Results in Mathematics

Approximation of Functions by Baskakov-Kantorovich Operator

Ivan Gadjev

Abstract. We characterize the approximation of functions in L_p norm by Baskakov-Kantorovich operator. We define an appropriate K-functional and prove a direct and strong converse inequality of type B in terms of the K-functional.

Mathematics Subject Classification. 41A36, 41A25, 41A27, 41A17.

Keywords. Baskakov-Kantorovich operator, K-functional, Direct theorem, Strong converse theorem.

1. Introduction

The classical Bernstein operator is defined for every function $f \in C[0,1]$ by the formula [10]

$$B_n(f,x) = \sum_{k=0}^n p_{n,k}(x) f\left(\frac{k}{n}\right) \quad \text{where} \quad p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k} \quad (1)$$

and the classical Baskakov operator is defined for every function $f \in C[0, \infty)$ by [1]

$$V_n(f,x) = \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) V_{n,k}(x)$$
 (2)

where

$$V_{n,k}(x) = \binom{n+k-1}{k} x^k (1+x)^{-n-k}.$$
 (3)

In order to approximate functions in L_p -norm Kantorovich introduced a modification of B_n :

$$B_n^*(f,x) = \sum_{k=0}^n p_{n,k}(x)(n+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(u)du.$$

Analogously, in [5] Ditzian and Totik defined two Kantorovich modifications of V_n .

For $0 \le x < \infty$ they introduced

$$V_n^*(f, x) = \sum_{k=0}^{\infty} V_{n,k}(x) \, n \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(u) du$$

and

$$\tilde{V}_n(f,x) = \sum_{k=0}^{\infty} V_{n,k}(x) (n-1) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} f(u) du.$$
 (4)

The reason for introducing the second one is that the first one is not a contraction and because of that it is not very suitable for approximating of functions in L_p norm for $p < \infty$.

For all these operators they proved [5, Theorem 9.3.2] (for $1 \le p < \infty$) a direct inequality

$$||L_n f - f||_p \le M \left[w_{\varphi}^2 \left(f, n^{-1/2} \right)_p + n^{-1} ||f||_p \right]$$

and a week converse inequality

$$||L_n f - f||_p = O(n^{-\alpha/2}) \Leftrightarrow w_\varphi^2(f, h)_p = O(h^\alpha), \quad \alpha < 2,$$

where L_n is B_n^* , V_n^* or \tilde{V}_n and

$$\omega_{\varphi}^{2}(f,h)_{p} = \sup_{|t| \le h} \|f(x - \varphi(x)t) - 2f(x) + f(x + \varphi(x)t)\|_{p}$$

is the second order modulus of smoothness of Ditzian-Totik, $\varphi(x) = \sqrt{x(1-x)}$ for B_n^* and $\varphi(x) = \sqrt{x(1+x)}$ for V_n^* and \tilde{V}_n .

In [3] Berens and Xu using the K-functional

$$K^*(f,t) = \inf \left\{ \|f - g\|_p + t \|P(D)g\|_p : f - g, P(D)g \in L_p[0,1] \right\}$$

where

$$P(D) = \frac{d}{dx} \left(x(1-x) \frac{d}{dx} \right),$$

proved the direct and a week converse inequality for B_n^* in terms of $K^*(f,t)$. Later, Chen and Ditzian [11] proved the strong converse inequality of type B, and Gonska and Zhou [9] of type A in terminology of [4].

In this article we investigate the approximation of functions in L_p norm by $\tilde{V}_n(f,x)$. We define an appropriate K-functional $\tilde{K}(f,t)_p$ (used for the first

time by Berdisheva [2] in order to prove the direct theorem for Baskakov-Durrmeyer operator and later on by Heilman and Wagner [8] to prove the converse theorem) and prove a direct inequality with no other terms on the right-hand side than $\tilde{K}(f,t)_p$ and the strong converse inequality of type B.

Before stating our main result, let us introduce the needed notations.

By $\psi(x) = x(1+x)$ we denote the weight which is naturally connected with the second derivative of Baskakov operator. The first derivative operator is denoted by $D = \frac{d}{dx}$. Thus, Dg(x) = g'(x) and $D^kg(x) = g^{(k)}(x)$ for every natural k. We define a differential operator \tilde{D} by the formula

$$\tilde{D} = \frac{d}{dx} \left(\psi(x) \frac{d}{dx} \right) = D\psi D.$$

The space $AC_{loc}(0,\infty)$ consists of the functions which are absolutely continuous in [a,b] for every $[a,b] \subset (0,\infty)$.

$$W_p^k[0,\infty) = \{ f : D^r f \in AC_{loc}(0,\infty), r = 0,1,\dots k-1, D^k f \in L_p[0,\infty) \},$$

$$W_p^k(\psi)[0,\infty) = \{ f : D^{r-1} f \in AC_{loc}(0,\infty), \psi^{k/2} D^k f \in L_p[0,\infty) \},$$

$$\tilde{W}_p[0,\infty) = \{ f : f, Df \in AC_{loc}(0,\infty), \tilde{D}f \in L_p[0,\infty), \lim_{x \to 0_+} xDf(x) = 0 \},$$

$$L_p[0,\infty) + \tilde{W}_p[0,\infty) = \left\{ f : f = f_1 + f_2, f_1 \in L_p[0,\infty), f_2 \in \tilde{W}_p[0,\infty) \right\}.$$

Also, we define the K-functional $\tilde{K}(f,t)_p$ by the formula

$$\tilde{K}(f,t)_p = \inf \left\{ \|f - g\|_p + t \left\| \tilde{D}g \right\|_p : f - g \in L_p[0,\infty), g \in \tilde{W}_p[0,\infty) \right\}. \tag{5}$$

And the relation $\theta_1(f,t)$ is equivalent to $\theta_2(f,t)$, i.e. $\theta_1(f,t) \sim \theta_2(f,t)$ means that there exists a positive constant independent of f and t such that

$$C^{-1}\theta_1(f,t) \le \theta_2(f,t) \le C\theta_1(f,t).$$

Our main result is the following theorem.

Theorem 1. For \tilde{V}_n defined by (4), the K-functional given by (5), $1 and for every <math>f \in L_p[0,\infty) + \tilde{W}_p[0,\infty)$, there exist absolute constants R, C > 0 such that for every natural $l \ge Rn$

$$C^{-1} \|\tilde{V}_n f - f\|_p \le \tilde{K} \left(f, \frac{1}{n} \right)_p \le C \frac{l}{n} \left(\|\tilde{V}_n f - f\|_p + \|\tilde{V}_l f - f\|_p \right).$$
 (6)

The left inequality is true for p = 1 as well.

Both inequalities in Theorem 1 are stronger than the results mentioned above. Indeed, from the simple inequality

$$\left\| \tilde{D}f \right\|_{p} \le \left\| D\psi Df \right\|_{p} + \left\| \psi D^{2}f \right\|_{p}$$

and from [5, Theorem 9.5.3-a), c)] it follows that

$$\left\| \tilde{D}f \right\|_{p} \le C \left(\left\| \psi D^{2} f \right\|_{p} + \|f\|_{p} \right)$$

and consequently

$$\tilde{K}\left(f,\frac{1}{n}\right)_p \leq C\left[w_{\sqrt{\psi}}^2\left(f,n^{-1/2}\right)_p + n^{-1}\|f\|_p\right].$$

At the same time, $\tilde{K}(f, \frac{1}{n})_p$ is not equivalent to $w_{\sqrt{\psi}}^2(f, n^{-1/2})_p + n^{-1} ||f||_p$. For instance, for p = 1 and $f(x) = (1+x)^{-1}$ we have $\tilde{K}(f, \frac{1}{n})_1 \leq n^{-1}$ and $||f||_1 = \infty$.

Remark. Another way to state Theorem 1 is: there exists an integer k such that

$$\tilde{K}\left(f, \frac{1}{n}\right)_{p} \sim \|\tilde{V}_{n}f - f\|_{p} + \|\tilde{V}_{kn}f - f\|_{p}, \quad p > 1.$$

For the rest of this paper the constants C and C_i will always be absolute constants, which means they do not depend on f, l and n. The constant C may be different on each occurrence.

2. Auxiliary Results

In this section we gather some properties of V_n , \tilde{V}_n and $V_{n,k}$, which can be found in [1,5,7] and prove all the needed lemmas.

$$V_n$$
 and \tilde{V}_n are linear, positive operators with $||V_n f||_{\infty} \le ||f||_{\infty}$ (7)

and

$$\|\tilde{V}_n f\|_p \le \|f\|_p. \tag{8}$$

$$V_n(1,x) = 1, \quad V_n(t-x,x) = 0, \quad V_n\left((t-x)^2, x\right) = \frac{\psi(x)}{n}.$$
 (9)

$$\tilde{V}_n(1,x) = 1, \quad \tilde{V}_n(t-x,x) = \frac{2x+1}{2(n-1)} = \frac{1}{2(n-1)}D\psi(x).$$
 (10)

$$(DV_{n,k})(x) = DV_{n,k}(x) = n\Big(V_{n+1,k-1}(x) - V_{n+1,k}(x)\Big).$$
(11)

$$DV_{n,k}(x) = \frac{n}{\psi(x)} \left(\frac{k}{n} - x\right) V_{n,k}(x). \tag{12}$$

The next three inequalities are valid for all integers m and (16) for every natural m [5]. The constant C depends only on m.

$$\sum_{k=1}^{\infty} \left(\frac{n}{k}\right)^m V_{n,k}(x) \le Cx^{-m},\tag{13}$$

$$\sum_{k=0}^{\infty} \left(1 + \frac{k}{n} \right)^m V_{n,k}(x) \le C(1+x)^m, \tag{14}$$

$$V_n\left((t-x)^{2m}, x\right) \le C\left(\frac{\psi(x)}{n}\right)^m \quad \text{for} \quad x \ge \frac{1}{n},$$
 (15)

$$D^{m}\tilde{V}_{n}(f,x) = \frac{(n+m-1)!}{(n-1)!} \sum_{k=0}^{\infty} \Delta^{m} a_{k}(n-1) V_{n+m,k}(x)$$
 (16)

where

$$a_k(n) = n \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(u) du, \quad \Delta a_k = a_{k+1} - a_k, \quad \Delta^m a_k = \Delta \left(\Delta^{m-1} a_k \right).$$

By simple computations one can verify the next identities.

$$\int_0^\infty V_{n,k}(x)dx = \frac{1}{n-1},\tag{17}$$

$$\int_0^\infty x V_{n,k}(x) dx = \frac{k+1}{(n-1)(n-2)},\tag{18}$$

$$\int_0^\infty x^2 V_{n,k}(x) dx = \frac{(k+1)(k+2)}{(n-1)(n-2)(n-3)},\tag{19}$$

$$\int_0^\infty \left(x - \frac{k}{n}\right)^2 V_{n,k}(x) dx = \frac{1}{n^2} \psi\left(\frac{k}{n}\right) + O\left(\frac{1}{n^3}\right). \tag{20}$$

For every natural $r \ge 1$ [5, p. 118, 9.3.5]

$$\|\psi^r D^{2r} \tilde{V}_n f\|_p \le C n^r \|f\|_p \quad \text{for} \quad f \in L_p[0, \infty).$$
 (21)

The next lemma is crucial for the proof of the direct inequality of Theorem 1.

Lemma 1. For $V_{n,k}(x)$ defined by (3) the next identity is true:

$$\sum_{k=1}^{n-1} \frac{1}{k(1+x)^k} = \sum_{k=0}^{\infty} \left(\frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{n+k-1} \right) V_{n,k}(x). \tag{22}$$

Proof. Let

$$S(y) = \sum_{k=0}^{\infty} \left(\frac{y^{k+1}}{k+1} + \frac{y^{k+2}}{k+2} + \dots + \frac{y^{n+k-1}}{n+k-1} \right) V_{n,k}(x).$$

Then we get for the derivative of S(y) (after straightforward computations):

$$DS(y) = \frac{1 - y^{n-1}}{1 - y} \frac{1}{(1 + x - xy)^n}.$$

Computing the integral we obtain

$$S(y) = -\sum_{k=1}^{n-1} \frac{1}{k(1+x-xy)^k} + \sum_{k=1}^{n-1} \frac{1}{k} \left(\frac{y}{1+x-xy} \right)^k + \ln \frac{1+x}{x} + constant.$$

From S(0) = 0 it follows that

$$S(y) = -\sum_{k=1}^{n-1} \frac{1}{k(1+x-xy)^k} + \sum_{k=1}^{n-1} \frac{1}{k} \left(\frac{y}{1+x-xy} \right)^k + \sum_{k=1}^{n-1} \frac{1}{k(1+x)^k}$$

and

$$S(1) = \sum_{k=0}^{\infty} \left(\frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{n+k-1} \right) V_{n,k}(x) = \sum_{k=1}^{n-1} \frac{1}{k(1+x)^k}.$$

The lemma is proved.

Lemma 2. For p > 1 and every $g \in \tilde{W}_p[0,\infty)$ we have

$$\|Dg\|_{p} \le C \|\tilde{D}g\|_{p}, \tag{23}$$

$$\|D\psi Dg\|_{p} \le C \|\tilde{D}g\|_{p}, \tag{24}$$

$$\left\|\psi D^2 g\right\|_p \le C \left\|\tilde{D}g\right\|_p. \tag{25}$$

Proof. We have

$$(1+x)Dg(x) = \frac{1}{x} \int_0^x \tilde{D}g(t)dt$$

and consequently

$$\left| (1+x)Dg(x) \right| \le \frac{1}{x} \int_0^x \left| \tilde{D}g(t) \right| dt \le M(\tilde{D}g, x)$$

where

$$M(h,x) = \sup_{x \in \Delta} \frac{1}{|\Delta|} \int_{\Delta} |h(t)| dt$$

is the Hardy's maximal function. Now, from the Hardy's inequality (for p > 1) we get

$$\left\|(1+x)Dg(x)\right\|_p \leq C \left\|M(\tilde{D}g,x)\right\|_p \leq C \left\|\tilde{D}g\right\|_p.$$

And (23) and (24) follow from the obvious

$$||Dg||_p \le ||(1+x)Dg(x)||_p$$

and

$$||D\psi Dg||_p \le 2 ||(1+x)Dg(x)||_p$$
.

We obtain (25) from (24) and the simple inequality

$$\left\|\psi D^2 g\right\|_p \le \left\|\psi D^2 g + D\psi D g\right\|_p + \left\|D\psi D g\right\|_p.$$

We will prove the converse inequality of Theorem 1 by method, suggested by Ditzian and Ivanov in [4] and based on using the second iteration of Baskakov-Kantorovich operator in the K-functional. But before using it we need to prove all needed inequalities some of which are important of their own.

Lemma 3. For $1 \le p \le \infty$ we have

$$\left\| D\tilde{V}_n f \right\|_p \le C n \left\| f \right\|_p \quad for \quad f \in L_p[0, \infty), \tag{26}$$

$$\left\| D^2 \tilde{V}_n f \right\|_p \le C n \left\| D f \right\|_p \quad for \quad f \in W_p^1[0, \infty), \tag{27}$$

$$\|D^3 \tilde{V}_n f\|_p \le C n^2 \|Df\|_p \quad for \quad f \in W_p^1[0, \infty).$$
 (28)

Proof. Equation (26) follows from (16) and (8).

The proofs of (27) and (28) are analogous. We prove them for p=1 and $p=\infty$ and apply the Riesz-Thorin theorem.

Let us prove (28).

1. p = 1. From (16) and (17) we have

$$||D^{3}\tilde{V}_{n}(f,x)||_{1} = ||n(n+1)(n+2)\sum_{k=0}^{\infty} \Delta^{3}a_{k}(n-1)V_{n+3,k}(x)||_{1}$$

$$\leq Cn^{3}\sum_{k=0}^{\infty} |\Delta^{3}a_{k}(n-1)| \int_{0}^{\infty} V_{n+3,k}(x)dx \leq Cn^{2}\sum_{k=0}^{\infty} |\Delta^{3}a_{k}(n-1)|$$

$$\leq 4Cn^{2}\sum_{k=0}^{\infty} |\Delta a_{k}(n-1)| = Cn^{2}\sum_{k=0}^{\infty} |\Delta a_{k}(n-1)|.$$

Now,

$$|\Delta a_k(n-1)| = (n-1) \left| \int_{\frac{k+1}{n-1}}^{\frac{k+2}{n-1}} f(t)dt - \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} f(t)dt \right|$$

$$= (n-1) \left| \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} \left(\int_{0}^{\frac{1}{n-1}} Df(u+v)dv \right) du \right| \le \int_{\frac{k}{n-1}}^{\frac{k+2}{n-1}} |Df(u)| du.$$

Consequently,

$$\sum_{k=0}^{\infty} |\Delta a_k(n-1)| \le 2 \|Df\|_1$$

and (28) is proved for p = 1.

2. $p=\infty$.

$$||D^3 \tilde{V}_n(f, x)||_{\infty} \le C n^3 \max_k |\Delta a_k(n-1)|.$$

The proof is similar to the case p = 1.

The next lemma is a Voronovkaya type of inequality.

Lemma 4. For p > 1 and every function $f \in C^3[0, \infty)$ such that the right-hand side of the inequality is finite, we have

$$\left\| \tilde{V}_{n}f - f - \frac{1}{2(n-1)}\tilde{D}f \right\|_{p} \\ \leq C \left\{ n^{-3/2} \|\psi^{3/2}D^{3}f\|_{p} + n^{-2} \|D^{2}f\|_{p} + n^{-2} \|\psi D^{2}f\|_{p} + n^{-3} \|D^{3}f\|_{p} \right\}.$$
 (29)

Remark. Later on we will apply this lemma for $\tilde{V}_n^2 f$ where $f \in L_p[0,\infty) + \tilde{W}_p[0,\infty)$ for which the above conditions hold.

Proof. By Taylor's formula

$$f(u) = f(x) + (u - x)Df(x) + \frac{1}{2}(u - x)^{2}D^{2}f(x) + \frac{1}{2}\int_{x}^{u}(u - v)^{2}D^{3}f(v)dv.$$

After integrating from $\frac{k}{n-1}$ to $\frac{k+1}{n-1}$ with respect to u, multiplying by $(n-1)V_{n,k}(x)$ and summing with respect to k, we obtain:

$$\tilde{V}_n(f,x) = f(x) + \frac{\psi'(x)}{2(n-1)}Df(x) + \frac{(n+1)\psi(x) + 1/3}{2(n-1)^2}D^2f(x) + I_n$$

$$= f(x) + \frac{1}{2(n-1)}\tilde{D}^2f(x) + \frac{\psi(x) + 1/6}{(n-1)^2}D^2f(x) + I_n,$$

where

$$I_n = \frac{n-1}{2} \sum_{k=0}^{\infty} V_{n,k}(x) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} \left(\int_x^u (u-v)^2 D^3 f(v) dv \right) du.$$

Now we estimate I_n .

Case 1. $x < \frac{1}{n}$.

We will estimate terms in the sum of I_n separately for k = 0, 1, 2 and for $k \ge 3$.

$$\begin{split} & \frac{n-1}{2} V_{n,0}(x) \left| \int_0^{\frac{1}{n-1}} \left(\int_x^u (u-v)^2 D^3 f(v) dv \right) du \right| \\ & \leq \frac{n-1}{2(1+x)^n} \int_0^{\frac{1}{n-1}} (u-x)^2 du \left| \int_x^u D^3 f(v) dv \right| \\ & \leq \frac{n-1}{2} \int_0^{\frac{1}{n-1}} |u-x|^3 du \left| \frac{1}{u-x} \int_x^u D^3 f(v) dv \right| \leq \frac{C}{n^3} M(D^3 f, x), \\ & \frac{n-1}{2} V_{n,1}(x) \left| \int_{\frac{1}{n-1}}^{\frac{2}{n-1}} \left(\int_x^u (u-v)^2 D^3 f(v) dv \right) du \right| \\ & \leq \frac{(n-1)nx}{2(1+x)^n} \int_{\frac{1}{n-1}}^{\frac{2}{n-1}} |u-x|^3 du \left| \frac{1}{u-x} \int_x^u D^3 f(v) dv \right| \leq \frac{C}{n^3} M(D^3 f, x). \end{split}$$

Analogously for k = 2.

$$\begin{split} &\frac{n-1}{2} \sum_{k=3}^{\infty} V_{n,k}(x) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} \left(\int_{x}^{u} (u-v)^{2} D^{3} f(v) dv \right) du \\ &\leq \frac{n-1}{2} \sum_{k=3}^{\infty} V_{n,k}(x) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} (u-x)^{3} \left| \frac{1}{u-x} \int_{x}^{u} D^{3} f(v) dv \right| du \\ &\leq C \sum_{k=3}^{\infty} V_{n,k}(x) \left(\frac{k}{n} \right)^{3} M(D^{3} f, x) \\ &= \frac{9(n+1)(n+2)}{n^{2}} x^{3} \sum_{k=3}^{\infty} V_{n,k}(x) M(D^{3} f, x) \leq \frac{C}{n^{3}} M(D^{3} f, x). \end{split}$$

Case 2. $x \ge \frac{1}{n}$.

(a)
$$u \geq x$$
.

$$I_{n} = \frac{n-1}{2} \sum_{k=0}^{\infty} V_{n,k}(x) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} \left(\int_{x}^{u} \frac{(u-v)^{2}}{\psi^{3/2}(v)} \left| \psi^{3/2}(v) D^{3} f(v) \right| dv \right) du$$

$$\leq \frac{n-1}{2} \sum_{k=0}^{\infty} V_{n,k}(x) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} \left(\int_{x}^{u} \frac{(u-x)^{2}}{\psi^{3/2}(x)} \left| \psi^{3/2}(v) D^{3} f(v) \right| dv \right) du$$

$$= \frac{n-1}{2} \sum_{k=0}^{\infty} \psi^{-3/2}(x) V_{n,k}(x) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} (u-x)^{3} \left| \frac{1}{u-x} \int_{x}^{u} \left| \psi^{3/2}(v) D^{3} f(v) \right| dv \right| du$$

$$\leq \frac{n-1}{2} \left\{ \sum_{k=0}^{\infty} \psi^{-3/2}(x) V_{n,k}(x) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} (u-x)^{3} du \right\} M(\psi^{3/2} D^{3} f, x)$$

$$\leq C \psi^{-3/2}(x) M(\psi^{3/2} D^{3} f, x) \sum_{k=0}^{\infty} V_{n,k}(x) \left(\left| x - \frac{k}{n} \right| + \frac{1}{n} \right)^{3}.$$

By using Cauchy's inequality, (9) and (15) we obtain for m = 1, 2, 3

$$\sum_{k=0}^{\infty} V_{n,k}(x) \left| x - \frac{k}{n} \right|^{m}$$

$$\leq \left\{ \sum_{k=0}^{\infty} V_{n,k}(x) \left(x - \frac{k}{n} \right)^{2} \right\}^{1/2} \left\{ \sum_{k=0}^{\infty} V_{n,k}(x) \left(x - \frac{k}{n} \right)^{2(m-1)} \right\}^{1/2}$$

$$\leq C \left(\frac{\psi(x)}{n} \right)^{m/2}.$$

From all this it follows

$$I_n \le \frac{C}{n^{3/2}} M(\psi^{3/2} D^3 f, x).$$

(b)
$$u < x$$
.

$$\begin{split} I_n &\leq \frac{n-1}{2} \sum_{k=0}^{\infty} V_{n,k}(x) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} \left(\int_{x}^{u} \frac{(u-v)^2}{\psi^{3/2}(v)} \left| \psi^{3/2}(v) D^3 f(v) \right| dv \right) du \\ &\leq \frac{n-1}{2} \sum_{k=0}^{\infty} V_{n,k}(x) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} \frac{1}{(1+u)^{3/2}} \int_{u}^{x} \frac{(u-v)^2}{v^{3/2}} \left| \psi^{3/2}(v) D^3 f(v) \right| dv du \\ &\leq \frac{n-1}{2} \sum_{k=0}^{\infty} V_{n,k}(x) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} \frac{(u-x)^2}{x^{3/2}(1+u)^{3/2}} \int_{u}^{x} \left| \psi^{3/2}(v) D^3 f(v) \right| dv du \\ &\leq \frac{n-1}{2} x^{-3/2} M(\psi^{3/2} f''', x) \sum_{k=0}^{\infty} V_{n,k}(x) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} \frac{(x-u)^3}{(1+u)^{3/2}} du \\ &\leq C x^{-3/2} M(\psi^{3/2} D^3 f, x) \sum_{k=0}^{\infty} V_{n,k}(x) \left(1 + \frac{k}{n} \right)^{-3/2} \left(\left| x - \frac{k}{n} \right| + \frac{1}{n} \right)^3. \end{split}$$

Again, by using Cauchy's inequality, (9), (14) and (15) we have

$$x^{-3/2}M(\psi^{3/2}D^3f,x)\sum_{k=0}^{\infty}V_{n,k}(x)\left(1+\frac{k}{n}\right)^{-3/2}\left(\left|x-\frac{k}{n}\right|+\frac{1}{n}\right)^3$$

$$\leq x^{-3/2}M(\psi^{3/2}D^3f,x)\left\{\sum_{k=0}^{\infty}V_{n,k}(x)\left(1+\frac{k}{n}\right)^{-3}\right\}^{1/2}$$

$$\times\left\{\sum_{k=0}^{\infty}V_{n,k}(x)\left(\left|x-\frac{k}{n}\right|+\frac{1}{n}\right)^6\right\}^{1/2}$$

$$\leq Cn^{-3/2}M(\psi^{3/2}D^3f,x).$$

By using the Hardy's inequality about maximal function (for p>1) we complete the proof of the lemma. \Box

We also need the next Bernstein type of inequality for $\psi^{3/2}D^3\tilde{V}_nf$.

Lemma 5. For $1 \leq p \leq \infty$ and $f \in W_p^2(\psi)[0,\infty)$

$$\|\psi^{3/2}D^3\tilde{V}_n f\|_p \le n^{1/2} \|\psi D^2 f\|_p.$$
 (30)

Proof. From (16) we have

$$\psi^{3/2}(x)D^3\tilde{V}_n(f,x) = n(n+1)\sum_{k=0}^{\infty} \Delta^2 a_k(n-1)DV_{n+2,k}(x)$$
$$= n(n+1)(n+2)\psi^{1/2}(x)\sum_{k=0}^{\infty} \Delta^2 a_k(n-1)\left(\frac{k}{n+2}-x\right)V_{n+2,k}(x).$$

We will prove (30) for p=1 and $p=\infty$ and apply the Riesz-Thorin theorem.

1.
$$p = 1$$
.

From the above representation of $\psi^{3/2}(x)D^3\tilde{V}_n(f,x)$ we obtain

$$\begin{split} \left\| \psi^{3/2} D^3 \tilde{V}_n f \right\|_1 \\ &\leq C n^3 \sum_{k=0}^{\infty} \psi \left(\frac{k+1}{n-1} \right) \left| \Delta^2 a_k(n-1) \right| \int_0^{\infty} \frac{\psi^{1/2}(x)}{\psi \left(\frac{k+1}{n-1} \right)} \left(\frac{k}{n+2} - x \right) V_{n+2,k}(x) dx \\ &= C n^3 \sum_{k=0}^{\infty} \psi \left(\frac{k+1}{n-1} \right) \left| \Delta^2 a_k(n-1) \right| I_k. \end{split}$$

Now, by Cauchy's inequality

$$I_{k} \leq \psi^{-1} \left(\frac{k+1}{n-1} \right) \left\{ \int_{0}^{\infty} \psi(x) V_{n+2,k}(x) dx \right\}^{1/2} \times \left\{ \int_{0}^{\infty} \left(\frac{k}{n+2} - x \right)^{2} V_{n+2,k}(x) dx \right\}^{1/2}.$$

For the first factor, using (17) we have

$$\begin{split} \int_0^\infty \psi(x) V_{n+2,k}(x) dx &= \frac{(n+k+1)(k+1)}{n(n+1)} \int_0^\infty V_{n,k+1}(x) dx \\ &= \frac{k+1}{n+1} \left(1 + \frac{k+1}{n} \right) \frac{1}{n-1} \leq \frac{C}{n} \psi \left(\frac{k+1}{n} \right). \end{split}$$

For the second one we use (20) to get

$$\int_0^\infty \left(\frac{k}{n+2} - x\right)^2 V_{n+2,k}(x) dx \le \frac{C}{n} \psi\left(\frac{k+1}{n}\right).$$

Consequently $I_k \leq C n^{-3/2}$ and

$$\left\|\psi^{3/2}D^3\tilde{V}_nf\right\|_1 \le Cn^{3/2}\sum_{k=0}^{\infty}\psi\left(\frac{k+1}{n}\right)\left|\Delta^2a_k(n-1)\right|.$$

We consider two cases.

$$(a) k = 0.$$

$$\begin{split} \psi\left(\frac{k+1}{n}\right)\left|\Delta^2 a_k(n-1)\right| \\ &= \frac{n^2-1}{n^2}\int_0^{\frac{1}{n-1}}\left[f\left(t+\frac{2}{n-1}\right)-2f\left(t+\frac{1}{n-1}\right)+f(t)\right]dt. \end{split}$$

Similarly to [5] we have

$$\psi\left(\frac{k+1}{n}\right)\left|\Delta^2 a_k(n-1)\right| \le Cn^{-1} \left\|\psi D^2 f\right\|_1.$$

(b) $k \ge 1$.

$$\psi\left(\frac{k+1}{n}\right)\left|\Delta^{2}a_{k}(n-1)\right| = \psi\left(\frac{k+1}{n}\right)(n-1)\left(\int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} - 2\int_{\frac{k+1}{n-1}}^{\frac{k+2}{n-1}} + \int_{\frac{k+3}{n-2}}^{\frac{k+3}{n-1}}\right).$$

Since for $x \in \left[\frac{k}{n-1}, \frac{k+3}{n-1}\right]$ we have $\psi\left(\frac{k+1}{n}\right) \sim \psi(x)$ it follows

$$\psi\left(\frac{k+1}{n}\right) \left| \Delta^2 a_k(n-1) \right| \le Cn^{-1} \int_{\frac{k}{n-1}}^{\frac{k+3}{n-1}} \psi(t) D^2 f(t) dt$$

and

$$\sum_{k=1}^{\infty} \psi\left(\frac{k+1}{n}\right) \left| \Delta^2 a_k(n-1) \right| \le C n^{-1} \sum_{k=1}^{\infty} \int_{\frac{k}{n-1}}^{\frac{k+3}{n-1}} \psi(t) D^2 f(t) dt$$

$$\le C n^{-1} \left\| \psi D^2 f \right\|_{1}.$$

2. $p=\infty$.

$$\begin{split} \left| \Delta^2 a_k(n-1) \right| &= (n-1) \left(\int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} f(t) dt - 2 \int_{\frac{k+1}{n-1}}^{\frac{k+2}{n-1}} f(t) dt + \int_{\frac{k+2}{n-1}}^{\frac{k+3}{n-1}} f(t) dt \right) \\ &= (n-1) \int_0^{\frac{1}{n-1}} \int_0^{\frac{1}{n-1}} \int_0^{\frac{1}{n-1}} D^2 f\left(\frac{k}{n-1} + t_1 + t_2 + t_3 \right) dt_1 dt_2 dt_3 \\ &\leq (n-1) \|\psi D^2 f\|_{\infty} \int_0^{\frac{1}{n-1}} \int_0^{\frac{1}{n-1}} \int_0^{\frac{1}{n-1}} \psi^{-1} \left(\frac{k}{n-1} + t_1 + t_2 + t_3 \right) dt_1 dt_2 dt_3 \\ &\leq \frac{n-1}{n+k-1} \|\psi D^2 f\|_{\infty} \int_0^{\frac{1}{n-1}} \int_0^{\frac{1}{n-1}} \int_0^{\frac{1}{n-1}} \frac{dt_1 dt_2 dt_3}{\frac{k}{n-1} + t_1 + t_2 + t_3} \\ &\leq \frac{n-1}{n+k-1} \|\psi D^2 f\|_{\infty} \left(\int_0^{\frac{1}{n-1}} \frac{dt}{\sqrt[3]{\frac{k}{n-1} + t}} \right)^3 \\ &\leq C n^{-3} \psi^{-1} \left(\frac{k+1}{n-1} \right) \|\psi D^2 f\|_{\infty}. \end{split}$$

Then

$$\psi^{3/2}(x)D^3\tilde{V}_n(f,x)$$

$$\leq Cn\psi^{1/2}(x)\|\psi D^2f\|_{\infty} \sum_{k=0}^{\infty} \left| \frac{k}{n+2} - x \right| \psi^{-1}\left(\frac{k+1}{n-1}\right) V_{n+2,k}(x).$$

By Cauchy's inequality

$$\begin{split} &\sum_{k=0}^{\infty} \left| \frac{k}{n+2} - x \right| \psi^{-1} \left(\frac{k+1}{n-1} \right) V_{n+2,k}(x) \\ &\leq \left\{ \sum_{k=0}^{\infty} \left(\frac{k}{n+2} - x \right)^2 V_{n+2,k}(x) \right\}^{1/2} \left\{ \sum_{k=0}^{\infty} \psi^{-2} \left(\frac{k+1}{n-1} \right) V_{n+2,k}(x) \right\}^{1/2}. \end{split}$$

From (9) we have

$$\sum_{k=0}^{\infty} \left(\frac{k}{n+2} - x \right)^2 V_{n+2,k}(x) = \frac{\psi(x)}{n+2}.$$

Also

$$\sum_{k=0}^{\infty} \psi^{-2} \left(\frac{k+1}{n-1} \right) V_{n+2,k}(x)$$

$$= \psi^{-2}(x) \sum_{k=0}^{\infty} V_{n-2,k+2}(x) \frac{n+k+1}{n+k} \frac{k+2}{k+1} \frac{(n-1)^3}{n(n-2)(n+1)} \le C\psi^{-2}(x).$$

The lemma is proved.

3. Proof of the Main Result

Proof of the direct inequality of Theorem 1. We follow the approach, used by Berens and Xu in [3, pp. 25–46]. Obviously it is enough to establish the inequalities

$$||f - \tilde{V}_n f||_p \le C||f||_p$$
 for $f \in L_p[0,\infty)$

and

$$||f - \tilde{V}_n f||_p \le \frac{C}{n-1} ||\tilde{D}f||_p \quad \text{for} \quad f \in \tilde{W}_p[0,\infty).$$

We need to prove only the second one because the first one is evident. We will prove it for p=1 and $p=\infty$ and by applying the Riesz-Thorin theorem we obtain it for every $1< p<\infty$.

For $\phi(z) = \ln z - \ln(1+z)$ we have

$$f(t) = f(x) + \psi(x) [\phi(t) - \phi(x)] Df(x) + \int_{x}^{t} [\phi(t) - \phi(u)] \tilde{D}f(u) du.$$

Applying \tilde{V}_n to both sides and using (10) we obtain

$$\tilde{V}_n(f,x) - f(x)$$

$$= \psi(x) \left[\tilde{V}_n(\phi, x) - \phi(x) \right] Df(x) + \tilde{V}_n \left(\int_x^{(\cdot)} \left[\phi(\cdot) - \phi(u) \right] \tilde{D}f(u) du \right).$$

Using arguments similar to [3], we see that we need to estimate L_1 and L_{∞} norms of $\tilde{V}_n(\phi, x) - \phi(x)$. We have

$$\phi(x) = -\sum_{k=1}^{\infty} \frac{1}{k(1+x)^k} = -\sum_{k=1}^{n-1} \frac{1}{k(1+x)^k} - \sum_{k=n}^{\infty} \frac{1}{k(1+x)^k}.$$

Since the L_1 norm of the last term is

$$\left\| \sum_{k=n}^{\infty} \frac{1}{k(1+x)^k} \right\|_1 = \frac{1}{n-1},$$

we need to estimate only $\|\tilde{V}_n(\phi,x) - h(x)\|_1$ where $h(x) = -\sum_{k=1}^{n-1} \frac{1}{k(1+x)^k}$. From the identity (22) of Lemma 1 we have

$$\begin{split} \tilde{V}_{n}(\phi, x) - h(x) \\ &= \sum_{k=0}^{\infty} V_{n,k}(x) \left[(n-1) \int_{\frac{k}{n-1}}^{\frac{k+1}{n-1}} \phi(t) dt + \sum_{i=1}^{n-1} \frac{1}{k+i} \right] = \sum_{k=0}^{\infty} V_{n,k}(x) \\ &\times \left[k \ln \left(1 + \frac{1}{k} \right) - (n+k-1) \ln \left(1 + \frac{1}{n+k-1} \right) - \ln \frac{n+k}{k+1} + \sum_{i=1}^{n-1} \frac{1}{k+i} \right]. \end{split}$$

By using (17) it is not difficult to see that $\|\tilde{V}_n(\phi, x) - h(x)\|_1 \leq \frac{C}{n-1}$. In the case $p = \infty$

$$\psi(x) \left[\tilde{V}_n(\phi, x) - \phi(x) \right] Df(x) = \left[\tilde{V}_n(\phi, x) - \phi(x) \right] \int_0^x \tilde{D}f(u) du$$
$$\leq x \left[\tilde{V}_n(\phi, x) - \phi(x) \right] \|\tilde{D}f\|_{\infty}$$

and

$$\tilde{V}_n\left(\int_x^{(.)} \left[\phi(.) - \phi(u)\right] \tilde{D}f(u) du\right) \le \|\tilde{D}f\|_{\infty} \tilde{V}_n\left(\int_x^{(.)} \left[\phi(.) - \phi(u)\right] du, x\right).$$

Let us denote by h_1 and h_2 the functions: $h_1(z) = z\phi(z)$ and $h_2(z) = \int^z \phi(v)dv$, i.e. $Dh_2(z) = \phi(z)$. Then

$$\tilde{V}_n \left(\int_x^{(.)} \left[\phi(.) - \phi(u) \right] du, x \right) \\
= \left[\tilde{V}_n \left(h_1, x \right) - h_1(x) \right] - x \left[\tilde{V}_n(\phi, x) - \phi(x) \right] - \left[\tilde{V}_n(h_2, x) - h_2(x) \right].$$

Now we consider two cases. For $x < \frac{1}{n}$ we use again the representation (22) of Lemma 1 and proceed as in the case for L_1 norm. For $x \ge \frac{1}{n}$ we can approximate \tilde{V}_n by the classical Baskakov operator V_n and use the main result from [6, Theorem 1.1] (since $\|\psi D^2 h_1\|_{\infty} \le 2$ and $\|\psi D^2 h_2\|_{\infty} = 1$).

Proof of the converse inequality of Theorem 1. We take $g = \tilde{V}_n^2(f, x) = \tilde{V}_n\left(\tilde{V}_n(f, x)\right)$. Then

$$||f - g||_p = ||f - \tilde{V}_n^2 f||_p \le 2||f - \tilde{V}_n f||_p$$

because \tilde{V}_n is a contraction.

Now we will estimate $\tilde{D}g$. From (29) of Lemma 4 we have

$$\begin{split} \frac{1}{2(l-1)} \| \tilde{D} \tilde{V}_n^2 f \|_p & \leq \left\| \tilde{V}_l \tilde{V}_n^2 f - \tilde{V}_n^2 f \right\|_p + C \Big[l^{-3/2} \left\| \psi^{3/2} D^3 \tilde{V}_n^2 f \right\|_p \\ & + l^{-2} \left\| D^2 \tilde{V}_n^2 f \right\|_p + l^{-2} \left\| \psi D^2 \tilde{V}_n^2 f \right\|_p + l^{-3} \left\| D^3 \tilde{V}_n^2 f \right\|_p \Big]. \end{split}$$

From (30) of Lemma 5:

$$\|\psi^{3/2}D^{3}\tilde{V}_{n}^{2}f\|_{p} \leq C_{1}\sqrt{n} \|\psi D^{2}\tilde{V}_{n}f\|_{p}$$

$$\leq C_{1}\sqrt{n} \|\psi D^{2}\left(\tilde{V}_{n}f - \tilde{V}_{n}^{2}f\right)\|_{p} + C_{1}\sqrt{n} \|\psi D^{2}\tilde{V}_{n}f\|_{p}.$$

From (27) of Lemma 3:

$$\left\| D^2 \tilde{V}_n^2 f \right\|_p \le C_2 n \left\| D \tilde{V}_n f \right\|_p \le C_2 n \left\| D \left(\tilde{V}_n f - \tilde{V}_n^2 f \right) \right\|_p + C_2 n \left\| D \tilde{V}_n^2 f \right\|_p$$

$$\le C_2 n \left\| D \left(\tilde{V}_n f - \tilde{V}_n^2 f \right) \right\|_p + C_2 n \left\| \tilde{D} \tilde{V}_n^2 f \right\|_p.$$

From (25) of Lemma 2:

$$\left\|\psi D^2 \tilde{V}_n^2 f\right\|_p \le C_3 \left\|\tilde{D} \tilde{V}_n^2 f\right\|_p.$$

From (28) of Lemma 3 and (23) of Lemma 2:

$$\begin{aligned} \left\| D^{3} \tilde{V}_{n}^{2} f \right\|_{p} &\leq C_{4} n^{2} \left\| D \tilde{V}_{n} f \right\|_{p} \leq C_{4} n^{2} \left\| D \left(\tilde{V}_{n} f - \tilde{V}_{n}^{2} f \right) \right\|_{p} + C_{4} n^{2} \left\| D \tilde{V}_{n}^{2} f \right\|_{p} \\ &\leq C_{4} n^{2} \left\| D \left(\tilde{V}_{n} f - \tilde{V}_{n}^{2} f \right) \right\|_{p} + C_{4} n^{2} \left\| \tilde{D} \tilde{V}_{n}^{2} f \right\|_{p}. \end{aligned}$$

So,

$$\frac{1}{2(l-1)} \|\tilde{D}^{2}\tilde{V}_{n}^{2}f\|_{p} \leq \left\|\tilde{V}_{l}\tilde{V}_{n}^{2}f - \tilde{V}_{n}^{2}f\right\|_{p} + CC_{1}l^{-3/2}\sqrt{n} \left\|\psi D^{2}\left(\tilde{V}_{n}f - \tilde{V}_{n}^{2}f\right)\right\|_{p} \\
+ \left(CC_{2}l^{-2}n + C_{4}l^{-3}n^{2}\right) \left\|D\left(\tilde{V}_{n}f - \tilde{V}_{n}^{2}f\right)\right\|_{p} \\
+ \left(CC_{1}C_{3}l^{-3/2}n^{1/2} + CC_{2}l^{-2}n + CC_{4}l^{-3}n^{2}\right) \left\|\tilde{D}\tilde{V}_{n}^{2}f\right\|_{p} .$$

If we choose $l \geq Rn$ such that

$$CC_1C_3l^{-3/2}n^{1/2} + CC_2l^{-2}n + CC_4l^{-3}n^2 \le \frac{1}{4(l-1)}$$

we have

$$\frac{1}{4(l-1)} \|\tilde{D}\tilde{V}_n^2 f\|_p \le \left\|\tilde{V}_l \tilde{V}_n^2 f - \tilde{V}_n^2 f\right\|_p + CC_1 l^{-3/2} \sqrt{n} \left\|\psi D^2 \left(\tilde{V}_n f - \tilde{V}_n^2 f\right)\right\|_p + \left(CC_2 l^{-2} n + C_4 l^{-3} n^2\right) \left\|D \left(\tilde{V}_n f - \tilde{V}_n^2 f\right)\right\|_p.$$

Since \tilde{V}_l is a contraction we have

$$\left\| \tilde{V}_{l}\tilde{V}_{n}^{2}f - \tilde{V}_{n}^{2}f \right\|_{p} \leq 4 \left\| \tilde{V}_{n}f - f \right\|_{p} + \left\| \tilde{V}_{l}f - f \right\|_{p}.$$

Also, from (21) it follows that

$$\left\|\psi D^2\left(\tilde{V}_n f - \tilde{V}_n^2 f\right)\right\|_p \le C_5 n \left\|\tilde{V}_n f - f\right\|_p$$

and from (26):

$$\left\| D\left(\tilde{V}_n f - \tilde{V}_n^2 f\right) \right\|_p \le C_6 n \left\| \tilde{V}_n f - f \right\|_p.$$

Then

$$\frac{1}{4(l-1)} \|\tilde{D}\tilde{V}_n^2 f\|_p \le \|\tilde{V}_l f - f\|_p + l^{-3/2} \left(CC_1 C_5 n^{3/2} + CC_2 C_6 l^{-1/2} n^2 + C_4 C_6 l^{-3/2} n^3 \right) \|\tilde{V}_n f - f\|_p.$$

By taking R big enough we complete the proof of Theorem 1.

Acknowledgements

The author would like to thank K.G. Ivanov for his valuable comments and suggestions which greatly help us to improve the presentation of this paper.

References

- [1] Baskakov, V.A.: An instance of a sequence of the linear positive operators in the space of continuous functions. Docl. Akad. Nauk SSSR 113, 249–251 (1957)
- [2] Berdysheva, E.: Studying Baskakov-Durrmeyer operators and their quasiinterpolants via special functions. J. Approx. Theory 149, 131–150 (2007)

- [3] Berens, H., Xu, Y.: On Bernstein-Durrmeyer polynomials with jacobi-weights. Approximation theory and functional analysis. Academic Press, New York (1990)
- [4] Ditzian, Z., Ivanov, K.G.: Strong converse inequalities. J. Anal. Math. 61, 61–111 (1993)
- [5] Ditzian, Z., Totik, V.: Moduli of smoothness. Springer, Berlin, New York (1987)
- [6] Gadjev, I.: Strong converse result for Baskakov operator. Serdica Math. J. 40, 273–318 (2014)
- [7] Gadjev, I.: Weighted approximation by baskakov operators. J. Math. Inequal. Appl. 18(4), 1443–1461 (2015)
- [8] Heilmann, M., Wagner, M.: Strong converse results for Baskakov-Durrmeyer operators. Constructive Theory of Functions, Sozopol 2010, pp. 141–149 (2010)
- [9] Gonska, H.H., Zhou, X.: The strong converse inequality for Bernstein-Kantorovich operators. Comput. Math. Appl. 30(3-6), 103-128 (1995)
- [10] Lorentz, G.: Bernstein polynomials. Mathematical expositions, vol. 8. Univ. of Toronto Press, Toronto (1953)
- [11] Chen, W., Ditzian, Z.: Strong converse inequality for Kantorovich polynomials. Constr. Approx. 10, 95–106 (1994)

Ivan Gadjev
Department of Mathematics and Informatics
University of Sofia
5 James Bourchier Blvd.
1164 Sofia, Bulgaria

e-mail: gadjevivan@hotmail.com

Received: March 16, 2016. Accepted: April 25, 2016.