Results Math 71 (2017), 1167–1184 © 2016 Springer International Publishing 1422-6383/17/031167-18 published online April 9, 2016 DOI 10.1007/s00025-016-0548-5

Results in Mathematics

Statistical Relative Approximation on Modular Spaces

Kamil Demirci and Sevda Orhan

Abstract. In the present paper, using the concept of statistical relative convergence, we study the problem of approximation to a function by means of double sequences of positive linear operators defined on a modular space. Also, a non-trivial application is presented.

Mathematics Subject Classification. 40B05, 41A36, 46E30.

Keywords. Positive linear operators, modular space, statistical relative modular convergence, double sequences, Korovkin theorem.

1. Introduction and Preliminaries

Let C(X) be the space of all continuous real valued functions on a compact subset X of the real numbers and (L_n) be the sequence of positive linear operators on C(X) say $(L_n(f;x))$. Korovkin [15] established the sufficient conditions for the uniform convergence of (L_n) to a function f by using the test functions 1, x, x^2 . Many researchers have investigated these conditions for various operators defined on different spaces (see for instance [2,13,25]). Recently, Demirci and Orhan [9] introduced statistical relative uniform convergence of single sequences by using the notions of the natural density and the relative uniform convergence. Then, Yılmaz et al. [25] defined a new type of modular convergence by using the notion of the relative uniform convergence. More recently, Demirci and Kolay [10] studied statistical relative modular convergence of single sequences. In this paper, we investigate the problem of statistical relative approximation to a function f by means of double sequences of positive linear operators defined on a modular space.

Let us first remind of the concept of statistical convergence for double sequences.

🕲 Birkhäuser

A double sequence $x = \{x_{m,n}\}$ is said to be convergent in Pringsheim's sense if, for every $\varepsilon > 0$, there exists $N = N(\varepsilon) \in \mathbb{N}$, the set of all natural numbers, such that $|x_{m,n} - L| < \varepsilon$ whenever m, n > N, where L is called the Pringsheim limit of x and denoted by $P - \lim_{m,n} x_{m,n} = L$ (see [23]). We shall call such an x, briefly, "*P*-convergent". A double sequence is called bounded if there exists a positive number M such that $|x_{m,n}| \leq M$ for all $(m, n) \in \mathbb{N}^2$. Note that in contrast to the case for single sequences, a convergent double sequence need not to be bounded.

Statistical convergence of single sequences was introduced by Steinhaus [24] and studied by many authors [11,12,14]. Recently, this concept was extended to the double sequences. If $E \subset \mathbb{N}^2$ is a two-dimensional subset of positive integers, then $E_{j,k}$ denotes the set $\{(m,n) \in E : m \leq j, n \leq k\}$ and $|E_{j,k}|$ denotes the cardinality of $E_{j,k}$. The double natural density of E [19] is given by

$$\delta_2(E) := P - \lim_{j,k} \frac{1}{jk} \left| E_{j,k} \right|,$$

if it exists. For example, let $E = \{(j^2, k^2) : j, k \in \mathbb{N}\}$ then $\delta_2(E) = 0$. The number sequence $x = \{x_{m,n}\}$ is statistically convergent to L provided that for every $\varepsilon > 0$, the set

$$E := E_{j,k}(\varepsilon) := \{ m \le j, n \le k : |x_{m,n} - L| \ge \varepsilon \}$$

has natural density zero; in that case we write $st_2 - \lim_{m \to \infty} x_{m,n} = L$.

Clearly, a *P*-convergent double sequence is statistically convergent to the same value but its converse is not always true. Also, note that a statistically convergent double sequence need not to be bounded. For example, consider the double sequence $x = \{x_{m,n}\}$ given by

$$x_{m,n} = \begin{cases} mn, & m = k^2 \text{ and } n = l^2 \\ 1, & \text{otherwise.} \end{cases}, \quad k, l = 1, 2, \dots$$

Then, clearly $st_2 - \lim_{m,n} x_{m,n} = 1$. Nevertheless, x is neither convergent nor bounded.

Also, the statistical convergence for double sequences was characterized in [19] as given below:

A double sequence $x = \{x_{m,n}\}$ is statistically convergent to L if and only if there exists a set $S \subset \mathbb{N}^2$ such that the natural density of S is 1 and

$$P - \lim_{m,n\to\infty \text{ and } (m,n)\in S} x_{m,n} = L.$$

The concepts of *statistical superior limit* and *inferior limit* for double sequences have been introduced by Çakan and Altay [5]. For any real double sequence $x = \{x_{m,n}\}$, the statistical superior limit of x is

$$st_2 - \limsup_{m,n} x_{m,n} = \begin{cases} \sup G_x, & \text{if } G_x \neq \emptyset, \\ -\infty, & \text{if } G_x = \emptyset, \end{cases}$$

where $G_x := \{C \in \mathbb{R} : \delta_2 (\{(m, n) : x_{m,n} > C\}) \neq 0\}$ and \emptyset denotes the empty set. We note that, in general, by $\delta_2 (K) \neq 0$ we mean either $\delta_2 (K) > 0$ or Kfails to have the double natural density. Similarly, the statistical inferior limit of x is

$$st_2 - \liminf_{m,n} x_{m,n} = \begin{cases} \inf F_x, & \text{if } F_x \neq \emptyset, \\ \infty, & \text{if } F_x = \emptyset, \end{cases}$$

where $F_x := \{D \in \mathbb{R} : \delta_2(\{(m, n) : x_{m,n} < D\}) \neq 0\}$. As in the ordinary superior or inferior limit, it was proved that

$$st_2 - \liminf_{m,n} x_{m,n} \le st_2 - \limsup_{m,n} x_{m,n}$$

and also that, for any double sequence $x = \{x_{m,n}\}$ satisfying $\delta_2(\{(m,n): |x_{m,n}| > M\}) = 0$ for some M > 0,

$$st_2 - \lim_{m,n} x_{m,n} = L$$
 iff $st_2 - \liminf_{m,n} x_{m,n} = st_2 - \limsup_{m,n} x_{m,n} = L$.

Now, we focus on modular spaces.

Let I = [a, b] be a bounded interval of the real line \mathbb{R} provided with the Lebesgue measure. Then, by $X(I^2)$ we denote the space of all real-valued measurable functions on $I^2 = [a, b] \times [a, b]$ provided with equality a.e. As usual, let $C(I^2)$ denote the space of all continuous real-valued functions, and $C^{\infty}(I^2)$ denote the space of all infinitely differentiable functions on I^2 . In this case, we say that a functional $\rho : X(I^2) \to [0, +\infty]$ is a modular on $X(I^2)$ provided that the following conditions hold:

- (i) $\rho(f) = 0$ if and only if f = 0 a.e. in I^2 ,
- (ii) $\rho(-f) = \rho(f)$ for every $f \in X(I^2)$,
- (iii) $\rho(\alpha f + \beta g) \leq \rho(f) + \rho(g)$ for every $f, g \in X(I^2)$ and for any $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$.

Recall that a modular ρ is called *N*-quasi convex if the following is satisfied:

• there exists a constant $N \ge 1$ such that

$$\rho\left(\alpha f + \beta g\right) \le N\alpha\rho\left(Nf\right) + N\beta\rho\left(Ng\right)$$

holds for every $f, g \in X(I^2)$, $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$. In particular, if N = 1, then ρ is called *convex*.

Furthermore, a modular ρ is called *N*-quasi semiconvex if it holds:

• there exists a constant $N \ge 1$ such that

$$\rho(af) \le Na\rho(Nf)$$

holds for every $f \in X(I^2)$ and $a \in (0, 1]$.

It is clear that every N-quasi semiconvex modular is N-quasi convex. We should recall that the above two concepts were introduced and discussed in details by Bardaro et al. [3,4].

We now consider some appropriate vector subspaces of $X(I^2)$ by means of a modular ρ as follows:

$$L^{\rho}\left(I^{2}\right) := \left\{ f \in X\left(I^{2}\right) : \lim_{\lambda \to 0^{+}} \rho\left(\lambda f\right) = 0 \right\}$$

and

$$E^{\rho}\left(I^{2}\right) := \left\{ f \in L^{\rho}\left(I^{2}\right) : \rho\left(\lambda f\right) < +\infty \text{ for all } \lambda > 0 \right\}.$$

Here, $L^{\rho}(I^2)$ is called the *modular space* generated by ρ ; and $E^{\rho}(I^2)$ is called the space of the finite elements of $L^{\rho}(I^2)$. Observe that if ρ is N-quasi semiconvex, then the space

$$\left\{ f\in X\left(I^{2}\right) :\rho\left(\lambda f\right) <+\infty \ \text{ for some }\lambda>0\right\}$$

coincides with $L^{\rho}(I^2)$. The notions about modulars are introduced in [20] and widely discussed in [4] (see also [16,21]).

Moore [18] introduced the notion of uniform convergence of a sequence of functions relative to a scale function. Then, Chittenden [7] gave the following definition of relative uniform convergence is equivalent to the definition given by Moore:

A sequence (f_n) of functions, defined on an interval $I \equiv (a \leq x \leq b)$, converges *relatively uniformly to a limit function* f if there exists a function $\sigma(x)$, called a scale function $\sigma(x)$ such that for every $\varepsilon > 0$ there is an integer n_{ε} such that for every $n > n_{\varepsilon}$ the inequality $|f_n(x) - f(x)| < \varepsilon |\sigma(x)|$ holds uniformly in x on the interval I. The sequence (f_n) is said to converge *uniformly relatively to the scale function* σ or more simply, *relatively uniformly*. It will be observed that uniform convergence is the special case of relative uniform convergence in which the scale function is a non-zero constant (for more properties and details, see also [6–8]).

Now we introduce the notions of the *relative modular (or strong) con*vergence and *statistical relative modular (or strong) convergence* for double sequences as follows:

Definition 1. Let $\{f_{m,n}\}$ be a double function sequence whose terms belong to $L^{\rho}(I^2)$. Then, $\{f_{m,n}\}$ is relatively modularly convergent to a function $f \in L^{\rho}(I^2)$ iff there exists a function $\sigma(x, y)$, called a scale function $\sigma \in X(I^2), |\sigma(x, y)| \neq 0$ such that

$$P - \lim_{m,n} \rho\left(\lambda_0\left(\frac{f_{m,n} - f}{\sigma}\right)\right) = 0 \quad \text{for some } \lambda_0 > 0.$$
(1)

And also, $\{f_{m,n}\}$ is relatively *F*-norm convergent (or, relatively strongly convergent) to f iff

$$P - \lim_{m,n} \rho\left(\lambda\left(\frac{f_{m,n} - f}{\sigma}\right)\right) = 0 \quad \text{for every } \lambda > 0.$$
⁽²⁾

It can be immediately seen that (1) and (2) are equivalent if and only if the modular ρ satisfies the Δ_2 -condition, i.e. there exists a constant M > 0 such that $\rho(2f) \leq M\rho(f)$ for every $f \in X(I^2)$. Indeed, relative strong convergence of the double sequence $\{f_{m,n}\}$ to f is equivalent to the condition $P - \lim_{m,n} \rho\left(2^N\lambda\left(\frac{f_{m,n}-f}{\sigma}\right)\right) = 0$, for all $N = 1, 2, \ldots$ and some $\lambda > 0$. Let $\{f_{m,n}\}$ be relatively modularly convergent to f, hence there exists a $\lambda > 0$ such that $P - \lim_{m,n} \rho\left(\lambda\left(\frac{f_{m,n}-f}{\sigma}\right)\right) = 0.\Delta_2$ -condition implies by induction that $\rho\left(2^N\lambda\left(\frac{f_{m,n}-f}{\sigma}\right)\right) \leq M^N\rho\left(\lambda\left(\frac{f_{m,n}-f}{\sigma}\right)\right)$, then we get $P - \lim_{m,n} \rho\left(2^N\lambda\left(\frac{f_{m,n}-f}{\sigma}\right)\right) = 0.$

Definition 2. Let $\{f_{m,n}\}$ be a function sequence whose terms belong to $L^{\rho}(I^2)$. Then, $\{f_{m,n}\}$ is said to be *statistically relatively modularly convergent* to a function $f \in L^{\rho}(I^2)$ if there exists a function $\sigma(x, y)$, called a scale function $\sigma \in X(I^2), |\sigma(x, y)| \neq 0$ such that

$$st_2 - \lim_{m,n} \rho\left(\lambda_0\left(\frac{f_{m,n} - f}{\sigma}\right)\right) = 0 \text{ for some } \lambda_0 > 0.$$

Also, $\{f_{m,n}\}$ is statistically relatively *F*-norm convergent (or, statistically relatively strongly convergent) to *f* iff

$$st_2 - \lim_{m,n} \rho\left(\lambda\left(\frac{f_{m,n} - f}{\sigma}\right)\right) = 0 \text{ for every } \lambda > 0.$$

It will be observed that statistical modular convergence is the special case of statistical relative modular convergence in which the scale function is a non-zero constant (cf. [22]). Moreover, if $\sigma(x, y)$ is bounded, statistical relative modular convergence implies statistical modular convergence. However, statistical relative modular convergence does not imply statistical modular convergence, when $\sigma(x, y)$ is unbounded. This is illustrated by the following example:

Example 1. Take I = [0, 1] and let $\varphi : [0, \infty) \to [0, \infty)$ be a continuous function for which the following conditions hold:

- φ is convex
- $\varphi(0) = 0, \varphi(u) > 0$ for u > 0 and $\lim_{u \to \infty} \varphi(u) = \infty$. Hence, consider the functional ρ^{φ} on $X(I^2)$ defined by

$$\rho^{\varphi}(f) := \int_{0}^{1} \int_{0}^{1} \varphi\left(\left|f\left(x,y\right)\right|\right) dx dy \quad \text{ for } f \in X\left(I^{2}\right).$$

In this case, ρ^{φ} is a convex modular on $X(I^2)$, which satisfies all assumptions listed in this section. Consider the Orlicz space generated by φ as

Results Math

follows:

$$L^{\rho}_{\varphi}(I^2) := \left\{ f \in X\left(I^2\right) : \rho^{\varphi}\left(\lambda f\right) < +\infty \text{ for some } \lambda > 0 \right\}.$$

For each $m, n \in N$, define $g_{m,n} : [0,1] \times [0,1] \to \mathbb{R}$ by

$$g_{m,n}(x,y) = \begin{cases} 1, & m = k^2 \text{ and } n = l^2 \\ m^2 n(1 - mnxy), & (x,y) \in \left(0,\frac{1}{m}\right) \times \left(0,\frac{1}{n}\right); \\ m \neq k^2 \text{ and } n \neq l^2 \\ 0, & (x,y) = (0,0) \text{ or } (x,y) \in \left[\frac{1}{m},1\right] \times \left[\frac{1}{n},1\right]; \\ k, l = 1, 2, \dots \end{cases}$$

$$(3)$$

If $\varphi(x) = x^p$ for $1 \le p < \infty$, $x \ge 0$, then $L^{\rho}_{\varphi}(I^2) = L_p(I^2)$. Moreover we have for any function $f \in L^{\rho}_{\varphi}(I^2)$

$$o^{\varphi}(f) = \|f\|_{L_p}^p \,.$$

It is clear that $\{g_{m,n}\}$ does not converge statistically modularly but converges to g = 0 statistically modularly relative to a scale function.

 $\sigma(x,y) = \begin{cases} 1, & (x,y) = (0,0) \\ \frac{1}{x^2y}, & (x,y) \in (0,1] \times (0,1] \end{cases} \text{ on } L_1\left([0,1] \times [0,1]\right). \text{ Indeed, for some } \lambda_0 > 0, \text{ with the choice of } p = 1 \text{ we have } \rho^{\varphi}(g) = \|g\|_{L_1}, \end{cases}$

$$\rho\left(\lambda_{0}\left(g_{m,n}-g\right)\right) = \left\|\lambda_{0}\left(g_{m,n}-g\right)\right\|_{L_{1}}$$

$$= \begin{cases} 1, & m=k^{2} \text{ and } n=l^{2} \\ \frac{3m}{4}, & m\neq k^{2} \text{ and } n\neq l^{2} \end{cases}, k, l=1,2,\dots, \qquad (4)$$

then we have

$$st_2 - \lim_{m,n} \|\lambda_0 (g_{m,n} - g)\|_{L_1} \neq 0$$

Using the scale function σ ,

$$\rho\left(\lambda_0\left(\frac{g_{m,n}-g}{\sigma}\right)\right) = \begin{cases} \frac{1}{6}, & m=k^2 \text{ and } n=l^2\\ \frac{1}{12mn}, & m\neq k^2 \text{ and } n\neq l^2 \end{cases}, k, l=1,2,\dots,$$

we get

$$st_2 - \lim_{m,n} \left\| \lambda_0 \left(\frac{g_{m,n} - g}{\sigma} \right) \right\|_{L_1} = 0.$$

On the other hand, we can easily see that $\{g_{m,n}\}$ does not converge to g = 0 modularly relatively to a scale function $\sigma(x, y) = \begin{cases} 1, & (x, y) = (0, 0) \\ \frac{1}{x^2 y}, & (x, y) \in (0, 1] \times (0, 1] \end{cases}$ on $L_1([0, 1] \times [0, 1])$. Indeed from (4), we observed that the sequence $\left\{\rho\left(\lambda_0\left(\frac{g_{m,n}-g}{\sigma}\right)\right)\right\}$ has two subsequences with different limit points so $\{g_{m,n}\}$ is not relatively modularly convergent to g = 0. In this paper, we will need the following assumptions on a modular ρ :

- ρ is monotone if $\rho(f) \leq \rho(g)$ for $|f| \leq |g|$,
- ρ is finite if $\chi_A \in L^{\rho}(I^2)$ whenever A is measurable subset of I^2 such that $\mu(A) < \infty$,
- ρ is absolutely finite if ρ is finite and, for every $\varepsilon > 0, \lambda > 0$, there exists a $\delta > 0$ such that $\rho(\lambda \chi_B) < \varepsilon$ for any measurable subset $B \subset I^2$ with $\mu(B) < \delta$,
- ρ is strongly finite if $\chi_{I^2} \in E^{\rho}(I^2)$,
- ρ is absolutely continuous provided that there exists an $\alpha > 0$ such that, for every $f \in X(I^2)$ with $\rho(f) < +\infty$, the following condition holds: for every $\varepsilon > 0$ there is $\delta > 0$ such that $\rho(\alpha f \chi_B) < \varepsilon$ whenever B is any measurable subset of I^2 with $\mu(B) < \delta$.

Observe now that (see [2,3]) if a modular ρ is monotone and finite, then we have $C(I^2) \subset L^{\rho}(I^2)$. In a similar manner, if ρ is monotone and strongly finite, then $C(I^2) \subset E^{\rho}(I^2)$. Also, if ρ is monotone, absolutely finite and absolutely continuous, then $\overline{C^{\infty}(I^2)} = L^{\rho}(I^2)$. Some important relations between the above properties may be found in [1,3,4,17,21].

2. Statistical Relative Korovkin Theorems in Modular Spaces

In this section, we apply the notion of statistical relative modular convergence of a double sequences of positive linear operators defined on a modular space to prove a Korovkin type approximation theorem.

Let ρ be a monotone and finite modular on $X(I^2)$. Assume that D is a set satisfying $C^{\infty}(I^2) \subset D \subset L^{\rho}(I^2)$. We can construct such a subset Dwhen ρ is monotone and finite (see [2]). Assume further that $\mathbb{T} := \{T_{m,n}\}$ is a sequence of positive linear operators from D into $X(I^2)$ for which there exists a subset $X_{\mathbb{T}} \subset D$ containing $C^{\infty}(I^2)$ and $\sigma \in X(I^2)$ is an unbounded function satisfying $\sigma(x, y) \neq 0$ such that

$$st_2 - \limsup_{m,n} \rho\left(\lambda\left(\frac{T_{m,n}h}{\sigma}\right)\right) \le R\rho\left(\lambda h\right) \tag{5}$$

holds for every $h \in X_{\mathbb{T}}, \lambda > 0$ and for an absolute positive constant R.

We denote the value of $T_{m,n}f$ at a point $(x, y) \in I^2$ by $T_{m,n}(f(u, v); x, y)$ or briefly, $T_{m,n}(f; x, y)$.

Theorem 1. Let ρ be a monotone, strongly finite, absolutely continuous and N-quasi semiconvex modular on $X(I^2)$. Let $\mathbb{T} := \{T_{m,n}\}$ be a double sequence of positive linear operators from D into $X(I^2)$ satisfying (5) and suppose that $\sigma_i(x, y)$ is an unbounded function satisfying $|\sigma_i(x, y)| \ge a_i > 0 (i = 0, 1, 2, 3)$. Assume that

$$st_2 - \lim_{m,n} \rho\left(\lambda\left(\frac{T_{m,n}\left(e_i\right) - e_i}{\sigma_i}\right)\right) = 0 \quad \text{for every } \lambda > 0 \text{ and } i = 0, 1, 2, 3 \ (6)$$

where $e_0(x, y) = 1$, $e_1(x, y) = x$, $e_2(x, y) = y$ and $e_3(x, y) = x^2 + y^2$. Now let f be any function belonging to $L^{\rho}(I^2)$ such that $f - g \in X_{\mathbb{T}}$ for every $g \in C^{\infty}(I^2)$. Then, we have

$$st_2 - \lim_{m,n} \rho\left(\lambda_0\left(\frac{T_{m,n}f - f}{\sigma}\right)\right) = 0 \quad for \ some \ \lambda_0 > 0. \tag{7}$$

where $\sigma(x, y) = \max\{|\sigma_i(x, y)|; i = 0, 1, 2, 3\}.$

Proof. We first claim that

$$st_2 - \lim_{m,n} \rho\left(\eta\left(\frac{T_{m,n}g - g}{\sigma}\right)\right) = 0 \quad \text{for every } g \in C(I^2) \cap D \text{ and every } \eta > 0.$$
(8)

To see this assume that g belongs to $C(I^2) \cap D$. By the continuity of g on I^2 , given $\varepsilon > 0$, there exists a number $\delta > 0$ such that for all $(u, v), (x, y) \in I^2$ satisfying $|u - x| < \delta$ and $|v - y| < \delta$ we have

$$|g(u,v) - g(x,y)| < \varepsilon.$$
(9)

Also we get for all $(u,v)\,,(x,y)\in I^2$ satisfying $|u-x|>\delta$ and $|v-y|>\delta$ that

$$|g(u,v) - g(x,y)| \le \frac{2M}{\delta^2} \left\{ (u-x)^2 + (v-y)^2 \right\}$$
(10)

where $M := \sup_{(x,y) \in I^2} |g(x,y)|$. Combining (9) and (10) we have for

 $(u,v), (x,y) \in I^2$ that

$$|g(u,v) - g(x,y)| < \varepsilon + \frac{2M}{\delta^2} \left\{ (u-x)^2 + (v-y)^2 \right\}.$$

namely,

$$-\varepsilon - \frac{2M}{\delta^2} \left\{ (u-x)^2 + (v-y)^2 \right\} < g(u,v) - g(x,y) < \varepsilon + \frac{2M}{\delta^2} \left\{ (u-x)^2 + (v-y)^2 \right\}.$$
(11)

Since $T_{m,n}$ is linear and positive, by applying $T_{m,n}$ to (11) for every $m, n \in \mathbb{N}$ we get

$$-\varepsilon T_{m,n}(e_0; x, y) - \frac{2M}{\delta^2} T_{m,n} \left((u-x)^2 + (v-y)^2; x, y \right)$$

$$< T_{m,n}(g; x, y) - g(x, y) T_{m,n} \left(e_0; x, y \right)$$

$$< \varepsilon T_{m,n}(e_0; x, y) + \frac{2M}{\delta^2} T_{m,n} \left((u-x)^2 + (v-y)^2; x, y \right)$$

and hence,

$$\begin{aligned} |T_{m,n}(g;x,y) - g(x,y)| &\leq |T_{m,n}(g;x,y) - g(x,y)T_{m,n}(e_0;x,y)| \\ &+ |g(x,y)T_{m,n}(e_0;x,y) - g(x,y)| \end{aligned}$$

Vol. 71 (2017) Statistical Relative Approximation on Modular Spaces 1175

$$\leq \varepsilon T_{m,n}(e_0; x, y) + M |T_{m,n}(e_0; x, y) - e_0(x, y)| + \frac{2M}{\delta^2} T_{m,n} \left((u - x)^2 + (v - y)^2; x, y \right)$$

holds for every $x, y \in I$ and $m, n \in \mathbb{N}$. The above inequality implies that

$$\begin{aligned} |T_{m,n}(g;x,y) - g(x,y)| &\leq \varepsilon + \left\{ \varepsilon + M + \frac{4M}{\delta^2} E^2 \right\} |T_{m,n}(e_0;x,y) - e_0(x,y)| \\ &+ \frac{4M}{\delta^2} E |T_{m,n}(e_1;x,y) - e_1(x,y)| \\ &+ \frac{4M}{\delta^2} E |T_{m,n}(e_2;x,y) - e_2(x,y)| \\ &+ \frac{2M}{\delta^2} |T_{m,n}(e_3;x,y) - e_3(x,y)| \,. \end{aligned}$$

where $E := \max\{|x|, |y|\}$. Now we multiply the both-sides of the above inequality by $\frac{1}{|\sigma(x,y)|}$ and for any $\eta > 0$, the last inequality gives that

$$\begin{split} \eta \left| \frac{T_{m,n}(g;x,y) - g(x,y)}{\sigma(x,y)} \right| &\leq \frac{\eta \varepsilon}{|\sigma(x,y)|} + K\eta \left\{ \left| \frac{T_{m,n}\left(e_{0};x,y\right) - e_{0}(x,y)}{\sigma(x,y)} \right| \right. \\ &+ \left| \frac{T_{m,n}\left(e_{1};x,y\right) - e_{1}(x,y)}{\sigma(x,y)} \right| \\ &+ \left| \frac{T_{m,n}\left(e_{2};x,y\right) - e_{2}(x,y)}{\sigma(x,y)} \right| \\ &+ \left| \frac{T_{m,n}\left(e_{3};x,y\right) - e_{3}(x,y)}{\sigma(x,y)} \right| \right\}, \end{split}$$

where $K := \max\left\{\varepsilon + M + \frac{4M}{\delta^2}E^2, \frac{4M}{\delta^2}E, \frac{2M}{\delta^2}\right\}$. Now, applying the modular ρ to both-sides of the above inequality, since ρ is monotone and $\sigma(x, y) = \max\left\{\left|\sigma_i\left(x, y\right)\right|; i = 0, 1, 2, 3\right\}$, we have

$$\begin{split} \rho\left(\eta\left(\frac{T_{m,n}g-g}{\sigma}\right)\right) &\leq \rho\left(\eta\frac{\varepsilon}{|\sigma|} + \eta K \left|\frac{T_{m,n}e_0 - e_0}{\sigma_0}\right| + \eta K \left|\frac{T_{m,n}e_1 - e_1}{\sigma_1}\right| \\ &+ \eta K \left|\frac{T_{m,n}e_2 - e_2}{\sigma_2}\right| + \eta K \left|\frac{T_{m,n}e_3 - e_3}{\sigma_3}\right| \end{split}$$

Hence, we may write that

$$\begin{split} \rho\left(\eta\left(\frac{T_{m,n}g-g}{\sigma}\right)\right) &\leq \rho\left(\frac{5\eta\varepsilon}{\sigma}\right) + \rho\left(5\eta K\left(\frac{T_{m,n}e_0-e_0}{\sigma_0}\right)\right) \\ &+ \rho\left(5\eta K\left(\frac{T_{m,n}e_1-e_1}{\sigma_1}\right)\right) \\ &+ \rho\left(5\eta K\left(\frac{T_{m,n}e_2-e_2}{\sigma_2}\right)\right) \end{split}$$

$$+ \rho \left(5\eta K \left(\frac{T_{m,n}e_3 - e_3}{\sigma_3} \right) \right)$$

Since ρ is N-quasi semiconvex and strongly finite, we have, assuming $0<\varepsilon\leq 1,$

$$\begin{split} \rho\left(\eta\left(\frac{T_{m,n}g-g}{\sigma}\right)\right) &\leq N\varepsilon\rho\left(\frac{5\eta N}{\sigma}\right) + \rho\left(5\eta K\left(\frac{T_{m,n}e_0-e_0}{\sigma_0}\right)\right) \\ &+ \rho\left(5\eta K\left(\frac{T_{m,n}e_1-e_1}{\sigma_1}\right)\right) \\ &+ \rho\left(5\eta K\left(\frac{T_{m,n}e_2-e_2}{\sigma_2}\right)\right) \\ &+ \rho\left(5\eta K\left(\frac{T_{m,n}e_3-e_3}{\sigma_3}\right)\right). \end{split}$$

For a given r > 0, choose an $\varepsilon \in (0, 1]$ such that $N \varepsilon \rho \left(\frac{5\eta N}{\sigma}\right) < r$. Now define the following sets:

$$G_{\eta} := \left\{ (m,n) : \rho\left(\eta\left(\frac{T_{m,n}g-g}{\sigma}\right)\right) \ge r \right\}$$
$$G_{\eta,i} := \left\{ (m,n) : \rho\left(5\eta K\left(\frac{T_{m,n}e_i - e_i}{\sigma_i}\right)\right) \ge \frac{r - N\varepsilon\rho\left(\frac{5\eta N}{\sigma}\right)}{4} \right\},$$

where i = 0, 1, 2, 3. Then, it is easy to see that $G_{\eta} \subseteq \bigcup_{i=0}^{3} G_{\eta,i}$. So, we can write that

$$\delta_2(G_\eta) \le \sum_{i=0}^3 \delta_2(G_{\eta,i}).$$

Using the hypothesis (6), we get

$$\delta_2\left(G_\eta\right) = 0,$$

which proves our claim (8). Obviously (8) also holds for every $g \in C^{\infty}(I^2)$. Now let $f \in L^{\rho}(I^2)$ satisfying $f - g \in X_{\mathbb{T}}$ for every $g \in C^{\infty}(I^2)$. Since $\mu(I^2) < \infty$ and ρ is strongly finite and absolutely continuous, we can see that ρ is also absolutely finite on $X(I^2)$. Using these properties of the modular ρ , it is known from [4,17] that the space $C^{\infty}(I^2)$ is modularly dense in $L^{\rho}(I^2)$, i.e., there exists a sequence $\{g_{k,j}\} \subset C^{\infty}(I^2)$ such that

$$P - \lim_{k,j} \rho\left(3\lambda_0^* \left(g_{k,j} - f\right)\right) = 0 \quad \text{for some } \lambda_0^* > 0.$$

This means that, for every $\varepsilon > 0$, there is a positive number $k_0 = k_0(\varepsilon)$ so that

$$\rho\left(3\lambda_0^*\left(g_{k,j}-f\right)\right) < \varepsilon \quad \text{for every } k, j \ge k_0.$$
(12)

Vol. 71 (2017) Statistical Relative Approximation on Modular Spaces 1177

On the other hand, by the linearity and positivity of the operators $T_{m,n}$, we may write that

$$\begin{aligned} \lambda_0^* \left| T_{m,n}(f;x,y) - f(x,y) \right| &\leq \lambda_0^* \left| T_{m,n}(f - g_{k_0,k_0};x,y) \right| \\ &+ \lambda_0^* \left| T_{m,n}(g_{k_0,k_0};x,y) - g_{k_0,k_0}(x,y) \right| \\ &+ \lambda_0^* \left| g_{k_0,k_0}(x,y) - f(x,y) \right| \end{aligned}$$

holds for every $x, y \in I$ and $m, n \in \mathbb{N}$. Applying the modular ρ in the last inequality and using the monotonicity of ρ and moreover multiplying the bothsides of the above inequality by $\frac{1}{|\sigma(x,y)|}$, we have

$$\rho\left(\lambda_0^*\left(\frac{T_{m,n}f-f}{\sigma}\right)\right) \le \rho\left(3\lambda_0^*\frac{T_{m,n}\left(f-g_{k_0,k_0}\right)}{\sigma}\right) + \rho\left(3\lambda_0^*\left(\frac{T_{m,n}g_{k_0,k_0}-g_{k_0,k_0}}{\sigma}\right)\right) + \rho\left(3\lambda_0^*\left(\frac{g_{k_0,k_0}-f}{\sigma}\right)\right).$$

Hence, observing $|\sigma| \ge a > 0 (a = \max \{a_i : i = 0, 1, 2, 3\})$ we may write that

$$\rho\left(\lambda_0^*\left(\frac{T_{m,n}f-f}{\sigma}\right)\right) \leq \rho\left(3\lambda_0^*\frac{T_{m,n}\left(f-g_{k_0,k_0}\right)}{\sigma}\right) \\
+\rho\left(3\lambda_0^*\left(\frac{T_{m,n}g_{k_0,k_0}-g_{k_0,k_0}}{\sigma}\right)\right) \\
+\rho\left(\frac{3\lambda_0^*}{a}\left(g_{k_0,k_0}-f\right)\right).$$
(13)

Then, it follows from (12) and (13) that

$$\rho\left(\lambda_0^*\left(\frac{T_{m,n}f-f}{\sigma}\right)\right) \leq \varepsilon + \rho\left(3\lambda_0^*\frac{T_{m,n}\left(f-g_{k_0,k_0}\right)}{\sigma}\right) \\
+ \rho\left(3\lambda_0^*\left(\frac{T_{m,n}g_{k_0,k_0}-g_{k_0,k_0}}{\sigma}\right)\right). \quad (14)$$

So, taking statistical limit superior as $m, n \to \infty$ in the both-sides of (14) and also using the facts that $g_{k_0,k_0} \in C^{\infty}(I^2)$ and $f - g_{k_0,k_0} \in X_{\mathbb{T}}$, we obtained from (5) that

$$st_{2} - \limsup_{m,n} \rho\left(\lambda_{0}^{*}\left(\frac{T_{m,n}f - f}{\sigma}\right)\right)$$

$$\leq \varepsilon + R\rho\left(3\lambda_{0}^{*}(f - g_{k_{0},k_{0}})\right)$$

$$+ st_{2} - \limsup_{m,n} \rho\left(3\lambda_{0}^{*}\left(\frac{T_{m,n}g_{k_{0},k_{0}} - g_{k_{0},k_{0}}}{\sigma}\right)\right),$$

which gives

$$st_{2} - \limsup_{m,n} \rho\left(\lambda_{0}^{*}\left(\frac{T_{m,n}f - f}{\sigma}\right)\right)$$

$$\leq \varepsilon(R+1) + st_{2} - \limsup_{m,n} \rho\left(3\lambda_{0}^{*}\left(\frac{T_{m,n}g_{k_{0},k_{0}} - g_{k_{0},k_{0}}}{\sigma}\right)\right).$$
(15)

By (8), since

$$st_2 - \lim_{m,n} \rho\left(3\lambda_0^* \left(\frac{T_{m,n}g_{k_0,k_0} - g_{k_0,k_0}}{\sigma}\right)\right) = 0,$$

we get

$$st_2 - \limsup_{m,n} \rho\left(3\lambda_0^* \left(\frac{T_{m,n}g_{k_0,k_0} - g_{k_0,k_0}}{\sigma}\right)\right) = 0.$$
 (16)

Combining (15) with (16), we conclude that

$$st_2 - \limsup_{m,n} \rho\left(\lambda_0^*\left(\frac{T_{m,n}f - f}{\sigma}\right)\right) \le \varepsilon(R+1).$$

Since $\varepsilon > 0$ was arbitrary, we find

$$st_2 - \limsup_{m,n} \rho\left(\lambda_0^*\left(\frac{T_{m,n}f - f}{\sigma}\right)\right) = 0$$

Furthermore, since $\rho\left(\lambda_0^*\left(\frac{T_{m,n}f-f}{\sigma}\right)\right)$ is non-negative for all $m, n \in \mathbb{N}$, we can easily show that

$$st_2 - \lim_{m,n} \rho\left(\lambda_0^*\left(\frac{T_{m,n}f - f}{\sigma}\right)\right) = 0,$$

which completes the proof.

If the modular ρ satisfies the Δ_2 -condition, then one can get immediately the following result from Theorem 1.

Theorem 2. Let $\mathbb{T} := \{T_{m,n}\}$, ρ and σ be the same as in Theorem 1. If ρ satisfies the Δ_2 -condition, then the following statements are equivalent:

(a)
$$st_2 - \lim_{m,n} \rho\left(\lambda\left(\frac{T_{m,n}e_i - e_i}{\sigma_i}\right)\right) = 0$$
 for every $\lambda > 0$ and $i = 0, 1, 2, 3,$

(b)
$$st_2 - \lim_{m,n} \rho\left(\lambda\left(\frac{T_{m,n}f-f}{\sigma}\right)\right) = 0$$
 for every $\lambda > 0$ provided that f is any function belonging to $L^{\rho}(I^2)$ such that $f - g \in X_{\mathbb{T}}$ for every $g \in C^{\infty}(I^2)$.

If one replaces the scale function by a nonzero constant, then the condition (5) reduces to

$$st_2 - \limsup_{m,n} \rho\left(\lambda\left(T_{m,n}h\right)\right) \le R\rho\left(\lambda h\right) \tag{17}$$

for every $h \in X_{\mathbb{T}}, \lambda > 0$ and for an absolute positive constant R. In this case, the next results which were obtained in [22] follows from our main theorems, Theorems 1 and 2.

Corollary 1 [22]. Let ρ be a monotone, strongly finite, absolutely continuous and N-quasi semiconvex modular on $X(I^2)$. Let $\mathbb{T} := \{T_{m,n}\}$ be a double sequence of positive linear operators from D into $X(I^2)$ satisfying (17). If $\{T_{m,n}e_i\}$ is statistically strongly convergent to e_i for each i = 0, 1, 2, 3, then $\{T_{m,n}f\}$ is statistically modularly convergent to f provided that f is any function belonging to $L^{\rho}(I^2)$ such that $f - g \in X_{\mathbb{T}}$ for every $g \in C^{\infty}(I^2)$.

Corollary 2 [22]. $\mathbb{T} := \{T_{m,n}\}$ and ρ be the same as in Corollary 1. If ρ satisfies the Δ_2 -condition, then the following statements are equivalent:

- (a) $\{T_{m,n}e_i\}$ is statistically strongly convergent to e_i for each i = 0, 1, 2, 3, ...
- (b) $\{T_{m,n}f\}$ is statistically strongly convergent to f provided that f is any function belonging to $L^{\rho}(I^2)$ such that $f g \in X_{\mathbb{T}}$ for every $g \in C^{\infty}(I^2)$.

If one replaces the statistical limit by the Pringsheim limit, then the condition (5) reduces to

$$P - \limsup_{m,n} \rho\left(\lambda\left(\frac{T_{m,n}h}{\sigma}\right)\right) \le R\rho\left(\lambda h\right) \tag{18}$$

for every $h \in X_{\mathbb{T}}, \lambda > 0$ and for an absolute positive constant R. In this case, the following results immediately follows from our Theorems 1 and 2.

Corollary 3. Let ρ be a monotone, strongly finite, absolutely continuous and N-quasi semiconvex modular on $X(I^2)$. Let $\mathbb{T} := \{T_{m,n}\}$ be a double sequence of positive linear operators from D into $X(I^2)$ satisfying (18). Moreover suppose that $\sigma_i(x, y)$ is an unbounded function satisfying $|\sigma_i(x, y)| \geq a_i > 0 (i = 0, 1, 2, 3)$. If $\{T_{m,n}e_i\}$ is relatively strongly convergent to e_i for each i = 0, 1, 2, 3, then $\{T_{m,n}f\}$ is relatively modularly convergent to f provided that f is any function belonging to $L^{\rho}(I^2)$ such that $f - g \in X_{\mathbb{T}}$ for every $g \in C^{\infty}(I^2)$.

Corollary 4. $\mathbb{T} := \{T_{m,n}\}, \rho \text{ and } \sigma_i (i = 0, 1, 2, 3) \text{ be the same as in Corollary 3.}$ If ρ satisfies the Δ_2 -condition, then the following statements are equivalent:

- (a) $\{T_{m,n}e_i\}$ is relatively strongly convergent to e_i for each i = 0, 1, 2, 3, 3, 3
- (b) $\{T_{m,n}f\}$ is relatively strongly convergent to f provided that f is any function belonging to $L^{\rho}(I^2)$ such that $f - g \in X_{\mathbb{T}}$ for every $g \in C^{\infty}(I^2)$.

3. Concluding Remarks

In this section, we display an example such that our Korovkin-type statistical approximation results in modular spaces are stronger than the Corollaries 1 and 3.

Example 2. Take I = [0, 1] and φ, ρ^{φ} and $L^{\rho}_{\varphi}(I^2)$ be the same as in Example 1. Then consider the following bivariate Bernstein-Kantorovich operator $\mathbb{U} := \{U_{m,n}\}$ on the space $L^{\rho}_{\varphi}(I^2)$ which is defined by:

$$U_{m,n}(f;x,y) = \sum_{i=0}^{m} \sum_{k=0}^{n} p_{i,k}^{(m,n)}(x,y)(m+1)(n+1) \times \int_{i/(m+1)}^{(i+1)/(m+1)} \int_{k/(n+1)}^{(i+1)/(m+1)} f(t,s) \, ds dt$$
(19)

for $x, y \in I$, where $p_{i,k}^{(m,n)}(x, y)$ defined by

$$p_{i,k}^{(m,n)}(x,y) = \binom{m}{i} \binom{n}{k} x^{i} y^{k} (1-x)^{m-i} (1-y)^{n-k}$$

Also, it is clear that,

$$\sum_{i=0}^{m} \sum_{k=0}^{n} p_{i,k}^{(m,n)}(x,y) = 1.$$
(20)

Observe that the operator $U_{m,n}$ maps $L^{\rho}_{\varphi}(I^2)$ into itself. Because of (20), as in the proof of [2] Lemma 5.1 and similar to Example 1 [22], we can use the Jensen inequality and obtain that for every $f \in L^{\rho}_{\varphi}(I^2)$ and $m, n \in \mathbb{N}$ there is an absolute constant M > 0 such that

$$\rho^{\varphi}\left(\frac{U_{m,n}f}{\sigma}\right) \le M\rho^{\varphi}(f).$$

Moreover, the property (18) is satisfied with the choice of $X_{\mathbf{U}} := L^{\rho}_{\varphi}(I^2)$. Then, by Corollary 3, we know that, for any function $f \in L^{\rho}_{\varphi}(I^2)$ such that $f - g \in X_{\mathbf{U}}$ for every $g \in C^{\infty}(I^2)$, $\{U_{m,n}f\}$ is relatively modularly convergent to f.

If $\varphi(x) = x^p$ for $1 \le p < \infty, x \ge 0$, then $L_{\varphi}^{\rho}(I^2) = L_p(I^2)$. Moreover we have $\rho^{\varphi}(f) = \|f\|_{L_p}^p$. For p = 1, we have $\rho^{\varphi}(f) = \|f\|_{L_1}$. Then, using the operators $U_{m,n}$, we define the sequence of positive linear operators $V := \{V_{m,n}\}$ on $L_1(I^2)$ as follows:

$$V_{m,n}(f; x, y) = (1 + g_{m,n}(x, y))U_{m,n}(f; x, y)$$

for $f \in L_1(I^2), (x, y) \in I^2$ and $m, n \in \mathbb{N}$ (21)

where $\{g_{m,n}\}$ is the same as in (3) and we choose $\sigma_i(x,y) = \sigma(x,y)$ (i = 0, 1, 2, 3), where $\sigma(x, y) = \begin{cases} 1, & (x, y) = (0, 0) \\ \frac{1}{x^2 y}, & (x, y) \in (0, 1] \times (0, 1] \end{cases}$. As in the proof of Lemma 5.1 [2] and similar to Example 1 [22], we get, for every $f \in L_1(I^2)$, $\lambda > 0$ and for positive constant C, that

$$st_2 - \limsup_{m,n} \left\| \lambda\left(\frac{V_{m,n}f}{\sigma}\right) \right\|_{L_1} \le C \left\| \lambda f \right\|_{L_1}.$$
(22)

We now claim that

$$st_2 - \lim_{m,n} \left\| \lambda \left(\frac{V_{m,n}e_i - e_i}{\sigma} \right) \right\|_{L_1} = 0, \quad i = 0, 1, 2, 3.$$
 (23)

Indeed, first observe that

$$\begin{aligned} V_{m,n}(e_0; x, y) &= 1 + g_{m,n} \left(x, y \right), \\ V_{m,n}(e_1; x, y) &= \left(1 + g_{m,n} \left(x, y \right) \right) \left(\frac{mx}{m+1} + \frac{1}{2 \left(m + 1 \right)} \right), \\ V_{m,n}(e_2; x, y) &= \left(1 + g_{m,n} \left(x, y \right) \right) \left(\frac{ny}{n+1} + \frac{1}{2 \left(n + 1 \right)} \right), \\ V_{m,n}(e_3; x, y) &= \left(1 + g_{m,n} \left(x, y \right) \right) \left(\frac{m \left(m - 1 \right) x^2}{\left(m + 1 \right)^2} + \frac{2mx}{\left(m + 1 \right)^2} + \frac{1}{3 \left(m + 1 \right)^2} \right) \\ &+ \frac{n \left(n - 1 \right) y^2}{\left(n + 1 \right)^2} + \frac{2ny}{\left(n + 1 \right)^2} + \frac{1}{3 \left(n + 1 \right)^2} \right). \end{aligned}$$

So, we can see, for any $\lambda > 0$, that

$$\left| \lambda \left(\frac{V_{m,n}(e_0; x, y) - e_0(x, y)}{\sigma(x, y)} \right) \right\|_{L_1} = \lambda \begin{cases} \int_0^1 \int_0^1 x^2 y dx dy, & m = k^2 \text{ and } n = l^2 \\ \int_0^1 \frac{1}{n} \frac{1}{m} & \\ \int_0^1 \int_0^1 m^2 n(x^2 y - mnx^3 y^2) dx dy, & m \neq k^2 \text{ and } n \neq l^2 \end{cases}, \quad k, l = 1, 2, \dots, \\ = \lambda \begin{cases} \frac{1}{6} & m = k^2 \text{ and } n = l^2 \\ \frac{1}{12mn} & m \neq k^2 \text{ and } n \neq l^2 \end{cases}, k, l = 1, 2, \dots, \end{cases}$$
(24)

Now, since $P - \lim_{m,n\to\infty} \frac{1}{12mn} = 0$, we get

$$st_2 - \lim_{m,n} \left\| \lambda \left(\frac{V_{m,n}e_0 - e_0}{\sigma} \right) \right\|_{L_1} = 0.$$

which guarantees that (23) holds true for i = 0. Also, we have

$$\begin{split} \left\| \lambda \left(\frac{V_{m,n}\left(e_{1}; x, y\right) - e_{1}(x, y)}{\sigma\left(x, y\right)} \right) \right\|_{L_{1}} \\ &\leq \left\| \lambda \frac{g_{m,n}\left(x, y\right)}{\sigma\left(x, y\right)} \left(\frac{mx}{m+1} + \frac{1}{2\left(m+1\right)} \right) \right\|_{L_{1}} + \left\| \lambda \frac{x^{2}y - 2x^{3}y}{2\left(m+1\right)} \right\|_{L_{1}} \\ &< \left\| \lambda \frac{g_{m,n}\left(x, y\right)}{\sigma\left(x, y\right)} \right\|_{L_{1}} + \frac{\lambda}{24\left(m+1\right)}, \end{split}$$

because of $st_2 - \lim_{m,n} \left\| \lambda \frac{g_{m,n}(x,y)}{\sigma(x,y)} \right\|_{L_1} = 0$ and $P - \lim_{m,n} \frac{\lambda}{24(m+1)} = 0$, we get $st_2 - \lim_{m,n} \left\| \lambda \left(\frac{V_{m,n}\left(e_1; x, y\right) - e_1(x, y)}{\sigma(x, y)} \right) \right\|_{L_1} = 0.$ Hence (23) is valid for i = 1. Similarly, we have

$$st_2 - \lim_{m,n} \left\| \lambda \left(\frac{V_{m,n}\left(e_2; x, y\right) - e_2(x, y)}{\sigma\left(x, y\right)} \right) \right\|_{L_1} = 0.$$

Finally, since

$$\begin{split} \left\| \lambda \left(\frac{V_{m,n}\left(e_{3}; x, y\right) - e_{3}(x, y)}{\sigma\left(x, y\right)} \right) \right\|_{L_{1}} \\ &\leq \left\| \lambda \frac{g_{m,n}\left(x, y\right)}{\sigma\left(x, y\right)} \left(\frac{m\left(m-1\right)x^{2}}{\left(m+1\right)^{2}} + \frac{2mx}{\left(m+1\right)^{2}} \right. \\ &+ \frac{1}{3\left(m+1\right)^{2}} \frac{n\left(n-1\right)y^{2}}{\left(n+1\right)^{2}} + \frac{2ny}{\left(n+1\right)^{2}} + \frac{1}{3\left(n+1\right)^{2}} \right) \right\|_{L_{1}} \\ &+ \left\| \lambda \left(\frac{\left(3m+1\right)x^{4}y}{\left(m+1\right)^{2}} + \frac{\left(3n+1\right)x^{2}y^{3}}{\left(n+1\right)^{2}} + \frac{2mx^{3}y}{\left(m+1\right)^{2}} + \frac{2nx^{2}y^{2}}{\left(n+1\right)^{2}} \right. \\ &+ x^{2}y \left(\frac{1}{3\left(m+1\right)^{2}} + \frac{1}{3\left(n+1\right)^{2}} \right) \right) \right\|_{L_{1}} \\ &< 6 \left\| \lambda \frac{g_{m,n}\left(x,y\right)}{\sigma\left(x,y\right)} \right\|_{L_{1}} + \frac{\lambda\left(3m+1\right)}{10\left(m+1\right)^{2}} + \frac{\lambda\left(3n+1\right)}{12\left(n+1\right)^{2}} + \frac{\lambda m}{4\left(m+1\right)^{2}} \\ &+ \frac{2\lambda n}{9\left(n+1\right)^{2}} + \frac{\lambda}{6} \left(\frac{1}{3\left(m+1\right)^{2}} + \frac{1}{3\left(n+1\right)^{2}} \right), \end{split}$$

then we have,

$$st_2 - \lim_{m,n} \left\| \lambda \left(\frac{V_{m,n}\left(e_3; x, y\right) - e_3(x, y)}{\sigma\left(x, y\right)} \right) \right\|_{L_1} = 0.$$

So, our claim (23) holds true for each i = 0, 1, 2, 3 and for any $\lambda > 0$. Now, from (22) and (23), we can say that our sequence $V := \{V_{m,n}\}$ defined by (21) satisfy all assumptions of Theorem 1. Therefore, we conclude that

$$st_2 - \lim_{m,n} \left\| \lambda \left(\frac{V_{m,n}\left(f; x, y\right) - f(x, y)}{\sigma\left(x, y\right)} \right) \right\|_{L_1} = 0 \quad \text{for some } \lambda_0 > 0$$

holds for any $f \in L_1(I^2)$ such that $f - g \in X_{\mathbb{V}} = L_1(I^2)$ for every $g \in C^{\infty}(I^2)$.

However, from (24) it can be seen that the sequence $\|\lambda(\frac{V_{m,n}(e_0;x,y)-e_0(x,y)}{\sigma(x,y)})\|_{L_1}$ has two subsequences with different limit points. Since $P-\lim_{m,n}\|\lambda(\frac{V_{m,n}e_0-e_0}{\sigma})\|_{L_1} \neq 0$, Corollary 3 does not work for the sequence $V := \{V_{m,n}\}$. Also, since $st_2 - \lim_{m,n} \|\lambda(V_{m,n}e_0 - e_0)\|_{L_1} \neq 0$, Corollary 1 does not work for the sequence $V := \{V_{m,n}\}$. Also, since $V := \{V_{m,n}\}$ as well.

References

- Bardaro, C., Mantellini, I.: Approximation properties in abstract modular spaces for a class of general sampling-type operators. Appl. Anal. 85, 383–413 (2006)
- [2] Bardaro, C., Mantellini, I.: Korovkin's theorem in modular spaces. Commentationes Math. 47, 239–253 (2007)
- [3] Bardaro, C., Mantellini, I.: A Korovkin theorem in multivariate modular function spaces. J. Funct. Spaces Appl. 7(2), 105–120 (2009)
- [4] Bardaro, C., Musielak, J., Vinti, G.: Nonlinear Integral Operators and Applications, de Gruyter Series in Nonlinear Analysis and Appl, vol. 9. Walter de Gruyter Publ, Berlin (2003)
- [5] Çakan, C., Altay, B.: Statistically boundedness and statistical core of double sequences. J. Math. Anal. Appl. 317, 690–697 (2006)
- [6] Chittenden, E.W.: Relatively uniform convergence of sequences of functions. Trans. AMS 15, 197–201 (1914)
- [7] Chittenden, E.W.: On the limit functions of sequences of continuous functions converging relatively uniformly. Trans. AMS 20, 179–184 (1919)
- [8] Chittenden, E.W.: Relatively uniform convergence and classification of functions. Trans. AMS 23, 1–15 (1922)
- Demirci K., Orhan S.: Statistically relatively uniform convergence of positive linear operators. Results. Math. doi:10.1007/s00025-015-0484-9
- [10] Demirci K., Kolay B.: A-statistical relative modular convergence of positive linear operators. Positivity, submitted
- [11] Duman, O., Khan, M.K., Orhan, C.: A-statistical convergence of approximating operators. Math. Inequal. Appl. 6, 689–699 (2003)
- [12] Gadjiev, A.D., Orhan, C.: Some approximation theorems via statistical convergence. Rocky Mountain J. Math. 32, 129–138 (2002)
- [13] Karakuş, S., Demirci, K.: Matrix summability and Korovkin type approximation theorem on modular spaces. Acta Math. Univ. Comenianae 79(2), 281– 292 (2010)
- [14] Karakuş, S., Demirci, K., Duman, O.: Statistical approximation by positive linear operators on modular spaces. Positivity 14, 321–334 (2010)
- [15] Korovkin, P.P.: Linear Operators and Approximation Theory. Hindustan Publ. Co., Delhi (1960)
- [16] Kozlowski, W.M.: Modular Function Spaces, Pure Appl. Math., vol. 122, Marcel Dekker, Inc., New York (1988)
- [17] Mantellini, I.: Generalized sampling operators in modular spaces. Commentationes Math. 38, 77–92 (1998)
- [18] Moore, E.H.: An Introduction to a Form of General Analysis. The New Haven Mathematical Colloquium. Yale University Press, New Haven (1910)
- [19] Moricz, F.: Statistical convergence of multiple sequences. Arch. Math. (Basel) 81, 82–89 (2004)
- [20] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer-Verlag, Berlin (1983)

- [21] Musielak, J.: Nonlinear approximation in some modular function spaces I. Math. Jpn. 38, 83–90 (1993)
- [22] Orhan, S., Demirci, K.: Statistical approximation by double sequences of positive linear operators on modular spaces. Positivity 19, 23–36 (2015)
- [23] Pringsheim, A.: Zur theorie der zweifach unendlichen zahlenfolgen. Math. Ann. 53, 289–321 (1900)
- [24] Steinhaus, H.: Quality control by sampling. Colloq. Math. 2, 98–108 (1951)
- [25] Yilmaz B., Demirci K., Orhan S.: Relative modular convergence of positive linear operators. Positivity. doi:10.1007/s11117-015-0372-2

Kamil Demirci and Sevda Orhan Department of Mathematics Sinop University Sinop Turkey e-mail: kamild@sinop.edu.tr; sevdaorhan@sinop.edu.tr

Received: January 29, 2016. Accepted: March 31, 2016.