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Abstract. The core object of this paper is to define and study a new
class of analytic functions using the Ruscheweyh q-differential operator.
We also investigate a number of useful properties of this class such struc-
tural formula and coefficient estimates for functions. We consider also the
Fekete–Szegö problem in the class, we give some subordination results,
and some other corollaries.
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1. Introduction and Definitions

Let A be the class of functions having the form

f(z) = z +
∞∑

n=2

anzn, (1.1)

which are analytic in the open unit disk E = {z ∈ C : |z| < 1}. Further, we
denote the class S of all functions in A which are univalent in E (see [1]).
Goodman [2] introduced the class UCV of uniformly convex functions. A func-
tion f(z) ∈ S is in the class UCV if for every circular arc ξ ⊂ E, with center
in E, the arc f(ξ) is convex. An interesting characterization of class UCV was
given in [3], see also [4] as:

f(z) ∈ UCV ⇔ f(z) ∈ A and 1 >

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣− Re

{
zf ′′(z)
f ′(z)

}
(z ∈ E).
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In [5], see also [6], it was introduced the class k-uniformly convex functions,
k ≥ 0, denoted by k − UCV and the class k − ST related to k − UCV by
Alexandar type relation i.e. f(z) ∈ k − UCV ⇔ zf ′(z) ∈ k − ST , where

f(z) ∈ k −UCV ⇔ f(z) ∈ A and 1 > k

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣−Re

{
zf ′′(z)
f ′(z)

}
(z ∈ E).

In [5,6] the geometric definitions of k−UCV and k−ST and connections with
the conic domains were also considered. If k ≥ 0, then the class k − UCV is
defined purely geometrically as a subclass of univalent functions which map the
intersection of E with any disk centered at ζ, |ζ| ≤ k, onto a convex domain.
Therefore, the notion of k-uniform convexity is a generalization of the notion
of convexity. Observe that, if k = 0 then the center ζ is the origin and the
class k − UCV reduces to the class C of convex univalent functions, see [1].
Moreover for k = 1 it coincides with the class of uniformly convex functions
UCV introduced by Goodman [2] and studied extensively by Rønning [4] and
independently by Ma and Minda [3]. We note that the class k − UCV started
much earlier in papers [7,8] with some additional conditions but without the
geometric interpretation.

We say that a function f(z) ∈ A is in the class S∗
k,γ , k ≥ 0, γ ∈ C\{0},

if and only if

1 > k

∣∣∣∣
1
γ

(
zf ′(z)
f(z)

− 1
)∣∣∣∣− Re

{
1
γ

(
zf ′(z)
f(z)

− 1
)}

(z ∈ E).

Many authors investigated the properties of the class S∗
k,γ and their general-

izations in several directions e.g. see, [4,6,9–13].
If f(z) and g(z) are analytic in E, we say that f(z) is subordinate to

g(z), written as f(z) ≺ g(z), if there exists a Schwarz function w(z), which
is analytic in E with w (0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)).
Furthermore, if the function g(z) is univalent in E, then we have the following
equivalence, see [1,14].

f(z) ≺ g(z) (z ∈ E) ⇐⇒ f(0) = g(0) and f(E) ⊂ g(E).

For two analytic functions

f(z) =
∞∑

n=0

anzn and g (z) =
∞∑

n=0

bnzn (z ∈ E) ,

the convolution (Hadamard product) of f(z) and g (z) is defined as

f(z) ∗ g(z) =
∞∑

n=0

anbnzn.

For t ∈ R and q > 0, q �= 1, the number [t, q] is defined in [15] as

[t, q] =
1 − qt

1 − q
, [0, q] = 0.
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For any non-negative integer n the q-number shift factorial is defined by

[n, q]! = [1, q] [2, q] [3, q] · · · [n, q] , ([0, q]! = 1) .

We have limq→1 [n, q] = n. Throughout in this paper we will assume q to be
fixed number between 0 and 1.
The q-derivative operator or q-difference operator for f ∈ A is defined as

∂qf(z) =
f (qz) − f(z)

z (q − 1)
, z ∈ E.

It can easily be seen that for n ∈ N := {1, 2, 3, . . .} and z ∈ E

∂qz
n = [n, q] zn−1, ∂q

{ ∞∑

n=1

anzn

}
=

∞∑

n=1

[n, q] anzn−1.

The q-generalized Pochhammer symbol for t ∈ R and n ∈ N is defined as

[t, q]n = [t, q] [t + 1, q] [t + 2, q] · · · [t + n − 1, q] ,

and for t > 0, let q-gamma function is defined as

Γq (t + 1) = [t, q] Γq (t) and Γq (1) = 1.

Definition 1.1 [15]. For a function f(z) ∈ A, the Ruscheweyh q-differential
operator is defined as

Lλ
q f(z) = φ (q, λ + 1; z) ∗ f(z) = z +

∞∑

n=2

ψn−1anzn, (z ∈ E and λ > −1) ,

(1.2)
where

φ (q, λ + 1; z) = z +
∞∑

n=2

ψn−1z
n, (1.3)

and

ψn−1 =
Γq (λ + n)

[n − 1, q]!Γq (λ + 1)
=

[λ + 1, q]n−1

[n − 1, q]!
. (1.4)

From (1.2), it can be seen that

L0
qf(z) = f(z) and L1

qf(z) = z∂qf(z),

and

Lm
q f(z) =

z∂m
q

(
zm−1f(z)

)

[m, q]!
, (m ∈ N) .

lim
q→1−

φ (q, λ + 1; z) =
z

(1 − z)λ+1
,

and
lim

q→1−
Lλ

q f(z) = f(z) ∗ z

(1 − z)λ+1
.
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This shows that in case of q → 1−, the Ruscheweyh q-differential operator
reduces to the Ruscheweyh differential operator Dδ (f(z)) (see [16]). From
(1.2) the following identity can easily be derived.

z∂Lλ
q f(z) =

(
1 +

[λ, q]
qλ

)
Lλ+1

q f(z) − [λ, q]
qλ

Lλ
q f(z). (1.5)

If q → 1−, then

z
(
Lλf(z)

)′
= (1 + λ)Lλ+1f(z) − λLλf(z).

Now using the Ruscheweyh q-differential operator, we define the following
class.

Definition 1.2. Let f(z) ∈ A. Then f(z) is in the class k − UST λ
q (γ), γ ∈

C\{0}, if it satisfies the condition

Re

{
1 +

1
γ

(
z∂qL

λ
q f(z)

Lλ
q f(z)

− 1

)}
>

∣∣∣∣∣
1
γ

(
z∂qL

λ
q f(z)

Lλ
q f(z)

− 1

)∣∣∣∣∣ (z ∈ E).

Geometric Interpretation

A function f(z) ∈ A is in the class k −UST λ
q (γ) if and only if z∂qLλ

q f(z)

Lλ
q f(z)

takes
all the values in the conic domain Ωk,γ = pk,γ (E) such that

Ωk,γ = γΩk + (1 − γ),

where
Ωk =

{
u + iv : u > k

√
(u − 1)2 + v2

}
,

or equivalently,

z∂qL
λ
q f(z)

Lλ
q f(z)

≺ pk,γ(z), Ωk,γ = pk,γ (E) . (1.6)

The boundary ∂Ωk,γ of the above set becomes the imaginary axis when k = 0
while a hyperbola when 0 < k < 1. In this case 0 ≤ k < 1, we have

pk,γ(z) = 1 +
2γ

1 − k2
sinh2

{(
2
π

arccos k

)
arc tanh

√
z

}
, (z ∈ E).

For k = 1 the boundary ∂Ωk,γ becomes a parabola and

p1,γ(z) = 1 +
2γ

π2

(
log

1 +
√

z

1 − √
z

)2

, (z ∈ E).

It is an ellipse when k > 1 and in this case

pk,γ(z) = 1 +
γ

k2 − 1
sin

(
π

2R(t)

∫ u(z)/
√

t

0

1√
1 − x2

√
1 − (tx)2

dx

)
+

γ

1 − k2
,
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where u(z) = z−√
t

1−√
tz

, z ∈ E and t ∈ (0, 1) is chosen such that k = cosh
(

πR′(t)
R(t)

)
,

R(t) is the Legendre’s complete elliptic integral of the first kind and R′(t)
is complementary integral of R(t), see [5,6,17]. Moreover, pk,γ(E) is convex
univalent in E, see [5,6]. All of these curves have the vertex at the point
(k + γ)/(k + 1). Therefore the domain Ωk,γ is elliptic for k > 1, hyperbolic
when 0 < k < 1, parabolic for k = 1 and right half plane when k = 0 ; ever
symmetric with respect to the real axis. Because pk,γ(E) = Ωk,γ , the func-
tions pk,γ , play the role of extremal functions for several problems for the class
k − UST λ

q (γ).

2. Preliminary Results

Lemma 2.1 [18]. Let p(z) =
∑∞

n=1 pnzn ≺ F (z) =
∑∞

n=1 dnzn in E. If F (z) is
convex univalent in E then

|pn| ≤ |d1| , n ≥ 1.

Lemma 2.2 [19]. Let k ∈ [0,∞) be fixed and let pk,γ be defined as above. If

pk,γ(z) = 1 + Q1z + Q2z
2 + · · · ,

then

Q1 =

⎧
⎪⎨

⎪⎩

2γA2

1−k2 0 ≤ k < 1,
8γ
π2 k = 1,

π2γ

4
√

t(k2−1)R2(t)(1+t)
k > 1

(2.1)

and

Q2 =

⎧
⎪⎪⎨

⎪⎪⎩

(A2+2)
3 Q1 0 ≤ k < 1,

2
3Q1 k = 1,
4R2(t)(t2+6t+1)−π2

24
√

tR2(t)(1+t)
Q1 k > 1,

(2.2)

where

A =
2 cos−1 k

π
,

and t ∈ (0, 1) is chosen such that k = cosh
(

πR′(t)
R(t)

)
, R(t) is the Legendre’s

complete elliptic integral of the first kind.

Lemma 2.3 [20]. Let h(z) = 1 +
∑∞

k=1 cnzn ∈ P, i.e., let h(z) be analytic in E
and satisfy Re{h(z)} > 0 for z in E, then the following sharp estimate holds

∣∣c2 − νc21
∣∣ ≤ 2max {1, |2ν − 1|} for all ν ∈ C.



1350 S. Mahmood and J. Sokó�l Results Math

3. Main Results

Theorem 3.1. Let f(z) ∈ k − UST λ
q (γ). Then

Lλ
q f(z) ≺ z exp

z∫

0

pk,γ (w(ξ)) − 1
ξ

dξ, (3.1)

where w(z) is analytic in E with w (0) = 0 and |w(z)| < 1. Moreover, for
|z| = ρ, we have

exp

⎛

⎝
1∫

0

pk,γ (−ρ) − 1
ρ

dρ

⎞

⎠ ≤
∣∣∣∣∣
Lλ

q f(z)
z

∣∣∣∣∣ ≤ exp

⎛

⎝
1∫

0

pk,γ (ρ) − 1
ρ

dρ

⎞

⎠ ,

where pk,γ(z) is defined below (1.6).

Proof. If f(z) ∈ k − ULλ
q (γ) , then using the identity (1.6), we obtain

∂Lλ
q f(z)

Lλ
q f(z)

− 1
z

=
pk,γ (w(z)) − 1

z
, (3.2)

for some function w(z), analytic in E with w (0) = 0 and |w(z)| < 1. Integrating
(3.2), we have

Lλ
q f(z) ≺ z exp

z∫

0

pk,γ (w(ξ)) − 1
ξ

dξ. (3.3)

This proves (3.1). Noting that the univalent function pk,γ(z) maps the disk
|z| < ρ (0 < ρ ≤ 1) onto a region which is convex and symmetric with respect
to the real axis, we see
k + γ

k + 1
< pk,γ (−ρ |z|) ≤ Re {pk,γ (w(ρz))} ≤ pk,γ (ρ |z|) (0 < ρ ≤ 1, z ∈ E) .

(3.4)
Using (3.4), gives

1∫

0

pk,γ (−ρ |z|) − 1
ρ

dρ ≤ Re

1∫

0

pk,γ (w(ρz)) − 1
ρ

dρ ≤
1∫

0

pk,γ (ρ |z|) − 1
ρ

dρ,

for z ∈ E. Consequently, the subordination (3.3) leads us to
1∫

0

pk,γ (−ρ|z|) − 1
ρ

dρ ≤ log

∣∣∣∣∣
Lλ

q f(z)
z

∣∣∣∣∣ ≤
1∫

0

pk,γ (ρ|z|) − 1
ρ

dρ,

pk,γ(−ρ) ≤ pk,γ(−ρ|z|), pk,γ(ρ|z|) ≤ pk,γ(ρ) implies that

exp

⎛

⎝
1∫

0

pk,γ (−ρ) − 1
ρ

dρ

⎞

⎠ ≤
∣∣∣∣∣
Lλ

q f(z)
z

∣∣∣∣∣ ≤ exp

⎛

⎝
1∫

0

pk,γ (ρ) − 1
ρ

dρ

⎞

⎠ .
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This completes the proof. �

Theorem 3.2. If f(z) ∈ k − UST λ
q (γ), then

|a2| ≤ σ

ψ1
, |an| ≤ σ

[n − 1, q]!ψn−1

n−2∏

j=1

(
1 +

σ

[j, q]

)
, (n = 3, 4, . . .), (3.5)

where ψn−1 is defined by (1.4) and σ = |Q1|/q with Q1 is given by (2.1).

Proof. Let
z∂qL

λ
q f(z)

Lλ
q f(z)

= p(z),

where p(z) is analytic in E. This can be written as

z∂qL
λ
q f(z) = Lλ

q f(z)p(z). (3.6)

Let p(z) = 1 +
∞∑

n=1
pnzn and Lλ

q f(z) is given by (1.2). Then (3.6) becomes

z +
∞∑

n=2

[n, q] ψn−1anzn =

( ∞∑

n=0

pnzn

)(
z +

∞∑

n=2

ψn−1z
n

)
.

Now comparing the coefficients of zn, we obtain

[n, q] ψn−1an = ψn−1an +
n−1∑

j=1

ψj−1ajpn−j,

or

an =
1

[n − 1, q] qψn−1

n−1∑

j=1

ψj−1ajpn−j .

Using the result that |pn| ≤ |Q1| given in [17], we have

|an| ≤ |Q1|
[n − 1, q] qψn−1

n−1∑

j=1

ψj−1 |aj | .

Let us take σ = |Q1|
q . Then, we have

|an| ≤ σ

[n − 1, q] ψn−1

n−1∑

j=1

ψj−1 |aj | . (3.7)

So for n = 2, we have from (3.7)

|a2| ≤ σ

ψ1
, (3.8)

which shows that (3.5) holds for n = 2. To prove (3.5) we apply mathematical
induction. For n = 3, we have from (3.7)

|a3| ≤ σ

[2, q] ψ2
{1 + ψ1 |a2|} ,
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using (3.8), we have

|a3| ≤ σ

[2, q] ψ2 (a, c)
(1 + σ) =

σ ([1, q] + σ)
[2, q] ψ2 (a, c)

,

which shows that (3.5) holds for n = 3. Let us assume that (3.5) is true for
n ≤ t, that is,

|at| ≤ σ

[t − 1, q]!ψt−1

t−2∏

j=1

(
1 +

σ

[j, q]

)
.

Consider

|at+1| ≤ σ

[t, q] ψt
[1 + ψ1 |a2| + ψ2 |a3| + · · · + ψt−1 |at| , q]

≤ σ

[t, q] ψt

⎡

⎣1 + σ + σ

(
1 +

σ

[1, q]

)
+ σ

(
1 +

σ

[1, q]

)(
1 +

σ

[2, q]

)

+ · · · + σ
t−2∏

j=1

(
1 +

σ

[j, q]

)
, q

⎤

⎦

=
σ

[t, q]ψt

t−1∏

j=1

(
1 +

σ

[j, q]

)
.

Therefore, the result is true for n = t + 1. Consequently, using mathematical
induction, we have proved that (3.5) holds true for all n, n ≥ 2. This completes
the proof. �
Theorem 3.3. Let f(z) ∈ k − UST λ

q (γ). Then f (E) contains an open disk of
radius

q [λ + 1, q]
2q [λ + 1, q] + |Q1|

,

where Q1 is defined by (2.1).

Proof. Let ω0 �= 0 be a complex number such that f(z) �= ω0 for z ∈ E. Then

f1(z) =
ω0f(z)

ω0 − f(z)
= z +

(
a2 +

1
ω0

)
z2 + · · · .

Since f1(z) is univalent, so ∣∣∣∣a2 +
1
ω0

∣∣∣∣ ≤ 2.

Now using Theorem 3.2, we have
∣∣∣∣

1
ω0

∣∣∣∣ ≤ 2 +
|Q1|

q [λ + 1, q]
,

and hence

|ω0| ≥ q [λ + 1, q]
2q [λ + 1, q] + |Q1|

.

�
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Theorem 3.4. Let 0 ≤ k < ∞ be fixed and let f(z) ∈ k − UST λ
q (γ) with the

form (1.1). Then for a complex number μ

∣∣a3 − μa2
2

∣∣ ≤ Q1

q [λ + 1, q] [λ + 2, q]
max {1, |2ν − 1|} ,

where

ν =
1
2

{
1 − qQ2

Q1
− Q1

2q2 [λ + 1, q]
+

μ [λ + 2, q] Q1

q [λ + 1, q]

}
, (3.9)

Q1 and Q2 are given by (2.1) and (2.2).

Proof. If f(z) ∈ k −UST λ
q (γ), then there exist a Schwarz function w(z), with

w (0) = 0 and |w(z)| < 1 such that

z∂Lλ
q f(z)

Lλ
q f(z)

= pk,γ (w(z)) (z ∈ E). (3.10)

Let h(z) ∈ P be a function defined as

h(z) =
1 + w(z)
1 − w(z)

= 1 + c1z + c2z
2 + · · · (z ∈ E).

This gives

w(z) =
c1
2

z +
1
2

(
c2 − c21

2

)
z2 + · · · ,

and

pk,γ (w(z)) = 1 +
Q1c1

2
z +

{
c21Q2

4
+

1
2

(
c2 − c21

2

)
Q1

}
z2 + · · · . (3.11)

Using (3.11) in (3.10) along with (1.2) , we obtain

a2 =
Q1c1

2q [λ + 1, q]
,

and

a3 =
1

q [λ + 1, q] [λ + 2, q]

×
{

q

{
c21Q2

4
+

1
2

(
c2 − c21

2

)
Q1

}
+

Q2
1c

2
1

4q2 [λ + 1, q]2

}
.

For any complex number μ, we have

a3 − μa2
2 =

1
q [λ + 1, q] [λ + 2, q]

×
{

q

{
c21Q2

4
+

1
2

(
c2 − c21

2

)
Q1

}
+

Q2
1c

2
1

4q2 [λ + 1, q]2

}

−μ
Q2

1c
2
1

4q2 [λ + 1, q]2
. (3.12)
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Then (3.12) can be written as

a3 − μa2
2 =

Q1

2q [λ + 1, q] [λ + 2, q]
{
c2 − νc21

}
,

where ν is defined by (3.9). Now, taking absolute value on both sides and using
Lemma 2.3, we obtain the required result. �

Theorem 3.5. If a function f(z) ∈ A has the form (1.1) and it satisfies

∞∑

n=2

{q [n − 1, q] (k + 1) + |γ|} |ψn−1| |an| ≤ |γ| , (3.13)

then f(z) ∈ k − UST λ
q (γ).

Proof. Let we note that

∣∣∣∣∣
∂Lλ

q f(z)
Lλ

q f(z)
− 1

∣∣∣∣∣ =

∣∣∣∣∣
∂Lλ

q f(z) − Lλ
q f(z)

Lλ
q f(z)

∣∣∣∣∣

=
∣∣∣∣

∑∞
n=2 q [n − 1, q] ψn−1anzn

z +
∑∞

n=2 ψn−1anzn

∣∣∣∣

≤
∑∞

n=2 |q [n − 1, q] ψn−1 (a, c)| |an|
1 −

∑∞
n=2 |ψn−1 (a, c)| |an| (3.14)

because from (3.13) it follows that

1 −
∞∑

n=2

|ψn−1 (a, c)| |an| > 0.

To show that f(z) ∈ k − UST λ
q (γ) it suffices that

∣∣∣∣∣
k

γ

(
∂Lλ

q f(z)
Lλ

q f(z)
− 1

)∣∣∣∣∣− Re

{
1
γ

(
∂Lλ

q f(z)
Lλ

q f(z)
− 1

)}
≤ 1.
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From (3.14), we have
∣∣∣∣∣
k

γ

(
∂Lλ

q f(z)
Lλ

q f(z)
− 1

)∣∣∣∣∣− Re

{
1
γ

(
∂Lλ

q f(z)
Lλ

q f(z)
− 1

)}

≤ k

|γ|

∣∣∣∣∣
∂Lλ

q f(z)
Lλ

q f(z)
− 1

∣∣∣∣∣+
1
|γ|

∣∣∣∣∣
∂Lλ

q f(z)
Lλ

q f(z)
− 1

∣∣∣∣∣

≤ (k + 1)
|γ|

∣∣∣∣∣
∂Lλ

q f(z)
Lλ

q f(z)
− 1

∣∣∣∣∣

≤ (k + 1)
|γ|

∞∑
n=2

|q [n − 1, q] ψn−1| |an|

1 −
∞∑

n=2
|ψn−1| |an|

≤ 1

because of (3.13). �

Theorem 3.6. If Lλ
q f(z) �= 0 in E, and if
(

1 +
[λ, q]
qλ

)
Lλ+1f(z)
Lλ

q f(z)
− [λ, q]

qλ
≺ pk,γ(z),

then f ∈ k − UST λ
q (γ).

Proof. Because Lλ
q f(z) �= 0 in E we can define the function p(z) by

z∂Lλ
q f(z)

Lλ
q f(z)

= p(z) (z ∈ E).

From (1.5), we have
(

1 +
[λ, q]
qλ

)
Lλ+1f(z)
Lλ

q f(z)
− [λ, q]

qλ
= p(z).

Therefore, p(z) ≺ pk,γ(z), now (1.6) shows that f ∈ k − UST λ
q (γ). �
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