,

K−1
∑

k=0

[�ζk
K

]2 = −1
4

K−1
∑

k=0

(

ζ−2k
K − 2 + ζ2k

K

)

=
K

2
,

and
K−1
∑

k=0

�ζk
K�ζk

K =
i
4

K−1
∑

k=0

(

ζ−2k
K − ζ2k

K

)

= 0,

which completes the proof. �
Remark 1. Obviously, Lemma 1 cannot be valid if K < 3 because the right-
hand side would be always a real number. For the special case K = 3, Lemma 1
coincides with the original Mercedes-Benz polarization identity introduced in
[3, Lemma 2.1].

The polarization identity in Lemma 1 can now be used to reveal the rela-
tion between the values x̂(ω) and x̂(ω −μ) hidden in the interference intensity
measurements

|F [

x + ζ−k
K eiμ· x

]| (k = 0, . . . , K − 1)
for some K ≥ 3 and μ ∈ R. The following theorem shows that the knowledge
of this relationship is sufficient to recover each discrete-time signal up to trivial
rotations.

Theorem 1. Let x be a discrete-time signal with finite support of length N .
If μ �= 2π p/q for all p ∈ Z and q ∈ {1, . . . , N − 1}, then the signal x can
be uniquely recovered up to rotation from its Fourier intensity |x̂| and the
interference intensity measurements

|F [

x + ζ−k
K eiμ· x

]| (k = 0, . . . , K − 1)

for every K ≥ 3.

Proof. Firstly, we apply the polarization identity in Lemma 1 to the given
interference intensity measurements |x̂(·) + ζ−k

K x̂(· − μ)| and obtain

1
K

K−1
∑

k=0

ζk
K |x̂(ω) + ζ−k

K x̂(ω − μ)|2 = |x̂(ω)||x̂(ω − μ)|ei(φ(ω−μ)−φ(ω)),
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where φ denotes the phase of x̂ = |x̂| eiφ. If x̂(ω) and x̂(ω − μ) are non-zero,
we can hence determine the phase difference φ(ω − μ) − φ(ω).

Since the unknown signal can only be recovered up to rotations, we can
arbitrarily choose the phase φ(ω0) of x̂(ω0) for one ω0 without loss of generality.
Starting from this point, we can now use the phase differences to compute a
series of relative phases

φ(ω0 + μk) (k = 0, . . . , 2N − 1)

with respect to φ(ω0). To ensure that x̂(ω0 + μk) �= 0 for k = 0, . . . , 2N − 1,
we notice that x̂ can be written as

x̂(ω) = e−iωn0

N−1
∑

n=0

cn e−iωn, (3)

with cn := x[n+n0] because of the finite support. Since the occurring algebraic
polynomial in e−iω of degree N − 1 can only have finitely many zeros on the
unit circle, we can always find a suitable ω0 that enables us to recover 2N
relative phases and hence 2N values of x̂ itself.

Next, we consider the exponential sum Q := x̂(ω0 + μ·) given by

Q(ω) :=
N−1
∑

n=0

γn e−iωτn =
N−1
∑

n=0

[

cn e−iω0(n+n0)
]

e−iωμ(n+n0) (4)

with the complex coefficients γn := cn e−ω0(n+n0) and the real frequencies
τn := μ(n+n0). If we can recover the unknown parameters γn and τn from the
function values Q(k) = x̂(ω0+μk) with k = 0, . . . 2N −1, then we can compute
the values cn and n0 in (3) and thus the true signal x. For this concern, we
apply Prony’s method to the recovered values x̂(ω0 + μk) in the frequency
domain.

Following the lines in [30] or [16, Sect. 9.4], we define the Prony polyno-
mial Λ by

Λ(z) :=
N−1
∏

n=0

(

z − e−iτn
)

=
N

∑

k=0

λk zk

with λN = 1. Using the definition of the Prony polynomial, we immediately
obtain

N
∑

k=0

λk Q(k + m) =
N

∑

k=0

N−1
∑

n=0

λk γn e−i(k+m)τn =
N−1
∑

n=0

γn e−imτnΛ(e−iτn) = 0

for m = 0, . . . , N − 1. Bringing λN Q(N + m) with λN = 1 to the right-hand
side, we can determine the remaining coefficients λ := (λ0, . . . , λN−1)T by
solving the linear equation system

Hλ = h (5)

with the Hankel matrix H := (Q(k + m))N−1
m,k=0 and the right-hand side

h := (Q(N + m))N−1
m=0. Knowing the coefficients λk of Λ, we can compute
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the unknown frequencies τn via the roots of the Prony polynomial and the
unknown coefficients γn as solution of the over-determined equation system

N−1
∑

n=0

γj e−ikτn = Q(k) (k = 0, . . . , 2N − 1). (6)

In order to ensure the solvability and uniqueness of the equation systems
(5) and (6), we notice that H can be written as

H = V T diag(γ0, . . . , γN−1)V

with the Vandermonde matrix V = (e−ikτn)N−1
n,k=0. If the coefficients γn are

non-zero, both equation systems are uniquely solvable whenever the values
e−iτn differ pairwise. By the definition of τn, this is equivalent to

μ (n1 + n0) �= μ (n2 + n0) + 2π� or μ �= 2π �/(n1−n2)

for all � ∈ Z and n1 �= n2 with n1, n2 ∈ {0, . . . , N − 1}, which leads us to
the assumptions of the theorem. If some of the coefficients γn are zero and
the related exponentials vanish in Q, then we can compute the number of
non-vanishing exponentials by considering the singular value decomposition of
H, and the solvability of the smaller equation systems is also covered by the
assumptions.

All in all, we can always apply Prony’s method to recover the unknown
coefficients γn and frequencies τn of the exponential sum Q. Consequently, we
can always determine x̂ and hence x up to rotation. �

Remark 2. The main reason for the application of Prony’s method in the proof
of Theorem 1 is the lack of information about the integer n0 in the frequency
representation (3). Considering the influence of the modulation e−iωn0 in the
time domain, we only know the support length N of the unknown signal x but
not the exact position of the support itself. If we additionally assume that x
has the support {0, . . . , N − 1}, we can recover the trigonometric polynomial
x̂ directly from the constructed function values by solving a linear equation
system because all occurring frequencies are known beforehand. Unfortunately,
we cannot neglect the restrictions on the parameter μ since these are needed
to ensure the invertibility of the arising Vandermonde matrix.

Remark 3. Considering the assumptions of Theorem 1, we have to choose μ
in a way that μ is not of the form 2π p/q with p ∈ Z and q ∈ {1, . . . , N − 1}.
Hence, if we know the support length N or an upper bound of N , we can easily
find an approximate modulation parameter μ. Furthermore, if we choose μ as
an irrational multiple of 2π, we can theoretically recover every signal from the
given interference intensity measurements without any information about the
actual support length N .

Remark 4. If we assume that the support of the unknown discrete-time sig-
nal x with support length N is contained in the set {0, . . . , M − 1} with
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M ≥ N such that (x[n])n∈Z can be identified with an M -dimensional vector,
then we can interpret the Fourier intensity |x̂(ωn)| for a certain point ωn in
the frequency domain as intensity measurement |〈x, vn〉| with the frame vec-
tor vn := (eiωnk)M−1

k=0 . Choosing at least M pairwise different points ωn in
[−π, π) beforehand, we can consequently transfer the whole theory developed
by Alexeev et al. [3] to recover the unknown vector x from the given intensity
measurements |x̂(ωn)| and the given interference intensity measurements

|x̂(ωn) + ζ−k
3 x̂(ωm)| (k = 0, 1, 2)

for a larger number of randomly chosen index pairs (n,m). In [3] it has been
shown that the unknown vector can be recovered with high probability from
approximately 240M measurements for an arbitrary frame, see [3, p. 41].

In contrast to the findings of Alexeev et al. for arbitrary frames, we exploit
that the Fourier transform of a complex-valued discrete-time signal with finite
support of length N is a trigonometric polynomial. For the special case K = 3
considered by Alexeev et al., this enables us to recover the unknown signal
x always from merely 8N − 4 measurements or, more precisely, from 2N − 1
measurements for each of the four Fourier intensities

|x̂(·)| and |x̂(·) + ζ−k
3 x̂(· − μ)| (k = 0, 1, 2),

cf. Sect. 2.1. Moreover, the procedure in the proof of Theorem 1 allows us to
determine the position of the current support from the given Fourier intensities.
In other words, we can recover the unknown signal x without the assumption
that the support of x is contained in some specific set {0, . . . , M − 1}.

2.2.2. Reducing the Number of Required Interference Intensity Measure-
ments. Looking back at Theorem 1, we observe that the actual number of
interference intensity measurements depends on the chosen root of unity ζK

or, more precisely, on the chosen integer K. Consequently, it seems that the
given interference intensity measurements are highly redundant. This impres-
sion is confirmed by a result in [13], where Candès et al. employ only two of
the interference intensity measurements like in Theorem 1 to recover a finite-
dimensional vector.

In this section, we adapt the approach of Candès et al. to the discrete-time
phase retrieval problem and simultaneously generalize the result to show that
each complex-valued discrete-time signal can be recovered from its Fourier
intensity and two further interference intensity measurements of the form
(1), where the two rotations can be chosen almost arbitrarily. In particular,
these rotations do not have to arise from the Kth roots of unity for a certain
integer K.

Theorem 2. Let x be a discrete-time signal with finite support of length N . If
μ �= 2π p/q for all p ∈ Z and q ∈ {1, . . . , N − 1}, then the signal x can be
uniquely recovered up to a rotation from its Fourier intensity |x̂| and the two
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interference intensity measurements

|F [

x + eiα1 eiμ· x
]| and |F [

x + eiα2 eiμ· x
]|,

where α1 and α2 are two real numbers satisfying α1−α2 �= πk for all integer k.

Proof. We follow the lines of the proof of Theorem 1. Again, the crucial point
is the extraction of the required relative phases from the given interference
intensity measurements. Writing x̂(ω) = |x̂(ω)| eiφ(ω), we can rearrange the
first interference intensity measurement to

|x̂(ω) + eiα1 x̂(ω − μ)|2

= |x̂(ω)|2 + |x̂(ω − μ)|2 + 2|x̂(ω)||x̂(ω − μ)|�
[

ei(φ(ω−μ)−φ(ω)+α1)
]

.

Replacing α1 by α2, we obtain a similar representation for the second interfer-
ence intensity measurement. Consequently, if both moduli |x̂(ω)| and |x̂(ω−μ)|
of the Fourier transform x̂ are non-zero, we can determine

�
[

ei(φ(ω−μ)−φ(ω)+α1)
]

and �
[

ei(φ(ω−μ)−φ(ω)+α2)
]

.

In order to extract the phase difference φ(ω − μ) − φ(ω) from these
two values, we apply Euler’s formula and afterwards the addition theorem
for cosine. In this manner, we obtain

�
[

ei(φ(ω−μ)−φ(ω)+α1)
]

= cos(α1) cos(φ(ω − μ) − φ(ω))

− sin(α1) sin(φ(ω − μ) − φ(ω))

and

�
[

ei(φ(ω−μ)−φ(ω)+α2)
]

= cos(α2) cos(φ(ω − μ) − φ(ω))

− sin(α2) sin(φ(ω − μ) − φ(ω)).

Since the values on the left-hand side are known, we can consequently deter-
mine the sine and cosine of the wanted phase difference φ(ω − μ) − φ(ω) by
solving a simple linear equation system. Here, the determinant of the occurring
matrix is given by

det
(

cosα1 − sinα1
cosα2 − sinα2

)

= sin α1 cos α2 − cos α1 sin α2 = sin(α1 − α2),

which ensures a unique solution whenever α1 − α2 does not coincide with
a multiple of π. Consequently, we can always determine the required phase
difference φ(ω−μ)−φ(ω) for a certain ω. With the extracted phase difference,
the theorem can now be justified as discussed in the proof of Theorem 1. �

Remark 5. As mentioned before, Candès et al. consider a slightly different
phase retrieval problem in [13, Theorem 3.1]. More precisely, they deal with
the problem to recover a finite-dimensional vector from the intensities of its
discrete Fourier transform. Using our notation, we can state this problem as
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follows: recover the signal x whose support of length N is contained in the
interval from 0 to M − 1 from the (discrete-time) Fourier intensities

|x̂(

2πk
M

)|, |x̂(

2πk
M

)

+ x̂
( 2π(k−�)

M

)|, and |x̂(

2πk
M

) − i x̂
( 2π(k−�)

M

)|
for all integers k = 0, . . . , M−1 and for a certain integer �. Under the additional
assumption that � and M are co-prime, and that the given Fourier samples
|x̂(2πk/M)| are non-zero, Candès et al. show that the unknown signal x can be
uniquely recovered.

Recalling that the Fourier intensity of a discrete-time signal with support
length N is entirely determined by 2N − 1 arbitrary samples, we can directly
compare Theorem 2 for α1 := 0, α2 := −π/2, and μ := 2π �/M with the results of
Candès et al. and see that both statements are almost identical. In the special
case that N and M coincide, the main difference between both statements is
that we need twice as many measurements. Anyway, this enables us to neglect
the assumption that the given samples of the Fourier intensity have to be non-
zero. Further, we can determine the unknown position of the current support
completely from the given Fourier intensities.

Finally, the integers N and M have a slightly different meaning. With
the dimension M , we determine the interval {0, . . . , M − 1} that contains the
non-zero components of the considered signal x. The current support length
N of this signal can however be much smaller than the assumed dimension M .
Consequently, if M is only a rough estimation, then Theorem 2 allows us to
recover the wanted signal from a much smaller set of measurements.

3. Continuous-Time Phase Retrieval

3.1. Characterization of the Occurring Ambiguities

Different from the previous section, we now consider the continuous-time phase
retrieval problem, which has a completely different behavior as the discrete-
time equivalent. Here we are faced with the recovery of a continuous-time
signal or a function f : R → C in L2 with compact support from its Fourier
intensity |F [f ]|, where the corresponding Fourier transform is given by

̂f(ω) :=F [f ](ω) :=

∞
∫

−∞
f(t) e−iωt dt.

The ambiguousness of this problem has been studied by Akutowicz [1,2],
Walther [35], and Hofstetter [17], for instance. To reduce the set of possible
ambiguities, we will again employ interference intensity measurements with
different kinds of reference signals. For this purpose, we require a suitable
characterization of the solution set. Here we follow the approach by Hofstetter
[17], where the solutions are presented as an infinite product with respect to
the zero set of the analytic continuations of their Fourier transforms.
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In our case, the continuation of F [f ] is given through the theorem of
Paley-Wiener, see for instance [9, Theorem 6.8.1]. Using the (two-sided)
Laplace transform, we can write this well-known theorem in the following
form.

Theorem 3 (Paley-Wiener). The function F : C → C is an entire function of
exponential type and belongs to L2 on the imaginary axis if and only if F is
the Laplace transform

F (ζ) := L [f ](ζ) :=

∞
∫

−∞
f(t) e−ζt dt,

of a function f in L2 with compact support.

In this context, a function F : C → C is called entire if the function is
analytic over the whole complex plane. If F moreover grows no faster than an
exponential, which means that F can be bounded by

|F (ζ)| ≤ A eB|ζ|

with appropriate real constants A ≥ 0 and B, then the entire function F is of
exponential type, see for instance [37, p. 53]. As a consequence of the theorem of
Paley-Wiener, the Laplace transform F is now the unique analytic continuation
of the Fourier transform F [f ] from the imaginary axis to the complex plane
because the restriction F (i·) of the holomorphic Laplace transform F to the
imaginary axis obviously coincides withF [f ].

The next key instruments in the characterization of the occurring ambi-
guities are the autocorrelation signal

a(t) :=

∞
∫

−∞
f(s) f(s + t) ds

and the autocorrelation function A := L [a]. Since the autocorrelation signal
of a compactly supported function f in L2 is again a compactly supported
function in L2, the autocorrelation function A can be interpreted as the ana-
lytic continuation of the Fourier transform â. Further, the autocorrelation is
closely related to the given Fourier intensity, see [17].

Proposition 2. Let f be a continuous-time signal in L2 with compact support.
Then the autocorrelation function A is the analytic continuation of the squared
Fourier intensity |F [f ]|2 from the imaginary axis to the complex plane.
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Proof. Using the definition of the autocorrelation signal, we can write the
autocorrelation function A of the considered signal f as

A(ζ) =

∞
∫

−∞

∞
∫

−∞
f(s) f(s + t) e−ζt ds dt

=

∞
∫

−∞

∞
∫

−∞
f(s) f(t) e−ζt eζs dt ds = F

(

ζ
)

F
(−ζ

)

.

(7)

If we now consider the restriction of this identity to the imaginary axis, we
have

A(iω) = F (iω) F (iω) = ̂f(ω) ̂f(ω) = | ̂f(ω)|2,
which implies that the restriction of the autocorrelation function A coincides
with the squared Fourier intensity |F [f ]|2 as claimed. Since A is a holomorphic
function by the theorem of Paley-Wiener, the assertion follows. �

After this preliminaries, we recall the characterization of all occurring
ambiguities in the continuous-time phase retrieval problem, [17, Theorem I].

Theorem 4 (Hofstetter). Let f be a continuous-time signal in L2 with compact
support. Then the Laplace transform of each continuous-time signal g in L2

with compact support and the same Fourier intensity |F [g]| = |F [f ]| can be
written in the form

G(ζ) = C ζmeζγ
∞
∏

j=1

(

1 − ζ
ηj

)

e
ζ

ηj

where the absolute value |C| and the imaginary part �γ of the complex con-
stants C and γ coincide for all signals g, and where ηj is chosen from the zero
pair (ξj ,−ξj) of the autocorrelation function A of the signal f .

Proof. For the sake of convenience for the reader, we give a short proof follow-
ing the lines of [17]. Let f and g be signals with compact support in L2, and
let F and G be their Laplace transforms being entire functions of exponential
type. By Hadamard’s factorization theorem [9], we can represent the entire
functions F and G by

F (ζ) = C1 ζm1 eζγ1

∞
∏

j=1

(

1 − ζ
ξj

)

e
ζ

ξj and G(ζ) = C2 ζm2 eζγ2

∞
∏

j=1

(

1 − ζ
ηj

)

e
ζ

ηj

with respect to their non-vanishing zeros ξj and ηj .
Assuming that |F [g]| = |F [f ]|, we can conclude that the autocorrelation

functions of f and g coincide. Using (7), we can therefore represent the common
autocorrelation function A in terms of F or G by

A(ζ) = F
(

ζ
)

F
(−ζ

)

= G
(

ζ
)

G
(−ζ

)

. (8)
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Due to this factorization, all zeros of the autocorrelation function A obviously
occur in pairs of the form (ξj ,−ξj), where ξj is a zero of F . Since an analogous
observation follows from the factorization of G, we can resort the zeros ηj so
that ηj = ξj or ηj = −ξj . Further, the multiplicities m1 and m2 of the zero at
the origin must also be equal. Consequently, the possibly infinite products in
the factorizations of A coincide, and we can reduce (8) to

|C1|2eζ(γ1−γ1) = |C2|2eζ(γ2−γ2) or |C1|2e2ζ�[γ1] = |C2|2e2ζ�[γ2],

which shows that the absolute values |C1| and |C2| and also the imaginary
parts �γ1 and �γ2 coincide. �

Similarly to the discrete-time setting, we divide the occurring ambiguities
characterized by Theorem 4 in two different classes. Since the rotation, the
time shift by a real number, and the reflection and conjugation of a solution
always result in a further solution of the considered phase retrieval problem,
cf. Proposition 1, we call these ambiguities trivial. The remaining ambiguities
are non-trivial. Using the characterization in Theorem 4, we can also represent
the ambiguities in the following manner.

Proposition 3. Let f and g be two continuous-time signals in L2 with compact
support and the same Fourier intensity |F [f ]| = |F [g]|. Then there exist two
entire functions F1 and F2 of exponential type such that

F (ζ) = F1(ζ) F2(ζ)

and
G(ζ) = eiα e−ζt0 F1

(−ζ
)

F2

(

ζ
)

,

where α and t0 are suitable real numbers.

Proof. Applying Theorem 4, we can represent the Laplace transforms F and
G by

F (ζ) = C1 ζm eζγ1

∞
∏

j=1

(

1 − ζ
ξj

)

e
ζ

ξj and G(ζ) = C2 ζm eζγ2

∞
∏

j=1

(

1 − ζ
ηj

)

e
ζ

ηj

with |C1| = |C2|, �γ1 = �γ2, and ηj ∈ (ξj ,−ξj). Now, we can resort the zeros
of G such that

ηj =

{

−ξj ξj ∈ Λ,

ξj else

for an appropriate subset Λ of the zero set Ξ := {ξj : j ∈ N} of F .
Based on this subset, we define the two possibly infinite products F1 and

F2 by

F1(ζ) :=
∏

ξj∈Λ

(

1 − ζ
ξj

)

e
ζ

ξj and F2(ζ) := C1 ζm eζγ1
∏

ξj∈Ξ\Λ

(

1 − ζ
ξj

)

e
ζ

ξj .

Due to the fact that the convergence exponent—the infimum of the positive
numbers α for which the series

∑∞
j=1 |ξj |−α converges—of the zeros of an entire
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function is always less than or equal to the order of the entire function, see for
instance [9, Theorem 2.5.18], the zeros ξj can at most have the convergence
exponent one. Since the zeros of F1 and F2 are merely subsets of the zeros of
F , the corresponding convergence exponents thus also have to be less than or
equal to one. Borel’s theorem now implies that the possibly infinite products
F1 and F2 are again entire functions of exponential type, see [24].

Obviously, we have the factorization F = F1 F2. In order to achieve the
factorization of G, we consider the reflection of the first factor given by

F1

(−ζ
)

=
∏

ξj∈Λ

(

1 − ζ

−ξj

)

e
ζ

−ξj .

Hence, the reflection F1(−·̄) possesses the zeros ηj = −ξj for all ξj in Λ, which
implies that the zeros of the product F1(−·̄) F2 and G coincide.

Finally, since the absolute values |C1| and |C2| and the imaginary parts
�γ1 and �γ2 have to be equal by Theorem 4, the entire functions F1(−·̄) F2

and G can only differ by a rotation eiα and a time shift e−ζt0 . Choosing the
real numbers α and t0 suitably, we obtain the wanted factorization in the
assertion. �

Remark 6. We can interpret Proposition 3 in a slightly different way: if the
restrictions of the entire functions F and G of exponential type to the imagi-
nary axis coincide, then we can always find two entire functions F1 and F2 to
factorize F and G in the manner of Proposition 3. This observation can now
be generalized to entire functions of arbitrary order, see [23, Lemma 1].

Remark 7. For the discrete-time setting, an equivalent statement of Propo-
sition 3 holds where the Laplace transforms F and G are replaced by the
discrete-time Fourier transforms of the two signals. Moreover, for two discrete-
time signals x and y with |x̂| = |ŷ|, there always exists two discrete-time signals
x1 and x2 with finite support such that

x = x1 ∗ x2 :=

(

∑

k∈Z

x1[n − k]x2[k]

)

n∈Z

and y = eiα x1[· − n0] ∗ x2[−·]

with suitable α ∈ R and n0 ∈ Z, see [7, Theorem 2.3]. In other words, each
ambiguity of the discrete-time phase retrieval problem can be represented by
an appropriate convolution and a suitable rotation, shift, and reflection and
conjugation of the occurring factors.

3.2. Ensuring Uniqueness in the Continuous-Time Phase Retrieval

Differently from the discrete-time phase retrieval problem, the continuous-time
version to recover a certain signal usually possesses infinitely many non-trivial
ambiguities. Hence, we are once more faced with the question: how can we
ensure the unique recovery of the unknown signal, or how can we at least
reduce the occurring ambiguities to a sufficiently small set.
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Like in the discrete-time setting, we will employ different kinds of inter-
ference intensity measurements. Here Klibanov et al. show that the additional
interference intensity measurement with a known reference can almost ensure
the unique recovery of a distribution with compact support. Adapting this ob-
servation [22, Proposition 6.5] to the continuous-time phase retrieval problem,
we obtain the following statement.

Proposition 4 (Klibanov et al.). Let f and h be two continuous-time signals in
L2 with compact support, where the non-vanishing reference signal h is known
beforehand. Then the signal f can be recovered from the Fourier intensities

|F [f ]| and |F [f + h]|
except for at most one ambiguity.

Proof. We give a new proof of the statement by adapting the proof of the
discrete-time equivalent in [7, Theorem 4.3]. Writing the Fourier transforms of
the signals f and h in their polar representations

F [f ](ω) = |F [f ](ω)|eiφ(ω) and F [h](ω) = |F [h](ω)|eiψ(ω),

where φ and ψ denote the corresponding phase functions, we can represent the
given interference intensity measurement by

|F [f + h](ω)|2
= |F [f ](ω)|2 + |F [h](ω)|2 + 2|F [f ](ω)||F [h](ω)| cos(φ(ω) − ψ(ω)).

In other words, the phase difference φ − ψ is given by

φ(ω) − ψ(ω) = ± arccos
( |F [f + h](ω)|2 − |F [f ](ω)|2 − |F [h](ω)|2

2|F [f ](ω)| |F [h](ω)|
)

+ 2πk

(9)
with an appropriate integer k wheneverF [f ](ω) andF [h](ω) are non-zero.

Since F [f ] and F [h] are continuous, we can find a small interval for ω
where the sign in (9) does not change and the integer k is fixed. Further, since
φ − ψ is the phase function of the productF [f ]F [h], which is the restriction
of the entire function F (·)H(−·̄) to the imaginary axis, we can extend φ − ψ
uniquely from the interval to the complete frequency domain. Consequently,
there exist at most two distinct phase differences φ − ψ. Here the phase φ̆ of
the second solution f̆ and the phase φ are related by

φ(ω) − ψ(ω) = −φ̆(ω) + ψ(ω) + 2πk.

Hence, the Fourier transform of the second solution has to be of the form

F [f̆ ] = |F [f ]|e−iφ+2iψ, (10)

which completes the proof. �
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Remark 8. The main benefit of the proof of Proposition 4 given above is that
we obtain an explicit representation of the second possible solution in depen-
dence of the phase of the reference signal. Considering the Fourier transform
(10), we can have doubts whether the corresponding continuous-time signal
f̆ is really a signal with compact support and hence a valid solution of the
problem. Indeed, the Fourier transform (10) does not have to be the restric-
tion of an entire function and does not even have to be a continuous function
at all because the phase ψ of the continuous functionF [h] itself can possesses
discontinuities. Further, the theorem of Paley-Wiener here implies that the
second solution f̆ does not have to have a compact support and may thus be
an invalid solution of the considered continuous-time phase retrieval problem.
In this case, the original signal f is the only non-trivial solution.

Next, we replace the known reference signal h within the interference
f + h by an unknown reference. Inspired by the discrete-time equivalent in
[7, Theorem 4.4], we show that the continuous-time signal f and the unknown
reference h are uniquely determined by the Fourier intensities of f , h, and f +h
up to common trivial ambiguities. This means that we can recover f and h up
to common rotations or time shifts or up to the reflection and conjugation of
the two signals.

Theorem 5. Let f and h be two continuous-time signals in L2 with compact
support. If the non-vanishing zeros of the Laplace transformed signal F and H
form disjoint sets, then both signals f and h can be recovered from the Fourier
intensities

|F [f ]|, |F [h]|, and, |F [f + h]|
uniquely up to common trivial ambiguities.

Proof. Let f̆ and h̆ be a further solution pair of the considered problem with

|F [f ]| = |F [f̆ ]|, |F [h]| = |F [h̆]|, and |F [f + h]| = |F [f̆ + h̆]|.
Applying Proposition 3, we can represent the two solution pairs in the fre-
quency domain by an appropriate factorization of the Laplace transform F
and H of the original signals. In this manner, we obtain the factorizations

F (ζ) = F1(ζ) F2(ζ) and F̆ (ζ) = eiα1 e−ζt1 F1

(−ζ
)

F2

(

ζ
)

and further

H(ζ) = H1(ζ) H2(ζ) and H̆(ζ) = eiα2 e−ζt2 H1

(−ζ
)

H2

(

ζ
)

for some real numbers α1, α2, t1, t2 and entire functions F1, F2, H1, H2.
In the next step, we consider the analytic continuation of the squared

interference intensity measurement or the corresponding autocorrelation func-
tion, see Proposition 2. With the representation in (7), we can write the given
interference intensity measurement as

(

F
(

ζ
)

+ H
(

ζ
))

(

F
(−ζ

)

+ H
(−ζ

)

)

=
(

F̆
(

ζ
)

+ H̆
(

ζ
)

)(

F̆
(−ζ

)

+ H̆
(−ζ

)

)
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or in the simplified form

F
(

ζ
)

H
(−ζ

)

+ F
(−ζ

)

H
(

ζ
)

= F̆
(

ζ
)

H̆
(−ζ

)

+ F̆
(−ζ

)

H̆
(

ζ
)

.

Incorporating the found factorizations of F and H, we obtain

F1

(

ζ
)

F2

(

ζ
)

H1

(−ζ
)

H2

(−ζ
)

+ F1

(−ζ
)

F2

(−ζ
)

H1

(

ζ
)

H2

(

ζ
)

= ei(α1−α2) e−ζ(t1−t2)F1

(−ζ
)

F2

(

ζ
)

H1

(

ζ
)

H2

(−ζ
)

+ ei(α2−α1) e−ζ(t2−t1)F1

(

ζ
)

F2

(−ζ
)

H1

(−ζ
)

H2

(

ζ
)

and thus
[

e−iα1 eζt1 F1

(

ζ
)

H1

(−ζ
) − e−iα2 eζt2 F1

(−ζ
)

H1

(

ζ
)

]

·
[

eiα1 e−ζt1 F2

(

ζ
)

H2

(−ζ
) − eiα2 e−ζt2 F2

(−ζ
)

H2

(

ζ
)

]

= 0.
(11)

Remembering that F1, F2, H1, and H2 are entire functions, we observe
that both factors in (11) are entire functions too, and that at least one of both
factors thus has to be constantly zero. In order to investigate the two different
cases more precisely, we employ the explicit construction of the entire functions
F1 and F2 in the proof of Proposition 3. Using a similar procedure for H1 and
H2, and denoting the sets of all non-vanishing zeros of F and H by Ξ1 and
Ξ2 respectively, we can represent the four functions by

F1(ζ) =
∏

ξj∈Λ1

(

1 − ζ
ξj

)

e
ζ

ξj and F2(ζ) = C1 ζm1 eζγ1
∏

ξj∈Ξ1\Λ1

(

1 − ζ
ξj

)

e
ζ
ξj

and further

H1(ζ) =
∏

ηj∈Λ2

(

1 − ζ
ηj

)

e
ζ

ηj and H2(ζ) = C2 ζm2 eζγ2
∏

ηj∈Ξ2\Λ2

(

1 − ζ
ηj

)

e
ζ
ηj,

where Λ1 and Λ2 are appropriate subsets of Ξ1 and Ξ2.
In the following, we firstly assume that the second factor of (11) is zero,

which directly implies that the equation

(−1)m2 C1 C2 eiα1 ζm1+m2 e−ζ(t1−γ1+γ2)
∏

ξj∈Ξ1\Λ1

(

1 − ζ
ξj

)

e
ζ

ξj

∏

ηj∈Ξ2\Λ2

(

1 − ζ
−ηj

)

e
ζ

−ηj

= (−1)m1 C1 C2 eiα2 ζm1+m2 e−ζ(t2+γ1−γ2)
∏

ξj∈Ξ1\Λ1

(

1 − ζ

−ξj

)

e
ζ

−ξj

∏

ηj∈Ξ2\Λ2

(

1 − ζ
ηj

)

e
ζ

ηj

(12)

holds for every ζ in the complex plane. Since the possibly infinite products
above are again entire functions by Borel’s theorem [24], the zeros on both
sides of the equality have to coincide. However, due to the assumption that
the zeros ξj and ηj of the Laplace transforms F and H are pairwise distinct, the
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zero sets Ξ1\Λ1 and Ξ2\Λ2 of F2 and H2 have to be invariant under reflection
at the imaginary axis.

Based on this observation, we can immediately conclude that the entire
functions F2 and H2 are invariant under reflection and conjugation up to an
additional rotation and modulation. More precisely, we obtain the identities

F2

(−ζ
)

= (−1)m1 C1 ζm1 e−ζγ1
∏

ξj∈Ξ1\Λ1

(

1 − ξ

−ξj

)

e
ζ

−ξj

= (−1)m1 e−2i arg C1 e−2ζ�[γ1] F2(ζ)

and similarly

H2

(−ζ
)

= (−1)m2 e−2i arg C2 e−2ζ�[γ2] H2(ζ).

Incorporating these identities in the representation of F̆ and H̆, we can describe
the second solution pair in the frequency domain by

F̆ (ζ) = (−1)m1 ei(α1+2 arg C1) e−ζ(t1−2�[γ1]) F
(−ζ

)

and

H̆(ζ) = (−1)m2 ei(α2+2 arg C2) e−ζ(t2−2�[γ2]) H
(−ζ

)

.

Hence, the continuous-time signals f̆ and h̆ are merely rotations and shifts of
the reflected and conjugated signals f and h.

It remains to prove that the occurring rotations and shifts coincide. For
this purpose, we revisit equation (12). Considering that the zeros and hence
the possibly infinite products on both sides are equal, we can reduce (12) to

(−1)m2 C1 C2 eiα1 e−ζ(t1−γ1+γ2) = (−1)m1 C1 C2 eiα2 e−ζ(t2+γ1−γ2)

or, by rearranging and combining the individual factors, to

(−1)m1 eiα1+2 arg C1 e−ζ(t1−2�[γ1]) = (−1)m2 eiα2+2 arg C2 e−ζ(t2−2�[γ2]),

which verifies our conjecture that the second solution pair f̆ and h̆ coincides
with the first solution pair f and h up to common trivial ambiguities.

For the second case, where the first factor of (11) is constantly zero, an
analogous and slightly simpler argumentation yields the representations

F̆ (ζ) = eiα1 e−ζt1 F (ζ) and H̆(ζ) = eiα2 e−ζt2 H(ζ),

where the occurring rotations and time shifts again coincide. �

Our last approach to achieve the uniqueness of the continuous-time phase
retrieval problem considered in this section is again the idea of using interfer-
ence intensity measurements of the unknown signal with a modulated version
of the signal itself. Generalizing the main results of Sect. 2.2, we will estab-
lish two different theorems, which show that each continuous-time signal in L2

with compact support can be uniquely recovered from an appropriate set of
interference intensity measurements.
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Theorem 6. Let f be a continuous-time signal in L2 with compact support.
Then the signal f can be uniquely recovered up to rotation from its Fourier
intensity |F [f ]| and the interference intensity measurements

|F [

f + ζ−k
K eiμ· f

] | (k = 0, . . . , K − 1;μ ∈ M)

for an integer K > 2 and every open neighbourhood M around zero.

Proof. Due to the assumption that the unknown signal f is a square-integrable
function with compact support, the theorem of Paley-Wiener implies that the
Fourier transformF [f ] is the restriction of an entire function and thus has to
be continuous. Consequently, if the signal f does not vanish everywhere, we
can find a point ω0 together with an open neighbourhood where the Fourier
transformF [f ] does not vanish.

Similarly to the discrete-time version in Theorem 1, the key element
of the proof is to exploit the additional interference intensity measurements
| ̂f(·) + ζ−k

K
̂f(· − μ)| by using the polarization identity in Lemma 1. We obtain

1
K

K−1
∑

k=0

ζk
K | ̂f(ω0) + ζ−k

K
̂f(ω0 − μ)|2 = ̂f(ω0) ̂f(ω0 − μ)

for every μ in the open set M . Writing the Fourier transformF [f ] in its polar
representation |F [f ]| eiφ, we can now extract the relative phases φ(ω0 − μ) −
φ(ω0) from

1
K

K−1
∑

k=0

ζk
K | ̂f(ω0) + ζ−k

K
̂f(ω0 − μ)|2 = | ̂f(ω0)|| ̂f(ω0 − μ)|ei(φ(ω0−μ)−φ(ω0)).

Like for the discrete-time counterpart, the considered phase retrieval
problem can merely be solved up to rotations. This enables us to define one
phase φ(ω0) in the frequency domain arbitrarily. Beginning from this initial
phase, we can further determine the complete phase function φ and hence the
Fourier transformF [f ] in a small open interval around ω0 by using the extract-
ed relative phases. Since the unknown Fourier transformF [f ] is the restriction
of an entire function as discussed above, the unknown function F [f ] can be
uniquely extended from the small interval to the complete frequency domain.
Using the inverse Fourier transform, we finally obtain the desired signal f . �

Theorem 7. Let f be a continuous-time signal in L2 with compact support.
Then the signal f can be uniquely recovered up to a rotation from its Fourier
intensity |F [f ]| and the interference intensity measurements

|F [

f + eiα1 eiμ· f
] | and |F [

f + eiα2 eiμ· f
] | (μ ∈ M)

where α1 and α2 are two real numbers satisfying α1 − α2 �= πk for all integers
k, and where M is an open neighbourhood around zero.

Proof. Again, the crucial point to verify the assertion is the extraction of the
relative phase from the given interference intensity measurements. Letting φ
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be the phase function of the unknown Fourier transform F [f ], and following
the lines in the proof of the discrete-time counterpart (Theorem 2), we can
determine the values

�
[

ei(φ(ω−μ)−φ(ω)+α1)
]

and �
[

ei(φ(ω−μ)−φ(ω)+α2)
]

and further the relative phase φ(ω−μ)−φ(ω) wheneverF [f ](ω) andF [f ](ω−
μ) are non-zero by solving a linear equation system. Based on the extracted
relative phases φ(ω − μ) − φ(ω), we now can recover the unknown Fourier
transformF [f ] as discussed in the previous proof of Theorem 6. �

Remark 9. Since a holomorphic function is completely determined by the func-
tion values on an arbitrary set that has an accumulation point, we can relax
the requirements on M in Theorems 6 and 7. In fact, we can replace the con-
dition that M is an open neighbourhood around zero by the assumption that
M possesses at least an accumulation point at zero. Moreover, since the true
signal f has a compact support and thus the Fourier transform F [f ] is non-
zero almost everywhere, we can easily adapt the proof for arbitrary open sets
M or arbitrary sets M with at least one accumulation point.
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