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“2CM+1IM” Theorem for Periodic
Meromorphic Functions

Shengjiang Chen

Abstract. Generally, the concrete relations between two nonconstant
meromorphic functions that share two values CM and one value IM are
hard to determine. However, for the class F of all nonconstant meromor-
phic functions with the same period c �= 0, we prove a result in this paper
that: let f(z), g(z) ∈ F such that the hyper-order ρ2(f) < 1, if f(z), g(z)
share 0, ∞ CM and 1 IM, then either f(z) ≡ g(z) or f(z) = eaz+bg(z)
and μ(f) = μ(g) = 1, where a = 2kπi

c
and k is some integer. As an

application of this result, we obtain an uniqueness theorem for elliptic
meromorphic functions. Moreover, examples are given to illustrate that
all the conditions are necessary and sharp.
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1. Introduction and Main Results

In this paper, a meromorphic function will always mean meromorphic in the
whole complex plane C. We assume that the reader is familiar with the fun-
damental concepts of Nevanlinna’s value distribution theory (see [5,8]) and
in particular with the most usual of its symbols: m(r, f), N(r, f), T (r, f),
S(r, f), where S(r, f) satisfies S(r, f) = o{T (r, f)} as r → ∞ outside of a
possible exceptional set E of finite linear measure. Given a ∈ C, we say that
two meromorphic functions f(z) and g(z) share a IM (ignoring multiplicities)
when f − a and g − a have the same zeros. If f − a and g − a have the same
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zeros with the same multiplicities, then we say that f(z) and g(z) share a CM
(counting multiplicities). Moreover, we say that f, g share ∞ IM (resp. CM)
if only if 1

f , 1
g share 0 IM (resp. CM). Meanwhile, the order ρ(f), hyper-order

ρ2(f), lower order μ(f) and lower hyper-order μ2(f) of a meromorphic function
f are defined in turn as follows:

ρ (f) = lim sup
r→∞

log+ T (r, f)
log r

, ρ2(f) = lim sup
r→∞

log+ log+ T (r, f)
log r

,

μ(f) = lim inf
r→∞

log+ T (r, f)
log r

, μ2(f) = lim inf
r→∞

log+ log+ T (r, f)
log r

.

It is well known that the classical results of the value distribution theory
of meromorphic functions are the five-point, resp. four-point, theorems due
to Nevanlinna: if two meromorphic functions f, g share five distinct values in
the extended complex plane IM, then f = g. Similarly, if two meromorphic
functions f, g share four distinct values in the extended complex plane CM,
then g is a Möbius transformation of f . The assumption “4 CM” in the four-
point theorem has been improved to “2 CM + 2 IM” by Gundersen (see [4]).
However, “4 CM” cannot be improved to “4 IM”(see [3]) and “1 CM + 3 IM”
remains an open problem.

For the case when two nonconstant meromorphic functions f and g share
three values, the concrete relations between f and g, even if f and g share
three values CM, are hard to determine in general. We refer the reader to [8]
in this respect.

However, it is interesting to ask: what can be said if two nonconstant
periodic meromorphic functions with the same period c �= 0 share three values?

In 1992, Zheng (see [9]) proved the following result.

Theorem 1.1. Let f(z) and g(z) be nonconstant meromorphic functions with
the same period c(�=0). Suppose the lower hyper-order μ2(f) of f(z) is less
than 1. If f(z) and g(z) share 0, 1,∞ CM, then f(z) ≡ g(z) or f(z) and
g(z) assume the following form f(z) = ea1z+b1−1

ea2z+b2−1
, g(z) = e−a1z−b1−1

e−a2z−b2−1
, where

a1 = 2mπi
c , a2 = 2kπi

c , b1, b2 are constants, and m, k are integers.

In 2011, the author recently [1] obtained a result related to Theorem 1.1
in the case of “2CM+1IM”.

Theorem 1.2. Let f(z) and g(z) be two nonconstant meromorphic functions
with the same period c(�= 0) and let a1, a2, a3 be three distinct numbers in
the extended complex plane. Suppose that 1 < μ(f) ≤ ρ(f) < +∞ and that

lim supr→+∞
N(r, 1

f−a1
)

T (r,f) < 1. If f(z) and g(z) share a1, a2 CM and a3 IM, then
f(z) ≡ g(z).

In this paper, we propose another result related to the previous theorems.

Theorem 1.3. Let f(z) and g(z) be two nonconstant meromorphic functions
with the same period c(�= 0). Suppose that ρ2(f) < 1. If f(z) and g(z) share
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0,∞ CM and 1 IM, then either (i) f(z) ≡ g(z); or (ii) f(z) = eaz+bg(z) and
μ(f) = μ(g) = 1, where a = 2kπi

c , b are constants, and k is some integer.

Remark 1.4. The conclusion (ii) of Theorem 1.3 could occur. For example,
let f(z) = ez

ez+1−e2z and g(z) = e−z

ez+1−e2z = e−2zf(z). Clearly, f, g are peri-
odic functions with the same period 2πi and μ(f) = μ(g) = 1. By a simple
calculation, it is easy to see that f, g share 0,∞ CM and 1 IM.

Remark 1.5. The assumption “ρ2(f) < 1” is necessary and sharp as shown
by a result due to Ozawa (see [7]): For an arbitrary number σ ∈ [1,∞), there
exists a periodic entire function D(z) with period d �= 0 such that ρ(D) = σ.
Let

f(z) =
eD(z)

eD(z) + 1 − e2D(z)
, g(z) =

e−D(z)

eD(z) + 1 − e2D(z)
.

Clearly, f, g are both periodic functions with the same period d and ρ2(f) =
σ ∈ [1,∞). By a simple calculation, it is easy to see that f, g share 0,∞ CM
and 1 IM. However, both conclusions (i) and (ii) of Theorem 1.3 do not hold.

Remark 1.6. The assumption “2CM+1IM” cannot be replaced by “1CM+
2IM”. We give a counterexample as follows: Let D(z) be a periodic entire
function with period d �= 0 such that ρ(D) ∈ (1,∞). Set f = D and g = 2D

D2+1 .
Then, we can see that f, g share 0 CM, 1,−1 IM. However, both conclusions
(i) and (ii) of Theorem 1.3 do not hold.

From Theorem 1.3, we can get

Corollary 1.7. Let f(z) and g(z) be two nonconstant meromorphic functions
with the same period c(�= 0). Suppose that μ(f) �= 1 and ρ2(f) < 1. If f(z)
and g(z) share 0,∞ CM and 1 IM, then f(z) ≡ g(z).

As an application of Theorem 1.3, we obtain the following result for
nonconstant elliptic meromorphic functions.

Corollary 1.8. Let f(z) and g(z) be two nonconstant elliptic meromorphic func-
tions having one same period c(�= 0). If f(z) and g(z) share 0,∞ CM and 1
IM, then either (i) f(z) ≡ g(z); or (ii) f(z) = eaz+bg(z) and μ(f) = μ(g) = 1,
where a = 2kπi

c , b are constants, and k is some integer.

Remark 1.9. Because that the order of a nonconstant elliptic meromorphic
function is of finite, hence Corollary 1.8 holds according to Theorem 1.3.

2. Some Lemmas

Lemma 2.1. If f(z) is a nonconstant periodic meromorphic function, then
ρ(f) ≥ 1, μ(f) ≥ 1.

Lemma 2.2. Suppose h(z) is a nonconstant entire function and f(z) = eh(z),
then ρ2(f) = ρ(h).
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Lemma 2.3. Let f(z) be a meromorphic function. If

g =
af + b

cf + d
,

where a, b, c, d are small functions with respect to f and ad − bc �≡ 0, then

T (r, g) = T (r, f) + S(r, f).

Lemma 2.4. Let f(z) and g(z) be nonconstant meromorphic functions. If f(z)
and g(z) share distinct three values a1, a2, a3 IM, then

T (r, f) ≤ 3T (r, g) + S(r, f), T (r, g) ≤ 3T (r, f) + S(r, g).

Lemma 2.5. Let f(z) and g(z) be nonconstant meromorphic functions. If

T (r, f) = O(T (r, g)), (r → ∞, r �∈ E, mesE < ∞),

then μ(f) ≤ μ(g), ρ(f) ≤ ρ(g), μ2(f) ≤ μ2(g) and ρ2(f) ≤ ρ2(g).

Lemma 2.6. Suppose f(z) and g(z) are nonconstant meromorphic functions
with ρ2(f) and ρ2(g) as their hyper-orders, respectively. Then

ρ2(fg) ≤ max{ρ2(f), ρ2(g)}.

Proof. Without loss of generality, we assume that

ρ2(f) ≤ ρ2(g) < ∞.

From the definition of the hyper-order, for any ε > 0, there exists a positive
number R such that

T (r, f) < exp
(
rρ2(f)+ε

)
, T (r, g) < exp

(
rρ2(g)+ε

)
, r > R.

Noting T (r, fg) ≤ T (r, f) + T (r, g), we have

T (r, fg) ≤ 2 exp
(
rρ2(g)+ε

)
, r > R,

which implies that

lim sup
r→∞

log+ log+ T (r, fg)
log r

≤ ρ2(g) + ε

holds for any ε > 0. Therefore, the assertion of Lemma 2.6 follows. �

Lemma 2.7 (see [2,6]). Let f(z) be a meromorphic function of finite order ρ
and let η be a nonzero complex number. Then for each ε > 0, we have

m

(
r,

f(z + η)
f(z)

)
+ m

(
r,

f(z)
f(z + η)

)
= O(rρ−1+ε).
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3. Proof of Theorem 1.3

Proof. Suppose that f(z) �≡ g(z).
According to the assumptions of Theorem 1.3, Lemma 2.1, Lemma 2.4

and Lemma 2.5, we have S(r, f) = S(r, g) and

1 ≤ μ(g) = μ(f), ρ2(g) = ρ2(f) < 1. (3.1)

For convenience, we set S(r) := S(r, f) = S(r, g) below.
Since f and g share 0,∞ CM, together with (3.1), we have

f(z)
g(z)

= eQ(z), (3.2)

where Q(z) is an entire function with ρ(Q) < 1. It follows from (3.2) that
f(z+c)
g(z+c) = eQ(z+c). Noting f(z) and g(z) have the same period c(�= 0), we have
eQ(z+c) ≡ eQ(z). Namely, Q′(z + c) − Q′(z) ≡ 0. Noting ρ(Q′) = ρ(Q) < 1, we
could deduce from Lemma 2.1 that Q′(z) ≡ a, where a is a constant. Thus, we
can assume that Q(z) = az + b, where b is a constant. Substituting this into
(3.2), we have

f(z)
g(z)

= eaz+b. (3.3)

If μ(f) = 1, then we can arrive at the conclusion (ii) of Theorem 1.3 due
to (3.1). Next, we shall show that the case μ(f) > 1 cannot occur. Suppose on
the contrary that μ(f) > 1. Together with ρ(eaz+b) = 1, we have

T (r, eaz+b) = S(r). (3.4)

Furthermore, we deduce from (3.3) and (3.4) that

N

(
r,

1
f − 1

)
= N

(
r,

1
g − 1

)
≤ N

(
r,

1
eaz+b − 1

)
= O(r) = S(r). (3.5)

Next, we discuss the following two cases.

Case 1. Suppose that a = 0.

Then, we can see from (3.3) that b �= 0 and 1 is the Picard value of f and
g since f(z) �≡ g(z). Using the same arguments as the proof of (3.3), we have

f(z) − 1
g(z) − 1

= ea1z+b1 , (3.6)

which yields

N

(
r,

1
f

)
≤ N

(
r,

1
ea1z+b1 − 1

)
= S(r). (3.7)

Rewriting (3.3) as f(z) − eaz+b = eaz+b(g(z) − 1), we deduce from (3.5) and
(3.7) that

T (r, f) ≤ N

(
r,

1
f − 1

)
+ N

(
r,

1
f

)
+ N

(
r,

1
f − eaz+b

)
+ S(r) = S(r).
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It’s impossible.

Case 2. Suppose that a �= 0. We shall distinguish the following seven steps.
Firstly, it is clear that ea(z+c)+b ≡ eaz+b due to (3.3). Thus, there exists a
nonzero integer k0 such that

c =
2πk0i

a
. (3.8)

Secondly, we introduce the following notation: denote by Eh the set of
the all distinct zeros of the meromorphic function h. Therefore, it is easy to
see that

Ef−1 ⊂ Eeaz+b−1. (3.9)

Obviously,

Eeaz+b−1 =
{

zn : zn =
2nπi

a
− b

a
, n ∈ Z

}
. (3.10)

Here and throughout this paper, Z is the set of all integers.
Thirdly, let the set of all congruence class of the integers for the modulus

|k0| be {[0], [1], . . . , [|k0| − 1]}. Set

zm =
2mπi

a
− b

a
, m = 0, 1, . . . , |k0| − 1. (3.11)

For each m = 0, 1, . . . , |k0| − 1, we define

[zm] =
{

zn =
2nπi

a
− b

a
∈ Eeaz+b−1 : n ∈ [m]

}
. (3.12)

Clearly, for any zn ∈ [zm] (m = 0, 1, . . . , |k0| − 1), there exists an integer km

such that

zn = zm + kmc. (3.13)

In fact, zn − zm = 2π(n−m)i
a = 2πk|k0|i

a = 2πkmk0i
a = kmc for some k, km ∈ Z.

Conversely, for all integers k, we have zm + kc ∈ [zm]. Thus, we see that

[zm] = {z : zm + kc, k ∈ Z} , m = 0, 1, . . . , |k0| − 1.

What’s more, if ξ0 ∈ [zm] (m = 0, 1, . . . , |k0| − 1), then

ξ0 + kc ∈ [zm] (3.14)

holds for all integers k.
Next, we shall prove some properties of [zm] (m = 0, 1, . . . , |k0| − 1).

Proposition 3.1. If zm, m ∈ {0, 1, . . . , |k0| − 1}, is a zero of f(z) − 1 (resp.
g(z) − 1) with multiplicity p (resp. q), then each element zn ∈ [zm] is also a
zero of f(z) − 1 (resp. g(z) − 1) with multiplicity p (resp. q).

Proof. We only prove the case for f(z) − 1. It follows from (3.13) that zn =
zm+kmc holds for some integer km. Noting f(z+c) ≡ f(z), we have f(zn)−1 =
f(zm +kmc)−1 = f(zm)−1 and f (s)(zn) = f (s)(zm +kmc) = f (s)(zm), ∀s ∈
Z

+. It follows that the conclusion of Proposition 3.1 holds. �
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Proposition 3.2. If ξ0 ∈ [zm] is a zero of f(z) − 1 (resp. g(z) − 1) with multi-
plicity p (resp. q), then each element ξn ∈ [zm] is also a zero of f(z)− 1 (resp.
g(z) − 1) with multiplicity p (resp. q).

Proof. We only prove the case for f(z)−1. From (3.13), we have ξ0 −zm = k1c
and ξn − zm = k2c, where k1 and k2 are some integers. Thus, we obtain
ξ0 − ξn = (k1 − k2)c which implies that f(ξn) − 1 = f(ξ0) − 1. Moreover, we
also have f (s)(ξ0) = f (s)(ξn + (k1 − k2)c) = f (s)(ξn) for all positive integer s.
Hence, the conclusion of Proposition 3.2 holds. �
Proposition 3.3. Suppose that m1,m2 ∈ {0, 1, . . . , |k0|−1} such that m1 �= m2.
Then [zm1 ] ∩ [zm2 ] = ∅.
Proof. If there exists an element ξ ∈ [zm1 ] ∩ [zm2 ], then we can find two
integers k1 and k2 such that ξ = zm1 + k1c and ξ = zm2 + k2c according to
(3.13). Thus, we have zm1 − zm2 = (k1 − k2)c which implies that m1 − m2 =
(k1 − k2)k0. However, this contradicts with m1 �∈ [m2]. This completes the
proof of Proposition 3.3. �

Proposition 3.4. Eeaz+b−1 =
⋃|k0|−1

j=0 [zj ].

Proof. We only need to prove that Eeaz+b−1 ⊂ ⋃|k0|−1
j=0 [zj ]. For an arbitrary

element zn ∈ Eeaz+b−1, we know that zn = 2nπi
a − b

a . Set n = kk0 +m holds for
some m ∈ {0, 1, . . . , |k0| − 1} and k ∈ Z. Thus, it follows from the definition of
[zm] that zn ∈ [zm], and hence, the conclusion of Proposition 3.4 is true. �
Proposition 3.5. Suppose that Ω = {zm : f(zm) = 1, m = 0, 1, . . . , |k0| − 1}.
Then Ef−1 =

⋃
zj∈Ω[zj ].

Proof. By Proposition 3.1, we know that Ef−1 ⊃ ⋃
zj∈Ω[zj ]. Next, we turn

to prove Ef−1 ⊂ ⋃
zj∈Ω[zj ]. If there exists an element ξ ∈ Ef−1 but ξ �∈⋃

zj∈Ω[zj ], then it follows from (3.9) and Proposition 3.4 that there exists
a point zm0 �∈ Ω such that ξ ∈ [zm0 ], where m0 ∈ {0, 1, . . . , |k0| − 1}. By
Proposition 3.2, we deduce that zm0 is a zero of f(z)−1. But, this contradicts
with zm0 �∈ Ω. Hence, the proof of Proposition 3.5 is completed. �

Now, we proceed to prove Theorem 1.3. Without loss of generality, we
assume that Ω = {zm : f(zm) = 1, m = 0, 1, . . . , |k0| − 1} = {z0, z1, . . . , zs}
(0 ≤ s ≤ |k0| − 1) with multiplicities p0, p1, . . . , ps, respectively. Set P =
max{p0, p1, . . . , ps}.

Fourthly, we shall prove the following claim.

Claim: N
(
r, 1

f−1

)
= N

(
r, 1

g−1

)
= O(r) = S(r).

In fact, by Proposition 3.5, we have Eg−1 = Ef−1 =
⋃

zj∈Ω[zj ] =⋃s
j=0[zj ]. Together (3.5) with Proposition 3.1, it follows that

N

(
r,

1
f − 1

)
≤ P · N

(
r,

1
f − 1

)
= O(r) = S(r)
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and

N

(
r,

1
g − 1

)
≤ P · N

(
r,

1
g − 1

)
= O(r) = S(r).

Fifthly, we set
f(z) − 1
g(z) − 1

= φ(z). (3.15)

Clearly, it follows from (3.3) that φ(z) = g(z)eaz+b−1
g(z)−1 and hence

T (r, φ) = T (r, g) + S(r), (3.16)

according to (3.4) and Lemma 2.3. Combining (3.1), (3.16) and Lemma 2.5,
we have

1 < μ(φ), ρ2(φ) < 1. (3.17)

Furthermore, we deduce from f(z + c) ≡ f(z) and g(z + c) ≡ g(z) that

φ(z + c) ≡ φ(z). (3.18)

Sixthly, by changing f and g, if needed, one could simply write

φ =
P1

P2
eα, d ≥ 0 (3.19)

where α is an entire function, P1(z) and P2(z) are the canonical products
formed with the zeros, resp. poles, of φ.

Next, we shall prove the following properties of Pj(z), j = 1, 2.
Property 1. ρ(Pj) ≤ 1, j = 1, 2.
Property 2. Pj(z) and Pj(z + c) share 0 CM, j = 1, 2.
Property 3. Pj(z) ≡ AjPj(z + c), Aj �= 0, j = 1, 2.
To prove Property 1, by the well-know result due to Borel (see [8], The-

orem 2.3), we can see that the order ρ(Pj) of Pj(z) (j = 1, 2) is equal to the
exponent of convergence λ(Pj) of the zeros of Pj(z) (j = 1, 2). Thus, we can
deduce from (3.15) and Claim that

ρ(Pj) = λ(Pj) = lim sup
r→∞

log N(r, 1
Pj

)

log r
≤ lim sup

r→∞

log N(r, 1
f−1 )

log r
≤ 1, j = 1, 2.

Therefore, the Property 1 is true.
To prove Property 2, let ξ0 be a zero of P1(z) with multiplicity t0,

then ξ0 is the zero of f(z) − 1 and g(z) − 1 with multiplicity pj0 and qj0

(j0 ∈ {0, 1, . . . , s}), respectively, such that pj0 −qj0 = t0. By (3.14) and Propo-
sition 3.2, ξ0 + c is also the zero of f(z) − 1 and g(z) − 1 with multiplicity
pj0 and qj0 , respectively. Thus, ξ0 is the zero of P1(z + c) with multiplicity t0.
Conversely, let ξ1 be a zero of P1(z + c) with multiplicity t1, then ξ1 + c is the
zero of f(z) − 1 and g(z) − 1 with multiplicity pj1 and qj1 (j1 ∈ {0, 1, . . . , s}),
respectively, such that pj1 − qj1 = t1. Again by (3.14) and Proposition 3.2, we
have (ξ1 + c) − c is also the zero of f(z) − 1 and g(z) − 1 with multiplicity pj1

and qj1 , respectively. Thus, ξ1 is the zero of P1(z) with multiplicity t1. Hence,
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P1(z) and P1(z + c) share 0 CM. Similarly, the conclusion for the case P2(z)
is also true.

To prove Property 3, we can deduce from Properties 1-2 that

Pj(z)
Pj(z + c)

= eajz+bj , j = 1, 2, (3.20)

for some constants aj , bj (j = 1, 2).
If aj �= 0 (j = 1, 2), then we know from Lemma 2.7 and (3.20) that

r

π
= m

(
r, eajz+bj

)
= O

(
rρ(Pj)−1+ε

)
= O(rε), j = 1, 2, 0 < ε < 1,

which is impossible. Hence, the Property 3 is true.
Finally, from (3.17), (3.19) and Property 1, it follows that α is an entire

function with μ(eα) > 1 and ρ(α) < 1. Moreover, from (3.18), (3.19) and
Property 3, we can deduce that eα(z+c) ≡ A1

A2
eα(z), which implies that α′(z +

c)−α′(z) ≡ 0. Hence, it follows from Lemma 2.1 that α(z) = a3z+b3 for some
constants a3, b3. However, it leads to a contradiction with μ(eα) > 1.

Therefore, we derive the desired conclusions of Theorem 1.3. �
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