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Abstract. An inverse spectral problem for the Dirac operator with an
integral delay is studied. We show, that the considered operator can be
uniquely recovered from one spectrum, provide a constructive procedure
for the solution of the inverse problem, and obtain necessary and sufficient
conditions for its solvability.
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1. Introduction

Inverse spectral problems consist in recovering operators from given their spec-
tral characteristics. The greatest success in the inverse spectral theory has
been achieved for the Sturm-Liouville and Dirac differential operators (see,
e.g., [1–4] and the references therein) and afterwards for higher-order differ-
ential operators and differential systems with an arbitrary location of roots of
the characteristic polynomial (see [4–7]). For integro-differential, integral and
other classes of non-local operators the classical methods (transformation op-
erator method [1–3] and the method of spectral mappings [3–6]) do not work,
and for such operators the general inverse spectral theory does not exist, but
there are some particular results in this direction (see [8–17] and the references
therein). At the same time, nonlocal and, in particular, integro-differential op-
erators are of great interest, because they have many applications in natural
sciences and engineering (see, e.g., [18]). In [8,10,13,15,17] various aspects
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were studied of the inverse problem for a Volterra convolution perturbation of
the Sturm-Liouville operator. In [12,13,17] the inverse problems were reduced
to the main nonlinear convolutional integral equations, which were solved glob-
ally. This allowed obtaining the global solution of the inverse problems. In [15]
this approach was expanded for the situation involving a more general non-
linear integral equation. In the present paper we develop this approach for an
integro-differential Dirac operator.

Consider the boundary value problem D = D(p, q) for the integro-differ-
ential Dirac system

By′ +
∫ x

0

M(x − t)y(t) dy = λy, 0 < x < π, (1)

where

B =
(

0 1
−1 0

)
, M(x) =

(
p(x) q(x)

−q(x) p(x)

)
, y(x) =

(
y1(x)
y2(x)

)
,

the functions p(x), q(x) are complex-valued, (π−x)p(x), (π−x)q(x) ∈ L2(0, π)
and λ is the spectral parameter; along with the boundary conditions

y1(0) = y1(π) = 0. (2)

We study the following inverse problem.

Inverse Problem 1. Given the spectrum of D, construct the functions p(x) and
q(x).

We note that inverse problems for systems of integro-differential equa-
tions have not been studied before. In the next section we reduce Inverse
Problem 1 to a system of nonlinear integral equations, and prove the global
solvability of this system. In Sect. 3 using this result we prove the uniqueness
of the solution of this inverse problem and obtain necessary and sufficient con-
ditions of its solvability (Theorems 3, 4). The proof is constructive and gives
an algorithm for solving the inverse problem (Algorithm 1).

2. System of Nonlinear Main Equations

Consider the solution

S(x, λ) =
(

S1(x, λ)
S2(x, λ)

)
, S(0, λ) =

(
0

−1

)
,

of Eq. (1). One can show that there exists the transformation operator, i.e.

S(x, λ) = S0(x, λ) +
∫ x

0

K(x, ξ)S0(ξ, λ) dξ, K =
(

K11 K12

K21 K22

)
,

S0(x, λ) =
(

sin λx
− cos λx

)
, (3)
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where the elements of the kernel K(x, ξ) satisfy the integral equations

K11(x, ξ) = −ξq(x − ξ) −
∫ x−ξ

0

ds

∫ x

x−ξ

(
q(s)K11(t − s, ξ − x + t)

+ p(s)K12(t − s, ξ − x + t)
)

dt,

K12(x, ξ) = ξp(x − ξ) +
∫ x−ξ

0

ds

∫ x

x−ξ

(
p(s)K11(t − s, ξ − x + t)

−q(s)K12(t − s, ξ − x + t)
)

dt,

K11(x, ξ) = K22(x, ξ), K12(x, ξ) = −K21(x, ξ).

Solving them by the method of successive approximations, we obtain⎧⎪⎨
⎪⎩

K11(x, ξ) = −ξq(x − ξ) +
∑∞

n=2

∑n
j=0

anjξ
n

n!
(
p∗j ∗ q∗(n−j)

)
(x − ξ),

K12(x, ξ) = ξp(x − ξ) +
∑∞

n=2

∑n
j=0

bnjξ
n

n!
(
p∗j ∗ q∗(n−j)

)
(x − ξ),

(4)

where (f∗0 ∗ g)(x) = (g ∗ f∗0)(x) = g(x),

(f ∗ g)(x) =

∫ x

0

f(t)g(x − t) dt, f∗1(x) = f(x), f∗(ν+1)(x) = (f∗ν ∗ f)(x), ν ≥ 1,

anj = −an−1,j − bn−1,j−1, bnj = an−1,j−1 − bn−1,j , n ∈ N\{1}, j = 0, n,

a11 = b10 = 0, a10 = −b11 = −1, anj = bnj = 0, j < 0 or j > n.

One can show by induction, that
n∑

j=0

|anj | ≤ 2n−1,

n∑
j=0

|bnj | ≤ 2n−1, n ∈ N. (5)

The eigenvalues of D coincide with the zeros of its characteristic function
Δ(λ) := S1(π, λ). According to (3) we have

Δ(λ)=sin λπ+
∫ π

0

(
w1(ξ) sin λξ + w2(ξ) cos λξ

)
dξ, w1(ξ), w2(ξ)∈L2(0, π).

(6)

In (6) we have w1(ξ) = K11(π, ξ), w2(ξ) = −K12(π, ξ). It follows from (4),
that⎧⎪⎨

⎪⎩
−w1(π − ξ) = (π − ξ)q(ξ) − ∑∞

n=2

∑n
j=0

anj(π − ξ)n

n!
(
p∗j ∗ q∗(n−j)

)
(ξ),

−w2(π − ξ) = (π − ξ)p(ξ) +
∑∞

n=2

∑n
j=0

bnj(π − ξ)n

n!
(
p∗j ∗ q∗(n−j)

)
(ξ).

(7)
We consider the relations (7) as a system of nonlinear equations with respect
to p and q, and use them for solving the inverse problem.

Theorem 1. For any functions w1(x), w2(x) ∈ L2(0, π) the system (7) has a
unique solution p(x), q(x), such that (π − x)p(x), (π − x)q(x) ∈ L2(0, π).
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The proof of Theorem 1 is based on the following general result.

Theorem 2. Consider the system of nonlinear equations

wk(x) = yk(x) +
∞∑

n=2

mn∑
j=0

(
ψknj(x)Qnj [y](x) +

∫ x

0

Ψknj(x, t)Qnj [y](t) dt

)
,

k = 1, N, x ∈ (0, T ), (8)

where Qnj [y], j = 0,mn, are all possible terms of the form

y∗jn1
1 ∗ y∗jn2

2 ∗ · · · ∗ y∗jnN

N ,

N∑
ν=1

jnν = n,

the functions ψknj(x) and Ψknj(x, t) are square integrable, and there exist
square integrable functions u(x), U(x, t), such that

mn∑
j=0

|ψknj(x)| ≤ u(x),
mn∑
j=0

|Ψknj(x, t)| ≤ U(x, t), k = 1, N, n ∈ N\{1}.

(9)
For any functions wk(x) ∈ L2(0, T ), k = 1, N, the system (8) has a unique
solution yk(x) ∈ L2(0, T ), k = 1, N.

Theorem 2 can be proved similarly to Theorem 5 from [12].

Proof of Theorem 1. The system (7) on an interval (0, T ), 0 < T < π, takes
the form (8) with

N = 2, mn = n, ψ1nj(ξ) = −anj(π − ξ)n−1

n!
,

ψ2nj(ξ) =
bnj(π − ξ)n−1

n!
, Ψknj = 0.

The estimates (9) follow from (5) and the relation

(2(π − ξ))n−1

n!
≤ exp(2(π − ξ)).

Thus, by Theorem 2 the system (7) on (0, π) has a unique solution p(x), q(x) ∈
L2(0, T ) for each T ∈ (0, π). Let p(x) = p1(x) + p2(x), q(x) = q1(x) + q2(x),
where p1, q1 ∈ L2(0, π) and p2(x) = q2(x) = 0 on (0, π/2). Then

(p1 + p2)∗j ∗ (q1 + q2)∗(n−j)

= p∗j
1 ∗ q

∗(n−j)
1 + jp

∗(j−1)
1 ∗ q

∗(n−j)
1 ∗ p2 + (n − j)p∗j

1 ∗ q
∗(n−j−1)
1 ∗ q2,

and for π/2 < x < π the system (7) takes the form

μ(ξ) = y(ξ) +
∫ ξ

0

H(ξ, τ)y(τ) dτ, (10)
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where

μ(ξ) =

(
μ1(ξ)
μ2(ξ)

)
, y(ξ) = (π − ξ)

(
q2(ξ)
p2(ξ)

)
, H(ξ, τ) =

(
H11(ξ, τ) H12(ξ, τ)
H21(ξ, τ) H22(ξ, τ)

)
,

μk(ξ) = −wk(π − ξ) −
∞∑

n=2

n∑
j=0

cknj(π − ξ)n

n!
(p∗j

1 ∗ q
∗(n−j)
1 )(ξ) ∈ L2(0, π),

k = 1, 2,

Hkl(ξ, τ) =
π − ξ

π − τ

∞∑
n=0

n∑
j=1

cklnj(π − ξ)n

n!
(p∗j

1 ∗ q
∗(n−j)
1 )(ξ − τ) ∈ L2

(
(0, π) × (0, π)

)
,

k, l = 1, 2,

and cknj , cklnj are some constant coefficients. The Volterra integral Eq. (10)
is uniquely solvable in L2(0, π) × L2(0, π). Hence (π − ξ)p(ξ), (π − ξ)q(ξ) ∈
L2(0, π). �

3. Solution of the Inverse Problem

Using the representation (6) by the standard method involving Rouché’s the-
orem (see, e.g., [2]) one can prove the following theorem.

Theorem 3. The problem D has countably many eigenvalues λk, k ∈ Z, of the
form

λk = k + κk, {κk} ∈ l2. (11)

Moreover, analogously to Theorem 1.1.4 in [3] using Hadamard’s factor-
ization theorem one can obtain the following assertion.

Lemma 1. The characteristic function is uniquely determined by its zeros by
the formula

Δ(λ) = π(λ − λ0)
∏
k �=0

λk − λ

k
exp

(
λ

k

)
. (12)

The following theorem establishes unique solvability of Inverse Problem 1
along with the fact that the asymtotics (11), being necessary, is also a sufficient
condition of its solvability.

Theorem 4. For any sequence of complex numbers {λk}k∈Z of the form (11)
there exist unique (up to values on a set of measure zero) functions p(x), q(x)
such that (π − x)p(x), (π − x)q(x) ∈ L2(0, π) and {λk}k∈Z is the spectrum of
the boundary value problem D(p, q) of the form (1) and (2).

For the proof of Theorem 4 we need the following lemma.

Lemma 2. Let arbitrary complex numbers λk, k ∈ Z, of the form (11) be given.
Then the function Δ(λ) determined by (12) has the form (6) with certain
functions w1(x), w2(x) ∈ L2(0, π).
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Proof. The following representation holds:

sin λπ = πλ
∏
k �=0

k − λ

k
exp

(
λ

k

)
,

and hence

Δ(λ) = sin λπF (λ), F (λ) =
∞∏

k=−∞

(
1 − κk

λ − k

)
. (13)

Let us prove that F (λ) is bounded in the region Gδ := {λ ∈ C : |λ−k| ≥ δ, k ∈
Z}, δ > 0. Choose such N, that |κk| < δ/2 for |k| > N. Represent F (λ) in the
form

F (λ) =
∏

|k|≤N

(
1 − κk

λ − k

)
exp(HN (λ)),

where

HN (λ) =
∑

|k|>N

ln
(

1 − κk

λ − k

)
=

∑
|k|>N

∞∑
n=1

(−1)n−1
κ

n
k

(λ − k)n
.

One can easily see that

|HN (λ)| ≤ 2
∑

|k|>N

|κk|
|λ − k| ≤ 2

⎛
⎝ ∑

|k|>N

|κk|2
⎞
⎠

1/2 ⎛
⎝ ∑

|k|>N

1
|λ − k|2

⎞
⎠

1/2

.

Consequently, |F (λ)| < Cδ for λ ∈ Gδ and, moreover,

lim
Imλ→∞

F (λ) = 1. (14)

By (13) we get

Δ(n) = (−1)n+1πκnbn, bn =
∏
k �=n

(
1 − κk

n − k

)
, n ∈ Z.

Since the sequence {bn} is bounded, we have {Δ(n)} ∈ l2. Thus, one can
uniquely construct the functions w1(x), w2(x) ∈ L2(0, π), such that∫ π

0

w1(t) sin nt dt =
Δ(n) − Δ(−n)

2
, n ≥ 1,

∫ π

0

w2(t) cos nt dt =
Δ(n) + Δ(−n)

2
, n ≥ 0. (15)

Put

θ(λ) =
∫ π

0

w1(t) sin λt dt +
∫ π

0

w2(t) cos λt dt,

and hence θ(n) = Δ(n), n ∈ Z. Thus, the function
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R(λ) :=
Δ(λ) − θ(λ)

sin λπ
= F (λ) − θ(λ)

sin λπ
is entire in λ and bounded in Gδ. By the maximum modulus principle and
Liouville’s theorem, R(λ) ≡ const. Moreover, according to (14), R(λ) ≡ 1,
and hence Δ(λ) has the form (6). �
Proof of Theorem 4. Let a complex sequence {λk}k∈Z having the asymptotics
(11) be given. Construct the function Δ(λ) by formula (12) and find the func-
tions w1(x), w2(x) ∈ L2(0, π) from the representation (6). Consider the system
of main equations (7) with these functions w1(x), w2(x). By Theorem 1, it has
a unique solution p(x), q(x), such that (π − x)p(x), (π − x)q(x) ∈ L2(0, π).
On the other hand, the characteristic function of the corresponding boundary
value problem D = D(p, q) by necessity has the form (6) with w1(x), w2(x)
determined by (7). Thus, the characteristic function of D coincides with the
function Δ(λ), constructed via (12), and hence the spectrum of D coincide
with {λk}k∈Z.

The uniqueness of the problem D follows from the uniqueness of the func-
tions w1(x), w2(x) determined by (15) along with uniqueness of the solution
of system (7). �

The proof of Theorem 4 is constructive and generates the following algo-
rithm for solving Inverse Problem 1.

Algorithm 1. Let the spectrum {λk}k∈Z be given.

(i) Construct the characteristic function Δ(λ) by (12).
(ii) Find w1(t), w2(t) from (6) inverting the Fourier transform.
(iii) Solve the system of nonlinear main equations (7), and find p(x), q(x).

Acknowledgements

This work was supported by Grants 15-01-04864 and 16-01-00015 of Russian
Foundation for Basic Research and by Grant 1.1436.2014K of the Russian
Ministry of Education and Science.

References

[1] Marchenko, V.A.: Sturm-Liouville Operators and Their Applications. Naukova
Dumka, Kiev, 1977; English transl. Birkhäuser (1986)
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