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1. Introduction

The classical Bernstein operator is defined for every function f € C[0,1] by
the formula [10]

Bn<f,x>=§pn,k<m>f () where poate) = (F)a*a-ar )

and the classical Baskakov operator is defined for every function f € C|0, )
by [1]

Valfa) = gf (£) Vst @)
where Vor(s) = (n +I;: — 1) (1 4 2)-" k. 3)

W Birkhiuser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-016-0554-7&domain=pdf

386 1. Gadjev Results. Math.

In order to approximate functions in L,-norm Kantorovich introduced a
modification of B,,:
kt1

2 =3 par@)n+1) [ fwdn
k=0

k

n+1

Analogously, in [5] Ditzian and Totik defined two Kantorovich modifications
of V,.
For 0 < z < oo they introduced

k41

Z Vo ( / fu)du

and

AT Zvnk -1 [ fuda (@)

n—1
The reason for mtroducmg the second one is that the first one is not a
contraction and because of that it is not very suitable for approximating of
functions in L, norm for p < oo.
For all these operators they proved [5, Theorem 9.3.2] (for 1 < p < o0) a
direct inequality

I£0f =l <01 [0 (£ ) 1))
and a week converse inequality
ILof = flly = O(n™*%) & W} (f,h), = O(h%), a<2,
where L,, is B}, V.* or V,, and

wo(f h)p = Sup. 1f(z = p(@)t) = 2f(x) + [z + (@)1,

is the second order modulus of smoothness of Ditzian-Totik, p(x) = /2 (1 — )

for B and ¢(z) = \/z(1 + z) for V;* and V,.

In [3] Berens and Xu using the K-functional

K*(f.8) = it {|f = gllp + ¢ |P(D)gll, : f — 9. P(D)g € L,0.1]}

where

P(D) = % < (1 :c)di>

proved the direct and a week converse inequality for B} in terms of K*(f,t).
Later, Chen and Ditzian [11] proved the strong converse inequality of type B,
and Gonska and Zhou [9] of type A in terminology of [4].

In this article we investigate the approximation of functions in L, norm
by Vn( f,x). We define an appropriate K-functional K (f,t)p (used for the first
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time by Berdisheva [2] in order to prove the direct theorem for Baskakov-
Durrmeyer operator and later on by Heilman and Wagner [8] to prove the
converse theorem) and prove a direct inequality with no other terms on the
right-hand side than K (f,t)p and the strong converse inequality of type B.
Before stating our main result, let us introduce the needed notations.
By ¥(z) = (1 + x) we denote the weight which is naturally connected
with the second derivative of Baskakov operator. The first derivative operator
is denoted by D = L. Thus, Dg(z) = ¢'(z) and D¥g(x) = g™*)(z) for every

dx* ~
natural k. We define a differential operator D by the formula
~ d d
D=— — | = DyD.
dx <w(z)dx) v

The space ACj,.(0, 00) consists of the functions which are absolutely continu-
ous in [a,b] for every [a,b] C (0, c0).

Wr0,00) = {f: D" f € AC10c(0,00),7 = 0,1,...k —1,D" f € L,[0,00)},
Wy ()[0,00) = {f : D""' f € AC10¢(0,00),¥*/>D* f € L,[0,00)},
W,[0,00) = {f : f, Df € ACi0c(0,00), Df € Ly[0,00), lim zDf(x) = 0},
xTr— +

LP[0700)+WP[0700) = {f : f :fl +f27f1 € LP[OvoO)’fQ € WP[O,OO)}

Also, we define the K-functional f((f, t)p by the formula
R(.0p = int {If =gl 1| Do 7= g€ Lib.co)g e W)} 6)

And the relation 601 (f,t) is equivalent to 02(f,t), i.e. 01(f,t) ~ 02(f,t) means
that there exists a positive constant independent of f and ¢ such that
CTl01(£,1) < 02(f,1) < COL(f,1).

Our main result is the following theorem.

Theorem 1. For V, defined by (4), the K-functional given by (5), 1 < p < oo and
for every f € Lp[0,00) + W,[0,00), there exist absolute constants R,C > 0 such that
for every natural I > Rn

Nt = Sl <K (£) <OL(ITd = Al 1T = 11). (6)

P

The left inequality is true for p =1 as well.

Both inequalities in Theorem 1 are stronger than the results mentioned above.
Indeed, from the simple inequality

|Ds|| <pvDs, + 0?1,
and from [5, Theorem 9.5.3-a), ¢)] it follows that

|B1], < & (le?sll, + 151
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and consequently
~ 1 _ _
& (1.3) <clute (s ) a7l
P
At the same time, K (f, %)p is not equivalent to wf/@ (f7 n*1/2>p + 07 Y| f|lp. For

instance, for p = 1 and f(z) = (1 +z)~" we have K (f, 1), < n~' and ||f||1 = co.

Remark. Another way to state Theorem 1 is: there exists an integer k such that
- 1 - _
R(£.5) ~NTd =l Winf = Flb 9> 1
P

For the rest of this paper the constants C and C; will always be absolute
constants, which means they do not depend on f, [ and n. The constant C may be
different on each occurrence.

2. Auxiliary Results

In this section we gather some properties of V,,, V, and Vi,k, which can be found in
[1,5,7] and prove all the needed lemmas.

Vi, and V, are linear, positive operators with ||Vi flleo < ||.f]loo (7)

and
Vafllp < 1£1lp- (8)

Va(Lz)=1, Vi(t—z,2)=0, V,((t-2)*2) :%. (9)

Vn(la) =1, Valt—a,a) = 2%1“: 1) _ Q(nl_ 5 Dvta). (10)

(DVas)(@) = DVie(@) = 1 (Va1 -1 (2) = Vo (@))- (11)

DV i(z) = ﬁ (S - x) Vi (2). (12)

The next three inequalities are valid for all integers m and (16) for every natural m
[5]. The constant C depends only on m.

kz::l (E) Vok(z) < Cz™™, (13)
> <1 + %)m Var(z) < C(1+ )™, (14)
k=0
Vo ((t— :r)Qm,:v) <C <¢7(f) for x> %, (15)
D" V(fa) = (BEm = )! S A ap(n — 1)Vogm k() (16)
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where
k+1

ax(n) = n/ " fw)du, Aap =axy1 —ar, ATar=A (Amflak) .
k

n

By simple computations one can verify the next identities.

/ . d‘rim (17)
_&

/0 2V k(z)dz = (n—1)(n—-2)’ "
" k1) (k+2)

/0 " Vo r(z)de = (n—1)(n—2)(n—3)’ e

o k\? 1 [k 1
For every natural » > 1 [5, p. 118, 9.3.5]
14" D* Vo fllp < Cn”[|fllp for f € Lp[0,00). (21)

The next lemma is crucial for the proof of the direct inequality of Theorem 1.

Lemma 1. For V,, i(z) defined by (3) the next identity is true:

— o0

1 1 1
_ e — Y V@), (22
Z l-l—x ZO(kH’LkHJF +n+k—1>v’k(x) (22)

=1

Proof. Let

o yk+1 yk+2 yn+k71
S(y) = ek 4 V(@)
) I;)(k+1+k+2+ +n+k71) (@)

Then we get for the derivative of S(y) (after straightforward computations):

1 -yt 1
1—y (I+z—azy)"

DS(y) =

Computing the integral we obtain

= 1 =1 y P14
SR N — (—L In—= tant.
;k(l—kx—xy)"'Jr;k(l—&—x—xy) + In - + constan
From S(0) = 0 it follows that
— n—1 k n—1
1 1
Z 1+mfxyk+ZE(l+x7my) +Zk(1+x)k
k=1 k=1 k=1
and
oo n—1
1 1 1
S(1) = T .
) kzo<k+1+k+2+ +n+k71> ;lirx

The lemma is proved. ]
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Lemma 2. Forp > 1 and every g € Wp [0, 00) we have

1Dgll, < (23)
Dy Dy, (24)
[wD?|, < ||Dg| - (25)

Proof. We have

(I+x / Dy(t)
and consequently

|(1+2)Dg(z)| < = /
0

Dg(t)|dt < M(Dg, )
where

M(h,z) = su / h(t)|dt

is the Hardy’s maximal function. Now, from the Hardy’s inequality (for p > 1) we
get

(1 +2)Dg(x), < || M(Dg.2)|

And (23) and (24) follow from the obvious
1Dgll, < (1 +2)Dg(z)],
and
DY Dy, < 2|(1 + z)Dg(x)]l,, -
We obtain (25) from (24) and the simple inequality
[vD%| < |[vD*g+ Dy:Dgl|, + |ID¥Dy]|, -
(]

We will prove the converse inequality of Theorem 1 by method, suggested by
Ditzian and Ivanov in [4] and based on using the second iteration of Baskakov-
Kantorovich operator in the K-functional. But before using it we need to prove all
needed inequalities some of which are important of their own.

Lemma 3. For 1 < p < oo we have

<Cnlfll, for f€ Ly0,00), (26)
|D?Vur| < cnipsl, for fewo,00), (27)
HDBf/nf‘ < Cn*|Df|, for feWLo,00). (28)




Vol. 70 (2016) Approximation of Functions by Baskakov-Kantorovich Operator 391

Proof. Equation (26) follows from (16) and (8).

The proofs of (27) and (28) are analogous. We prove them for p = 1 and p = oo
and apply the Riesz-Thorin theorem.

Let us prove (28).

1. p=1. From (16) and (17) we have

ID*Va(f,)ll = ||n(n+ 1)(n+2) Y A’ax(n — 1)Viss ()
k=0 1
<cn? Z |A3ak(n — 1)’/ Viisx(z)de < Cn? Z |A3ak(n —1)]
k=0 0 k=0

<4Cn* Y |Aak(n —1)] =Cn® Y |Aak(n — 1)

k=0 k=0
Now,
k+? k+11
[axn =1 == [ " s~ [T s
st (ot =
=(n-1) (/ Df(u—i—v)dv) du| < / |D f(u)|du.
k 0 k
n—1 n—1
Consequently,
> lAar(n—1)| <2|Df],
k=0
and (28) is proved for p = 1.
2. p = oo.
|DVa(F,2) e < On® max| Aag(n — 1)].
The proof is similar to the case p = 1. (I

The next lemma is a Voronovkaya type of inequality.

Lemma 4. For p > 1 and every function f € C3[0,00) such that the right-hand side
of the inequality is finite, we have

’an—f—2 :

(n—1)
Remark. Later on we will apply this lemma for V,2f where f € L, [0,00) + W, [0, 0)
for which the above conditions hold.

Df

P

< C{n 2 D0 flly + 02Dl + 020Dl + 0 IDY b (29)

Proof. By Taylor’s formula

£(0) = F(a) + (w =)D (@) + 5w - 0D (@) + 5 [ (w= 0D f (),
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After integrating from ﬁ to % with respect to w, multiplying by

(n — 1)V, x(x) and summing with respect to k, we obtain:

Vall ) = Fla) + %Df (@) + . +21(31w£$1))j 13 D*f(x) + I
= f(z)+ 2(n17 ) P2 f(z) + %Dzﬂx) LI
where
n—1 % u -
In - 2 kz:;)‘/n7k(x) /;kl (/I (u - U) D f(v)dv) du

Now we estimate I,.
Case 1. x < %
We will estimate terms in the sum of [,, separately for k = 0, 1,2 and for k > 3.

1 u
L ; an,o(x) /THI (/ (u— v)gDBf(v)dv) du
0 T
1 [t u
n— " 2 3
< 2(1+x)”/0 (u—x) du/z D" f(v)dv
1
n — 1 n—1 3 1 “ 3 C 3
< - < =
< /0 lu — z|”du ufx/z D" f(v)dv| < n3M(D frx),
2 u
"; V(@) /"_1 (/ (ufv)2D3f(v)dv) du
T *
2
(n — 1)nx /‘ﬁ 3 1 /-u 3 C 3
< vz Ny - <= .
S ESE . lu — z|”du s/ D" f(v)dv| < n3M(D fix)
Analogously for k = 2.
| k1
n-— " 273
5 ZVnyk(m . (/E (u—v)"D f(v)dv) du
k=3 n—1
n-— " 3 3
< _
<= ZVnk(m)/)C (u—x) — D” f(v)dv| du
k=3 n—1
e} k) 3 5
< n — | M(D’f,
_ch,k(x)<n> (D°f,x)
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(a) u>x.
B, kel u (’LL—’U)2 52 , )
I, = . Y
k=0 /n1 (/z P3/2(v) ‘1/1 (v) f(v)‘ v | du
1 3 = ( “ (u—x 3
S n, 5 1/]/2 DSf('U) d’[)) du
k=0 k h /I 1/;3/ ‘ ’
k41
— 3/2 n—1 3 1 5o ,
- - k() /kl (w—z)" | — (v)D f(v)‘dv du
nir
- {Zw_w SV )/k (“—fﬂ)3du} M@**D’f,)
< Cp~3/? 3/2D3 ~ k 1\3
<Gy~ ()M f,z (‘_E+g)-

By using Cauchy’s inequality, (9) and (15) we obtain for m =1,2,3

oo} k m
ZVnk(x) T—
k=0
0 k 2 k 2(m—1) /2
< _r _r
> Zvnk(m) (CE n) ZVnk (.’r )
k=0
m/2
<o ()
n
From all this it follows
C
In € — s M(4*2 D f, ).
(b)) u<zx
1 %) k+11 w
n— n— u—v)
I, < 5 ZVnk(m) /L (/ wd/Q ’1/}3/2 D f(v )‘ )du
k=0 n—1 x
o k41
n—1 n—1 1 ® (’LL—’U)2 3/2 3 ’
< n
S kZ:OVk(:B)/ (1+u)3/2/u 37 ‘1/) (v)D” f(v)| dvdu
n—1 e (w—=z 3/2
< ;Vnk / $3/2(1+u3/2/ ]¢ v)D? f(v )(dvdu
0o k+1
n— L —syzgp03/2 g / =1 (z—u)?
< — S,
) M@~ f ZVnk . (1+u)3/2du
k=0 n—1
[eS) —-3/2 3
< Ca*PM@P D f,2) >V ( k) (m—ﬁ +l) .
n n n
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Again, by using Cauchy’s inequality, (9), (14) and (15) we have

. B\ 32 k
I73/2M(,¢3/2D3f’ x)ZVn,k(‘r) (1+ E) ('x_ n

k=0

comorofErin(id) |
X {gvn,k(x) ( n 711)6}1/2

<Cn 3 PM@P DR f x).
By using the Hardy’s inequality about maximal function (for p > 1) we complete the
proof of the lemma. O

k
r— =
n

We also need the next Bernstein type of inequality for 43/2D3V, f.

Lemma 5. For 1 <p < oo and f € W72 (¢)[0, o0)

|2 D% Vus || <n'’* e, (30)
Proof. From (16) we have
VY2 @)D* Vo (f,2) = n(n+1 i (n —1)DVy ok (x)
= n(n+1)(n+2)p"*( i (niu—x) Vs (@).

We will prove (30) for p =1 and p = co and apply the Riesz-Thorin theorem.
1.p=1.
From the above representation of ¢%/2(z) D3V, (f,x) we obtain

,

> E+1 k
<o S () st [ (g o) s

s~ , (k+1
k=0

Now, by Cauchy’s inequality

H¢3/2D3‘~/nf

1/2
n+2 k( )dﬁ?}

¢
9 1/2
) Vn+2,k(ac)da:} .

(5
{/(
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For the first factor, using (17) we have

e +k —I— 1 k + 1
/ () Vatok(2)dr = 4 n(n+1) / Vo k1 (o
0

k1 k41 +1
_n—|—1(1+ n )n—lf 1/)( n )

For the second one we use (20) to get

ok 2 C [(k+1
— < — .
/0 (n+2 m) Vnizp(@)de < "w( n )

Consequently I, < Cn~3/? and

HwWD A fH < Cn?’/?Zw( ) |A%a,(n —1)] .

We consider two cases.
(a) k=0.

0 (L:l) |A%ag(n — 1)

:nznzl/onil {f<t+i)_2f(t+—)+f( )}

Similarly to [5] we have

" (’““) A% (n — 1)| < On Y w0, .

(b) k> 1.

k+1 k+2 k+3

1/)(%) }A2ak(n—1)|:¢(%) (n=1) (/;_2/’:+/’:>

1 n—1 n—1

Since for z € [+, B3] we have ¢ (21) ~ ¢ () it follows

k43

o (M) |t < 0w [T v

and

[ee] i ki
3w (%) |A%ak(n—1)| <Cn ") /Zfl G(t)D* f(t)dt
k=1"n—T

n—1

<on” up?y],
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2. p=oo.

k+1 k42 k+t3
|A%ax(n—1)| = (n—1) </:1 f(t)dt—Q/:: f(t)dt+ﬂ: f(t)dt)

n—1 n—1 n—1

) R
= (n—l) D f f—f—tl + to + t3 | dt1dtadts
< (n—1)|lyD flloo/ / / (—1 +t +t2+t3) dt1dt2dts

dt1dtodts
<o (777 [T
T n+ k W 7l T+t +ta+ts

D* fllo
+k 1l I ( %Hrt)

< Cn Py <’““> 10D f].

Then
W* 2 () DV (f, )

<O @D e Y |-

k=0

By Cauchy’s inequality

i ‘¢_1 (k x 1) Viyz,n(z)

1
k=0

n+2

< Oy (z).

i n+k+1k3+2 (n—1)>°
n+k k+1nn-2)(n+1)

The lemma is proved. (]
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3. Proof of the Main Result

Proof of the direct inequality of Theorem 1. We follow the approach, used by Berens
and Xu in [3, pp. 25-46]. Obviously it is enough to establish the inequalities

If = Vafllo <Clfll, for [ € Ly0,00)

and
- c - -
1 = Vadllo < === IDSllp for [ € W,[0,00).

We need to prove only the second one because the first one is evident. We will
prove it for p = 1 and p = oo and by applying the Riesz-Thorin theorem we obtain
it for every 1 < p < oo.

For ¢(z) =Inz — In(1 4 z) we have

f(t) = f(@) + ¢ (@) [6(t) — d(x)] Df(x) + / [6(t) — ¢(w)] Df (u)du

Applying V,, to both sides and using (10) we obtain
Va(f,z) = f(2)

. - () .
= 0(@) [Va(6,2) — 6(2)| DI (@) + Vi < [ 160 ot Df(u)du> .

Using arguments similar to [3], we see that we need to estimate L; and Lo norms
of Vo (¢, z) — ¢p(x). We have

Zkl—!—x Zkl—!—x Zkl—i—x

Since the L1 norm of the last term is

i 1 1
k:nk(l—|—x)’C Tn-1
we need to estimate only ||V, (¢, z) — h(z)|: where h(z) = Zk 1 k(1+z)k From
the identity (22) of Lemma 1 we have
V(o) — h(z)
oo i} n—1 1 oo
=Y Vai(z) |:(n -1) N p(t)ydt+ > | = > Var(x)
k=0 1 =1 k=0
n—1
1 1 n+k 1
In(1+—)— —1)In (1 In
X{kn<+k;) (n+k )n(+n—|—k—1> k+1+zlk+i

By using (17) it is not difficult to see that ||V, (¢, ) — h(x)|1 < 5.

— n—1
In the case p =

0(@) V() — ()] DS () = [v / Df(u

|
=R
=
8
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and
- ) N - - )
Va < [9(.) — ¢(u)] Df(ﬂ)dU> <D flloc Vi (/ [9(.) — ¢(u)] du, Jf) ~

Let us denote by hi and hs the functions: hi(2) = 2¢(z) and h2(z) = [~ ¢(v)dv, i.e.
Dha(z) = ¢(z). Then

~ ()
v, ( / 16() — ()] du, x)

= [V (b1, 2) = (@)] = 2 [Va(9,2) = 6(@)] = [Valh, 2) = ha(a)] -

Now we consider two cases. For < % we use again the representation (22) of
Lemma 1 and proceed as in the case for L; norm. For = > % we can approximate

Vi, by the classical Baskakov operator V, and use the main result from [6, Theorem
1.1] (since \|1/)D2h1\|oo < 2 and ||1ﬁD2hQ||oo =1). O

Proof of the converse inequality of Theorem 1. We take g=V,? (f, ac):f/n (Vn (f, a:))
Then
If—gllp =1If - Vr?f”p <2|f - an”?

because f/n is a contraction.
Now we will estimate Dg. From (29) of Lemma 4 we have

s 1DVl <[00 = V2| + [ [wrpivi|

12 HD%Z?f

+17 D02
P

418 HDSfo
p

il
From (30) of Lemma 5:

|2 D*v2s| < cavm|[eD*Vag
P

X
< Civn [pD? (Vaf = V25)

From (27) of Lemma 3:

p+cl¢ﬁHwD2an

’ P

o

gcmHDf/nf SC’QnHD(an—fo> +anHD‘73f
p p p

P

< Chn HD (an - Vr?f)

+ Can HD‘Z?JC
P

.
From (25) of Lemma 2:

|jvD?V2s

<Cs Hbffff
P

L
From (28) of Lemma 3 and (23) of Lemma 2:

o

< Oun® HDan
p

o< Can? HD (f/nf - f/,?f)

+ Can® HDfo
P

P

< Curt | (Vs ~ V29) Dvzs

+ 0477,2
P

P
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So,

1D*V2 1l < |ViV2s = V21

ﬁ p+cclr3/2\/ﬁHwD2 (an*‘zlzﬁ”p
+ (CCal ™20 + Cul *n?) HD (Vo —v27) Hp

T (001031*3/%1/2 £ CC 20 + cc4r3n2> Hbffff

p
If we choose | > Rn such that

CCL1O51732 Y% 4 CCol™2n 4+ OO 3n? <

10-1)

we have

ﬁl\f)fffﬂlp <|vivzs-vzs| +couvalvn? (vur - v25)|

+(CCal Pt ) D (Vs = V21)|| -
p
Since Vl is a contraction we have

|Vivzs -2

<a|Vur—g|| +|0r-s -
P P P
Also, from (21) it follows that

w0 (s - 725)], < Con|

v —f]
and from (26):
o (s 121)

SC’en‘
P

Vif — pr.
Then

T 1PV < [0 = £+ 02 (concn

+CCyCel %02 + C4cel‘3/2n3) Hf/nf —f

P

By taking R big enough we complete the proof of Theorem 1. O
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