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1. Introduction

The numerical Young’s inequality for positive real numbers says that

aνbν ≤ νa + (1 − ν)b, (1.1)

where a, b > 0 and 0 ≤ ν ≤ 1. Equivalently,

ab ≤ ap

p
+

bq

q
,

where p, q > 0 and 1
p + 1

q = 1.
Kittaneh and Manasrah in [6] and [7], respectively, refined the inequality

(1.1) and gave a reverse of it in the following forms:

aνb1−ν + r0

(√
a −

√
b
)2

≤ νa + (1 − ν)b (1.2)
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and

νa + (1 − ν)b ≤ aνb1−ν + R0

(√
a −

√
b
)2

, (1.3)

where r0 = min {ν, 1 − ν} and R0 = max {ν, 1 − ν}.
For our purpose in this paper, the inequalities (1.2) and (1.3) are com-

bined and expressed so that

r0

(
(a + b) − 2

√
ab

)
≤ νa + (1 − ν)b − aνb1−ν ≤ R0

(
(a + b) − 2

√
ab

)
. (1.4)

In [4], Hirzallah and Kittaneh proved that if a, b > 0 and 0 ≤ ν ≤ 1,
then (

aνb1−ν
)2

+ r20 (a − b)2 ≤ (νa + (1 − ν)b)2, (1.5)
where r0 = min {ν, 1 − ν}.

In [7], Kittaneh and Manasrah gave a reverse of the inequality (1.5) in
the following form:

(νa + (1 − ν)b)2 ≤ (
aνb1−ν

)2
+ R2

0 (a − b)2 , (1.6)

where R0 = max {ν, 1 − ν}.
Also, for our purpose in this paper, the inequalities (1.5) and ( 1.6) are

combined and expressed so that

r20
(
(a + b)2 − 4ab

) ≤ (νa + (1 − ν)b)2 − (
aνb1−ν

)2 ≤ R2
0

(
(a + b)2 − 4ab

)
.

(1.7)
Recently, the authors [1] proved the following theorem.

Theorem 1. If a, b > 0 and 0 ≤ ν ≤ 1, then for m = 1, 2, 3, . . ., we have
(
aνb1−ν

)m
+ rm

0

(
a

m
2 − b

m
2
)2 ≤ (νa + (1 − ν)b)m , (1.8)

where r0 = min {ν, 1 − ν}.
In fact, this is a generalization of the inequalities (1.2) and ( 1.5), which

correspond to the cases m = 1 and m = 2, respectively.
The Heinz means are defined as

Hν(a, b) =
aνb1−ν + a1−νbν

2
for a, b > 0 and 0 ≤ ν ≤ 1. These interesting means interpolate between the
geometric and arithmetic means. In fact, the Heinz inequalities assert that

√
ab ≤ Hν(a, b) ≤ a + b

2
.

Interchanging a and b in the inequalities (1.4), and adding the resulting in-
equalities to the inequalities (1.4), we have

2r0
(
a + b − 2

√
ab

)
≤ a + b − (

aνb1−ν + a1−νbν
) ≤ 2R0

(
a + b − 2

√
ab

)
.

(1.9)
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Equivalently,

2r0

(
a + b

2
−

√
ab

)
≤ a + b

2
− Hν(a, b) ≤ 2R0

(
a + b

2
−

√
ab

)
, (1.10)

where r0 = min {ν, 1 − ν} and R0 = max {ν, 1 − ν}.
In Sect. 2, we present a new inequality for convex functions of real vari-

ables. We apply this inequality to obtain considerable generalizations, refine-
ments, and reverses of the Young and Heinz inequalities (1.2 )–(1.10). Appli-
cations to unitarily invariant norm inequalities involving positive semidefinite
matrices are given in Sect. 3.

2. Main Results

Let f be a convex function defined on an interval I. If x, y, z and w are points
in I such that w < z < y < x, then it follows by a slop argument that

f(z) − f(w)
z − w

≤ f(y) − f(w)
y − w

≤ f(y) − f(z)
y − z

≤ f(x) − f(y)
x − y

(2.1)

(see, e.g., [8, p. 21]).
Our first result is a consequence of the inequalities (2.1) for convex func-

tions of real variables.

Theorem 2. Let φ be a strictly increasing convex function defined on an interval
I. If x, y, z, and w are points in I such that

z − w ≤ x − y, (2.2)

where w ≤ z ≤ x and y ≤ x, then

(0 ≤) φ(z) − φ(w) ≤ φ(x) − φ(y). (2.3)

Proof. First of all, observe that if x = y, then z = w, and so the inequality
(2.3) becomes an equality. If y = w or z = w, then the inequality (2.3) holds.
Also, if x = z, then according to the inequality (2.2), we have w ≥ y, so
φ(w) ≥ φ(y), and hence φ(z) − φ(w) ≤ φ(x) − φ(y).

Assume that x �= y, y �= w, z �= w, and x �= z. Then we have three cases
for ordering the points x, y, z, w as follows:

Case 1: w < y ≤ z < x
Case 2: w < z < y < x
Case 3: y < w < z < x.
Now, if y = z , then the case 1 becomes w < y = z < x, and so by the

inequalities (2.1), we have φ(z)−φ(w)
z−w ≤ φ(x)−φ(y)

x−y , which implies that φ(z) −
φ(w) ≤ φ(x) − φ(y). Suppose y �= z. Then apply the inequalities (2.1) to the
cases 1 and 2 to get the inequality (2.3).

To discuss the third case, we apply the strictly increasing property of the
function φ to the sequence of points y < w < z < x, so we have φ(y) < φ(w) <
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φ(z) < φ(x) and this implies that φ(y) − φ(w) < 0 < φ(x) − φ(z), and hence
φ(z) − φ(w) < φ(x) − φ(y).

Thus, from the discussion above we have

φ(z) − φ(w) ≤ φ(x) − φ(y).

This completes the proof. �

As a direct consequence of Theorem 2, we have the following generaliza-
tions of the inequalities (1.4).

Corollary 1. Let φ : [0,∞) → R be a strictly increasing convex function. If
a, b > 0 and 0 ≤ ν ≤ 1, then we have

φ (r0 (a + b)) − φ
(
2r0

√
ab

)
≤ φ (νa + (1 − ν)b) − φ

(
aνb1−ν

)

≤ φ (R0 (a + b)) − φ
(
2R0

√
ab

)
, (2.4)

where r0 = min {ν, 1 − ν} and R0 = max {ν, 1 − ν}.
Proof. Let x = νa + (1 − ν)b, y = aνb1−ν , z = r0 (a + b), w = 2r0

√
ab ,

z′ = R0 (a + b), and w′ = 2R0

√
ab. Then based on the inequalities (1.4) and

the arithmetic–geometric mean inequality, we have

z − w ≤ x − y ≤ z′ − w′.

The first and the second inequalities in (2.4) follow directly by applying The-
orem 2 to the inequalities z − w ≤ x − y, with w ≤ z ≤ x, y ≤ x and
x − y ≤ z′ − w′ with y ≤ x ≤ z′, w′ ≤ z′, respectively. This completes the
proof. �

A particular case of Corollary 1, which is obtained by taking φ(x) = xp

(p ∈ R, p ≥ 1) can be stated as follows.

Corollary 2. If a, b > 0 and 0 ≤ ν ≤ 1, then for p ∈ R, p ≥ 1, we have

rp
0

(
(a + b)p −

(
2
√

ab
)p)

≤ (νa + (1 − ν)b)p − (
aνb1−ν

)p

≤ Rp
0

(
(a + b)p −

(
2
√

ab
)p)

, (2.5)

where r0 = min {ν, 1 − ν} and R0 = max {ν, 1 − ν}.
One can observe that the inequalities (2.5) are reduced to the inequalities

(1.4) and (1.7) when p = 1 and p = 2, respectively.
The next theorem demonstrates the relationship between the inequalities

( 2.5) and (1.8). In fact, it confirms that the first inequality (2.5) is uniformly
better than the inequality (1.8), and the second inequality in (2.5) provides a
reverse of the same inequality. It should be noted here that the variable p in
the inequalities (2.5) is continuous (p ∈ R, p ≥ 1), while the variable m in the
inequality (1.8) is discrete (m = 1, 2, 3, . . .).
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Theorem 3. If a, b > 0 and 0 ≤ ν ≤ 1, then we have

rm
0

(
a

m
2 − b

m
2
)2 ≤ rm

0

(
(a + b)m −

(
2
√

ab
)m)

≤ (νa + (1 − ν)b)m − (
aνb1−ν

)m

≤ Rm
0

(
(a + b)m −

(
2
√

ab
)m)

(2.6)

for m = 1, 2, 3, . . ., where r0 = min {ν, 1 − ν}.
Proof. It is clear that the second and third inequalities in (2.6) are special
cases of the inequalities (2.5). So, it is enough to prove the first inequality in
(2.6).

To do this, observe that the cases m = 1 and m = 2 degenerate to an
equality. For m = 3, 4, 5, . . ., we discuss two cases.

Case 1: If m is even, we have

(a + b)m = am +

m
2 −1∑
i=1

(
m
i

)(
aibm−i + am−ibi

)
+

(
m
m
2

)m
2

b
m
2 + bm

≥ am + 2a
m
2 b

m
2

m
2 −1∑
i=1

(
m
i

)
+

(
m
m
2

)
a

m
2 b

m
2 + bm

(by the arithmetic-geometric mean inequality)

= am + a
m
2 b

m
2

⎛
⎝2

m
2 −1∑
i=1

(
m
i

)
+

(
m
m
2

)⎞
⎠ + bm

= am + bm + a
m
2 b

m
2

m−1∑
i=1

(
m
i

)

= am + bm + (2m − 2) a
m
2 b

m
2 .

Case 2: If m is odd, we have

(a + b)m = am +

m−1
2∑

i=1

(
m
i

) (
aibm−i + am−ibi

)
+ bm

≥ am + bm + 2a
m
2 b

m
2

m−1
2∑

i=1

(
m
i

)

(by the arithmetic-geometric mean inequality)

= am + bm + a
m
2 b

m
2

m−1∑
i=1

(
m
i

)

= am + bm + (2m − 2) a
m
2 b

m
2 .

Now,
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for m = 3, 4, 5, . . . ,we have

(a + b)m −
(
2
√

ab
)m

= (a + b)m − 2ma
m
2 b

m
2

≥ am + bm − 2a
m
2 b

m
2

=
(
a

m
2 − b

m
2
)2

.

Thus,

rm
0

(
a

m
2 − b

m
2
)2 ≤ rm

0

(
(a + b)m −

(
2
√

ab
)m)

≤ (νa + (1 − ν)b)m−(
aνb1−ν

)m

for m = 1, 2, 3, . . . This completes the proof. �
Applying Theorem 2 again, we have the following generalizations of the

inequalities (1.9) and (1.10), respectively:

φ (2r0 (a + b)) − φ
(
4r0

√
ab

)
≤ φ (a + b) − φ

(
aνb1−ν + a1−νbν

)

≤ φ (2R0 (a + b)) − φ
(
4R0

√
ab

)
(2.7)

and

φ

(
2r0

(
a + b

2

))
− φ

(
2r0

√
ab

)
≤ φ

(
a + b

2

)
− φ (Hν(a, b))

≤ φ

(
2R0

(
a + b

2

))
− φ

(
2R0

√
ab

)
.

In particular, if φ(x) = xp (p ∈ R, p ≥ 1),we have

(2r0)p
(
(a + b)p −

(
2
√

ab
)p)

≤ (a + b)p − (
aνb1−ν + a1−νbν

)p

≤ (2R0)p
(
(a + b)p −

(
2
√

ab
)p)

. (2.8)

3. Some Inequalities for Unitarily Invariant Norms

In this section, we obtain matrix versions of the scalar inequalities presented
in Sects. 1 and 2.

Let Mn(C) be the space of n × n complex matrices. A norm |||.||| on
Mn(C) is called unitarily invariant if |||UAV ||| = |||A||| for all A ∈ Mn(C)
and for all unitary matrices U, V ∈ Mn(C). An example of unitarily invariant
norms is the Schatten p-norm, denoted by ‖.‖p and defined, for 1 ≤ p < ∞, by

‖A‖p =

(
n∑

i=1

sp
i (A)

) 1
p

,

where s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) are the singular values of A ∈ Mn(C). The
Schatten 1–norm of A is the trace norm, which can be expressed as ‖A‖1 =
tr |A|. The Schatten 2-norm of A = [aij ] is known as the Hilbert–Schmidt (or
the Frobenius) norm, which can be expressed as
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‖A‖2 =

⎛
⎝

n∑
i,j=1

|aij |2
⎞
⎠

1
2

.

Another important example of unitarily invariant norms on Mn(C) is the spec-
tral (or the usual operator) norm ‖.‖, given by

‖A‖ = s1(A).

Based on the refined and reversed Young inequalities (1.5) and (1.6),
Hirzallah and Kittaneh [4], and Kittaneh and Manasrah [7], respectively, proved
that if A,B,X ∈ Mn(C) such that A and B are positive semidefinite, then

r20 ‖AX − XB‖22 ≤ ‖νAX + (1 − ν)XB‖22 − ∥∥AνXB1−ν
∥∥2

2
(3.1)

and

‖νAX + (1 − ν)XB‖22 − ∥∥AνXB1−ν
∥∥2

2
≤ R2

0 ‖AX − XB‖22 , (3.2)

where 0 ≤ ν ≤ 1, r0 = min {ν, 1 − ν} and R0 = max {ν, 1 − ν}.
It can be easily shown that

‖AX − XB‖22 = ‖AX + XB‖22 − 4
∥∥∥A

1
2 XB

1
2

∥∥∥
2

2
.

Thus, the inequalities (3.1) and (3.2) can be combined and expressed so that

r20

(
‖AX + XB‖22 − 4

∥∥∥A
1
2 XB

1
2

∥∥∥
2

2

)
≤ ‖νAX + (1 − ν)XB‖22 − ‖AνXBν‖22

≤ R2
0

(
‖AX + XB‖22 − 4

∥∥∥A
1
2 XB

1
2

∥∥∥
2

2

)
.

(3.3)

Applying Theorem 2 to the inequalities (3.3), the following general result
holds.

Theorem 4. Let A,B,X ∈ Mn(C) such that A and B are positive semidefinite.
If φ : [0,∞) → R is a strictly increasing convex function, then we have

φ
(
r20 ‖AX + XB‖22

)
− φ

(
4r20

∥∥∥A
1
2 XB

1
2

∥∥∥
2

2

)

≤ φ
(
‖νAX + (1 − ν)XB‖22

)
− φ

(
‖AνXBν‖22

)

≤ φ
(
R2

0 ‖AX + XB‖22
)

− φ

(
4R2

0

∥∥∥A
1
2 XB

1
2

∥∥∥
2

2

)
,

where r0 = min {ν, 1 − ν} and R0 = max {ν, 1 − ν}.
In particular, when φ(x) = x

p
2 (p ∈ R and p ≥ 2), we have

rp
0

(
‖AX + XB‖p

2 − 2p
∥∥∥A

1
2 XB

1
2

∥∥∥
p

2

)
≤ ‖νAX + (1 − ν)XB‖p

2 − ‖AνXBν‖p
2

≤ Rp
0

(
‖AX + XB‖p

2 − 2p
∥∥∥A

1
2 XB

1
2

∥∥∥
p

2

)
.
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If A,B,X ∈ Mn(C) such that A and B are positive semidefinite, then it is
known that for any unitarily invariant norm, the function f(ν) =

∣∣∣∣∣∣AνXB1−ν

+A1−νXBν
∣∣∣∣∣∣ is convex on [0, 1] and attains its minimum at ν = 1

2 (see, e.g.,
[2, p. 265]).

Bhatia and Davis [3] proved that if A,B,X ∈ Mn(C) such that A and B
are positive semidefinite, then

2
∣∣∣
∣∣∣
∣∣∣A 1

2 XB
1
2

∣∣∣
∣∣∣
∣∣∣ ≤ ∣∣∣∣∣∣AνXB1−ν + A1−νXBν

∣∣∣∣∣∣ ≤ |||AX + XB||| ,
where 0 ≤ ν ≤ 1. These inequalities are known as Heinz norm inequalities.

Kittaneh [5] proved that if A,B,X ∈ Mn(C) such that A and B are
positive semidefinite, then

2r0
(
|||AX + XB||| − 2

∣∣∣
∣∣∣
∣∣∣A 1

2 XB
1
2

∣∣∣
∣∣∣
∣∣∣
)

≤ |||AX + XB||| − ∣∣∣∣∣∣AνXB1−ν + A1−νXBν
∣∣∣∣∣∣ , (3.4)

where 0 ≤ ν ≤ 1 and r0 = min{ν, 1 − ν}.
In the next theorem, we obtain a reverse of the inequality (3.4) as follows.

Theorem 5. If A,B,X ∈ Mn(C) such that A and B are positive semidefinite,
then

|||AX + XB||| − ∣∣∣∣∣∣AνXB1−ν + A1−νXBν
∣∣∣∣∣∣

≤ 2R0

(
|||AX + XB||| − 2

∣∣∣
∣∣∣
∣∣∣A 1

2 XB
1
2

∣∣∣
∣∣∣
∣∣∣
)

, (3.5)

where 0 ≤ ν ≤ 1 and R0 = max{ν, 1 − ν}.
Proof. If ν = 0, ν = 1

2 , or ν = 1, then the inequality (3.5) is obviously true.
Suppose that 0 < ν < 1, ν �= 1

2 .
If 0 < ν < 1

2 < 1, then based on the convexity of the function f(ν) =∣∣∣∣∣∣AνXB1−ν + A1−νXBν
∣∣∣∣∣∣, we have

f
(
1
2

) − f (ν)
1
2 − ν

≤ f (1) − f (ν)
1 − ν

,

and so

(1 − ν)
(

f

(
1
2

)
− f (ν)

)
≤

(
1
2

− ν

)
(f (1) − f (ν)) .

Adding f(1) to both sides, gives

f(1) − f(ν) ≤ 2(1 − ν)
(

f(1) − f

(
1
2

))
.

i.e.,

|||AX + XB||| − ∣∣∣∣∣∣AνXB1−ν + A1−νXBν
∣∣∣∣∣∣

≤ 2(1 − ν)
(
|||AX + XB||| − 2

∣∣∣
∣∣∣
∣∣∣A 1

2 XB
1
2

∣∣∣
∣∣∣
∣∣∣
)

.
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If 0 < 1
2 < ν < 1, then

f
(
1
2

) − f (0)
1
2 − 0

≤ f(ν) − f(0)
ν − 0

,

and so

f (0) − f (ν) ≤ 2ν
(

f (0) − f

(
1
2

))
,

i.e.,

|||AX + XB||| − ∣∣∣∣∣∣AνXB1−ν + A1−νXBν
∣∣∣∣∣∣

≤ 2ν
(
|||AX + XB||| − 2

∣∣∣
∣∣∣
∣∣∣A 1

2 XB
1
2

∣∣∣
∣∣∣
∣∣∣
)

.

Thus, from the above two norm inequalities, we get the inequality (3.5).
�

The inequalities (3.4) and (3.5) can be combined so that

2r0
(
|||AX + XB||| − 2

∣∣∣
∣∣∣
∣∣∣A 1

2 XB
1
2

∣∣∣
∣∣∣
∣∣∣
)

≤ |||AX + XB||| − ∣∣∣∣∣∣AνXB1−ν + A1−νXBν
∣∣∣∣∣∣

≤ 2R0

(
|||AX + XB||| − 2

∣∣∣
∣∣∣
∣∣∣A 1

2 XB
1
2

∣∣∣
∣∣∣
∣∣∣
)

. (3.6)

Applying Theorem 2 to the inequalities (3.6), we have the following gen-
eral result.

Corollary 3. Let A,B,X ∈ Mn(C) such that A and B are positive semidefinite.
If φ : [0,∞) → R is a stricly increasing convex function, then we have

φ (2r0 |||AX + XB|||) − φ
(
4r0

∣∣∣
∣∣∣
∣∣∣A 1

2 XB
1
2

∣∣∣
∣∣∣
∣∣∣
)

≤ φ (|||AX + XB|||) − φ
(∣∣∣∣∣∣AνXB1−ν + A1−νXBν

∣∣∣∣∣∣)

≤ φ (2R0 |||AX + XB|||) − φ
(
4R0

∣∣∣
∣∣∣
∣∣∣A 1

2 XB
1
2

∣∣∣
∣∣∣
∣∣∣
)

,

where 0 ≤ ν ≤ 1, r0 = min {ν, 1 − ν} and R0 = max {ν, 1 − ν}.
In particular, if φ(x) = xq (q ∈ R, q ≥ 1) and |||.||| = ‖.‖p (the Schatten

p-norm p ∈ R, p ≥ 1), we have

(2r0)q
(

‖AX + XB‖q
p − 2q

∥∥∥A
1
2 XB

1
2

∥∥∥
q

p

)

≤ ‖AX + XB‖q
p − ∥∥AνXB1−ν + A1−νXBν

∥∥q

p

≤ (2R0)q
(

‖AX + XB‖q
p − 2q

∥∥∥A
1
2 XB

1
2

∥∥∥
q

p

)
.
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