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Abstract. In the present paper, using the concept of statistical relative
convergence, we study the problem of approximation to a function by
means of double sequences of positive linear operators defined on a mod-
ular space. Also, a non-trivial application is presented.
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1. Introduction and Preliminaries

Let C (X) be the space of all continuous real valued functions on a compact
subset X of the real numbers and (Ln) be the sequence of positive linear op-
erators on C (X) say (Ln (f ;x)) . Korovkin [15] established the sufficient con-
ditions for the uniform convergence of (Ln) to a function f by using the test
functions 1, x, x2. Many researchers have investigated these conditions for var-
ious operators defined on different spaces (see for instance [2,13,25]). Recently,
Demirci and Orhan [9] introduced statistical relative uniform convergence of
single sequences by using the notions of the natural density and the relative
uniform convergence. Then, Yılmaz et al. [25] defined a new type of modular
convergence by using the notion of the relative uniform convergence. More re-
cently, Demirci and Kolay [10] studied statistical relative modular convergence
of single sequences. In this paper, we investigate the problem of statistical rel-
ative approximation to a function f by means of double sequences of positive
linear operators defined on a modular space.

Let us first remind of the concept of statistical convergence for double
sequences.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-016-0548-5&domain=pdf
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A double sequence x = {xm,n} is said to be convergent in Pringsheim’s
sense if, for every ε > 0, there exists N = N(ε) ∈ N, the set of all natural
numbers, such that |xm,n − L| < ε whenever m,n > N , where L is called the
Pringsheim limit of x and denoted by P − lim

m,n
xm,n = L (see [23]). We shall

call such an x, briefly, “P -convergent”. A double sequence is called bounded
if there exists a positive number M such that |xm,n| ≤ M for all (m,n) ∈ N

2.
Note that in contrast to the case for single sequences, a convergent double
sequence need not to be bounded.

Statistical convergence of single sequences was introduced by Steinhaus
[24] and studied by many authors [11,12,14]. Recently, this concept was ex-
tended to the double sequences. If E ⊂ N

2 is a two-dimensional subset of
positive integers, then Ej,k denotes the set {(m,n) ∈ E : m ≤ j, n ≤ k} and
|Ej,k| denotes the cardinality of Ej,k. The double natural density of E [19] is
given by

δ2(E) := P − lim
j,k

1
jk

|Ej,k| ,

if it exists. For example, let E =
{(

j2, k2
)

: j, k ∈ N
}

then δ2(E) = 0. The
number sequence x = {xm,n} is statistically convergent to L provided that for
every ε > 0, the set

E := Ej,k(ε) := {m ≤ j, n ≤ k : |xm,n − L| ≥ ε}
has natural density zero; in that case we write st2 − lim

m,n
xm,n = L.

Clearly, a P -convergent double sequence is statistically convergent to the
same value but its converse is not always true. Also, note that a statistically
convergent double sequence need not to be bounded. For example, consider
the double sequence x = {xm,n} given by

xm,n =
{

mn, m = k2 and n = l2

1, otherwise. , k, l = 1, 2, . . .

Then, clearly st2 − lim
m,n

xm,n = 1. Nevertheless, x is neither convergent

nor bounded.
Also, the statistical convergence for double sequences was characterized

in [19] as given below:
A double sequence x = {xm,n} is statistically convergent to L if and only

if there exists a set S ⊂ N
2 such that the natural density of S is 1 and

P − lim
m,n→∞ and (m,n)∈S

xm,n = L.

The concepts of statistical superior limit and inferior limit for double
sequences have been introduced by Çakan and Altay [5]. For any real double
sequence x = {xm,n}, the statistical superior limit of x is

st2 − lim sup
m,n

xm,n =
{

sup Gx, if Gx �= ∅,
−∞, if Gx = ∅,
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where Gx := {C ∈ R : δ2 ({(m,n) : xm,n > C}) �= 0} and ∅ denotes the empty
set. We note that, in general, by δ2 (K) �= 0 we mean either δ2 (K) > 0 or K
fails to have the double natural density. Similarly, the statistical inferior limit
of x is

st2 − lim inf
m,n

xm,n =
{

inf Fx, if Fx �= ∅,
∞, if Fx = ∅,

where Fx := {D ∈ R : δ2 ({(m,n) : xm,n < D}) �= 0} . As in the ordinary su-
perior or inferior limit, it was proved that

st2 − lim inf
m,n

xm,n ≤ st2 − lim sup
m,n

xm,n

and also that, for any double sequence x = {xm,n} satisfying
δ2 ({(m,n) : |xm,n| > M}) = 0 for some M > 0,

st2 − lim
m,n

xm,n = L iff st2 − lim inf
m,n

xm,n = st2 − lim sup
m,n

xm,n = L.

Now, we focus on modular spaces.
Let I = [a, b] be a bounded interval of the real line R provided with

the Lebesgue measure. Then, by X
(
I2

)
we denote the space of all real-valued

measurable functions on I2 = [a, b] × [a, b] provided with equality a.e. As
usual, let C

(
I2

)
denote the space of all continuous real-valued functions, and

C∞ (
I2

)
denote the space of all infinitely differentiable functions on I2. In this

case, we say that a functional ρ : X
(
I2

) → [0,+∞] is a modular on X
(
I2

)

provided that the following conditions hold:

(i) ρ (f) = 0 if and only if f = 0 a.e. in I2,
(ii) ρ (−f) = ρ (f) for every f ∈ X

(
I2

)
,

(iii) ρ (αf + βg) ≤ ρ (f) + ρ (g) for every f, g ∈ X(I2) and for any α, β ≥ 0
with α + β = 1.

Recall that a modular ρ is called N -quasi convex if the following is satisfied:

• there exists a constant N ≥ 1 such that

ρ (αf + βg) ≤ Nαρ (Nf) + Nβρ (Ng)

holds for every f, g ∈ X
(
I2

)
, α, β ≥ 0 with α + β = 1. In particular, if

N = 1, then ρ is called convex.

Furthermore, a modular ρ is called N -quasi semiconvex if it holds:

• there exists a constant N ≥ 1 such that

ρ(af) ≤ Naρ(Nf)

holds for every f ∈ X
(
I2

)
and a ∈ (0, 1].

It is clear that every N -quasi semiconvex modular is N -quasi convex. We
should recall that the above two concepts were introduced and discussed in
details by Bardaro et al. [3,4].
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We now consider some appropriate vector subspaces of X(I2) by means
of a modular ρ as follows:

Lρ
(
I2

)
:=

{
f ∈ X

(
I2

)
: lim

λ→0+
ρ (λf) = 0

}

and

Eρ
(
I2

)
:=

{
f ∈ Lρ

(
I2

)
: ρ (λf) < +∞ for all λ > 0

}
.

Here, Lρ
(
I2

)
is called the modular space generated by ρ; and Eρ

(
I2

)
is

called the space of the finite elements of Lρ
(
I2

)
. Observe that if ρ is N -quasi

semiconvex, then the space
{
f ∈ X

(
I2

)
: ρ (λf) < +∞ for some λ > 0

}

coincides with Lρ
(
I2

)
. The notions about modulars are introduced in [20] and

widely discussed in [4] (see also [16,21]).
Moore [18] introduced the notion of uniform convergence of a sequence of

functions relative to a scale function. Then, Chittenden [7] gave the following
definition of relative uniform convergence is equivalent to the definition given
by Moore:

A sequence (fn) of functions, defined on an interval I ≡ (a ≤ x ≤ b),
converges relatively uniformly to a limit function f if there exists a function
σ (x) , called a scale function σ (x) such that for every ε > 0 there is an
integer nε such that for every n > nε the inequality |fn (x) − f (x)| < ε |σ (x)|
holds uniformly in x on the interval I. The sequence (fn) is said to converge
uniformly relatively to the scale function σ or more simply, relatively uniformly.
It will be observed that uniform convergence is the special case of relative
uniform convergence in which the scale function is a non-zero constant (for
more properties and details, see also [6–8]).

Now we introduce the notions of the relative modular (or strong) con-
vergence and statistical relative modular (or strong) convergence for double
sequences as follows:

Definition 1. Let {fm,n} be a double function sequence whose terms be-
long to Lρ

(
I2

)
. Then, {fm,n} is relatively modularly convergent to a func-

tion f ∈ Lρ
(
I2

)
iff there exists a function σ(x, y), called a scale function

σ ∈ X
(
I2

)
, |σ(x, y)| �= 0 such that

P − lim
m,n

ρ

(
λ0

(
fm,n − f

σ

))
= 0 for some λ0 > 0. (1)

And also, {fm,n} is relatively F -norm convergent (or, relatively strongly
convergent) to f iff

P − lim
m,n

ρ

(
λ

(
fm,n − f

σ

))
= 0 for every λ > 0. (2)
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It can be immediately seen that (1) and (2) are equivalent if and only
if the modular ρ satisfies the Δ2-condition, i.e. there exists a constant M >
0 such that ρ (2f) ≤ Mρ (f) for every f ∈ X

(
I2

)
. Indeed, relative strong

convergence of the double sequence {fm,n} to f is equivalent to the condition

P − limm,n ρ
(
2Nλ

(
fm,n−f

σ

))
= 0, for all N = 1, 2, . . . and some λ > 0. Let

{fm,n} be relatively modularly convergent to f, hence there exists a λ > 0

such that P − limm,n ρ
(
λ

(
fm,n−f

σ

))
= 0.Δ2-condition implies by induction

that ρ
(
2Nλ

(
fm,n−f

σ

))
≤ MNρ

(
λ

(
fm,n−f

σ

))
, then we get

P − lim
m,n

ρ

(
2Nλ

(
fm,n − f

σ

))
= 0.

Definition 2. Let {fm,n} be a function sequence whose terms belong to Lρ
(
I2

)
.

Then, {fm,n} is said to be statistically relatively modularly convergent to a
function f ∈ Lρ

(
I2

)
if there exists a function σ(x, y), called a scale function

σ ∈ X
(
I2

)
, |σ(x, y)| �= 0 such that

st2 − lim
m,n

ρ

(
λ0

(
fm,n − f

σ

))
= 0 for some λ0 > 0.

Also, {fm,n} is statistically relatively F -norm convergent (or, statistically
relatively strongly convergent) to f iff

st2 − lim
m,n

ρ

(
λ

(
fm,n − f

σ

))
= 0 for every λ > 0.

It will be observed that statistical modular convergence is the special
case of statistical relative modular convergence in which the scale function is
a non-zero constant (cf. [22]). Moreover, if σ(x, y) is bounded, statistical rel-
ative modular convergence implies statistical modular convergence. However,
statistical relative modular convergence does not imply statistical modular
convergence, when σ(x, y) is unbounded. This is illustrated by the following
example:

Example 1. Take I = [0, 1] and let ϕ : [0,∞) → [0,∞) be a continuous function
for which the following conditions hold:

• ϕ is convex
• ϕ (0) = 0, ϕ (u) > 0 for u > 0 and limu→∞ ϕ (u) = ∞.

Hence, consider the functional ρϕ on X(I2) defined by

ρϕ(f) :=

1∫

0

1∫

0

ϕ (|f (x, y)|) dxdy for f ∈ X
(
I2

)
.

In this case, ρϕ is a convex modular on X
(
I2

)
, which satisfies all as-

sumptions listed in this section. Consider the Orlicz space generated by ϕ as
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follows:

Lρ
ϕ(I2) :=

{
f ∈ X

(
I2

)
: ρϕ (λf) < +∞ for some λ > 0

}
.

For each m,n ∈ N, define gm,n : [0, 1] × [0, 1] → R by

gm,n (x, y)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, m = k2 and n = l2

m2n(1 − mnxy), (x, y) ∈ (
0, 1

m

) × (
0, 1

n

)
;

m �= k2 and n �= l2

0,
(x, y) = (0, 0) or (x, y) ∈ [

1
m , 1

] × [
1
n , 1

]
;

m �= k2 and n �= l2

,

k, l = 1, 2, . . . (3)

If ϕ (x) = xp for 1 ≤ p < ∞, x ≥ 0, then Lρ
ϕ

(
I2

)
= Lp

(
I2

)
. Moreover

we have for any function f ∈ Lρ
ϕ

(
I2

)

ρϕ(f) = ‖f‖p
Lp

.

It is clear that {gm,n} does not converge statistically modularly but con-
verges to g = 0 statistically modularly relative to a scale function.

σ (x, y) =
{

1, (x, y) = (0, 0)
1

x2y , (x, y) ∈ (0, 1] × (0, 1] on L1 ([0, 1] × [0, 1]) . Indeed, for

some λ0 > 0, with the choice of p = 1 we have ρϕ(g) = ‖g‖L1
,

ρ (λ0 (gm,n − g)) = ‖λ0 (gm,n − g)‖L1

=
{

1, m = k2 and n = l2
3m
4 , m �= k2 and n �= l2

, k, l = 1, 2, . . . , (4)

then we have

st2 − lim
m,n

‖λ0 (gm,n − g)‖L1
�= 0.

Using the scale function σ,

ρ

(
λ0

(
gm,n − g

σ

))
=

{
1
6 , m = k2 and n = l2

1
12mn , m �= k2 and n �= l2

, k, l = 1, 2, . . . ,

we get

st2 − lim
m,n

∥
∥
∥
∥λ0

(
gm,n − g

σ

)∥
∥
∥
∥

L1

= 0.

On the other hand, we can easily see that {gm,n} does not converge to g =

0 modularly relatively to a scale function σ (x, y) =
{
1, (x, y) = (0, 0)
1

x2y , (x, y) ∈ (0, 1] × (0, 1]
on L1 ([0, 1] × [0, 1]) . Indeed from (4), we observed that the sequence{

ρ
(
λ0

(
gm,n−g

σ

))}
has two subsequences with different limit points so

{gm,n} is not relatively modularly convergent to g = 0.
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In this paper, we will need the following assumptions on a modular ρ :
• ρ is monotone if ρ(f) ≤ ρ(g) for |f | ≤ |g|,
• ρ is finite if χA ∈ Lρ

(
I2

)
whenever A is measurable subset of I2 such

that μ (A) < ∞,
• ρ is absolutely finite if ρ is finite and, for every ε > 0, λ > 0, there exists

a δ > 0 such that ρ (λχB) < ε for any measurable subset B ⊂ I2 with
μ (B) < δ,

• ρ is strongly finite if χI2 ∈ Eρ
(
I2

)
,

• ρ is absolutely continuous provided that there exists an α > 0 such that,
for every f ∈ X

(
I2

)
with ρ (f) < +∞, the following condition holds: for

every ε > 0 there is δ > 0 such that ρ (αfχB) < ε whenever B is any
measurable subset of I2 with μ (B) < δ.
Observe now that (see [2,3]) if a modular ρ is monotone and finite, then

we have C(I2) ⊂ Lρ
(
I2

)
. In a similar manner, if ρ is monotone and strongly

finite, then C(I2) ⊂ Eρ
(
I2

)
. Also, if ρ is monotone, absolutely finite and

absolutely continuous, then C∞(I2) = Lρ
(
I2

)
. Some important relations be-

tween the above properties may be found in [1,3,4,17,21].

2. Statistical Relative Korovkin Theorems in Modular Spaces

In this section, we apply the notion of statistical relative modular convergence
of a double sequences of positive linear operators defined on a modular space
to prove a Korovkin type approximation theorem.

Let ρ be a monotone and finite modular on X
(
I2

)
. Assume that D is

a set satisfying C∞ (
I2

) ⊂ D ⊂ Lρ
(
I2

)
. We can construct such a subset D

when ρ is monotone and finite (see [2]). Assume further that T := {Tm,n} is
a sequence of positive linear operators from D into X

(
I2

)
for which there

exists a subset XT ⊂ D containing C∞ (
I2

)
and σ ∈ X

(
I2

)
is an unbounded

function satisfying σ(x, y) �= 0 such that

st2 − lim sup
m,n

ρ

(
λ

(
Tm,nh

σ

))
≤ Rρ (λh) (5)

holds for every h ∈ XT, λ > 0 and for an absolute positive constant R.
We denote the value of Tm,nf at a point (x, y) ∈ I2 by Tm,n(f(u, v);x, y)

or briefly, Tm,n(f ;x, y).

Theorem 1. Let ρ be a monotone, strongly finite, absolutely continuous and
N -quasi semiconvex modular on X

(
I2

)
. Let T := {Tm,n} be a double sequence

of positive linear operators from D into X
(
I2

)
satisfying (5) and suppose that

σi (x, y) is an unbounded function satisfying |σi (x, y)| ≥ ai > 0(i = 0, 1, 2, 3).
Assume that

st2 − lim
m,n

ρ

(
λ

(
Tm,n (ei) − ei

σi

))
= 0 for every λ > 0 and i = 0, 1, 2, 3 (6)
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where e0 (x, y) = 1, e1 (x, y) = x, e2 (x, y) = y and e3 (x, y) = x2 + y2. Now
let f be any function belonging to Lρ

(
I2

)
such that f − g ∈ XT for every

g ∈ C∞ (
I2

)
. Then, we have

st2 − lim
m,n

ρ

(
λ0

(
Tm,nf − f

σ

))
= 0 for some λ0 > 0. (7)

where σ (x, y) = max {|σi (x, y)| ; i = 0, 1, 2, 3} .

Proof. We first claim that

st2 − lim
m,n

ρ

(
η

(
Tm,ng − g

σ

))
=0 for every g ∈ C(I2) ∩ D and every η > 0.

(8)

To see this assume that g belongs to C
(
I2

)∩D. By the continuity of g on
I2, given ε > 0, there exists a number δ > 0 such that for all (u, v) , (x, y) ∈ I2

satisfying |u − x| < δ and |v − y| < δ we have

|g(u, v) − g(x, y)| < ε. (9)

Also we get for all (u, v) , (x, y) ∈ I2 satisfying |u − x| > δ and |v − y| > δ
that

|g(u, v) − g(x, y)| ≤ 2M

δ2

{
(u − x)2 + (v − y)2

}
(10)

where M := sup
(x,y)∈I2

|g(x, y)| . Combining (9) and (10) we have for

(u, v) , (x, y) ∈ I2 that

|g(u, v) − g(x, y)| < ε +
2M

δ2

{
(u − x)2 + (v − y)2

}
.

namely,

−ε − 2M

δ2

{
(u − x)2 + (v − y)2

}

< g(u, v) − g(x, y) < ε +
2M

δ2

{
(u − x)2 + (v − y)2

}
. (11)

Since Tm,n is linear and positive, by applying Tm,n to (11) for every
m,n ∈ N we get

−εTm,n(e0;x, y) − 2M

δ2
Tm,n

(
(u − x)2 + (v − y)2 ;x, y

)

< Tm,n(g;x, y) − g(x, y)Tm,n (e0;x, y)

< εTm,n(e0;x, y) +
2M

δ2
Tm,n

(
(u − x)2 + (v − y)2 ;x, y

)

and hence,

|Tm,n(g;x, y) − g(x, y)| ≤ |Tm,n(g;x, y) − g(x, y)Tm,n (e0;x, y)|
+ |g(x, y)Tm,n (e0;x, y) − g(x, y)|
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≤ εTm,n(e0;x, y) + M |Tm,n (e0;x, y) − e0(x, y)|
+

2M

δ2
Tm,n

(
(u − x)2 + (v − y)2 ;x, y

)

holds for every x, y ∈ I and m,n ∈ N. The above inequality implies that

|Tm,n(g;x, y) − g(x, y)| ≤ ε +
{

ε + M +
4M

δ2
E2

}
|Tm,n (e0;x, y) − e0(x, y)|

+
4M

δ2
E |Tm,n (e1;x, y) − e1(x, y)|

+
4M

δ2
E |Tm,n (e2;x, y) − e2(x, y)|

+
2M

δ2
|Tm,n (e3;x, y) − e3(x, y)| .

where E := max {|x| , |y|} . Now we multiply the both-sides of the above in-
equality by 1

|σ(x,y)| and for any η > 0, the last inequality gives that

η

∣
∣
∣
∣
Tm,n(g;x, y) − g(x, y)

σ (x, y)

∣
∣
∣
∣ ≤ ηε

|σ (x, y)| + Kη

{∣
∣
∣
∣
Tm,n (e0;x, y) − e0(x, y)

σ (x, y)

∣
∣
∣
∣

+
∣
∣
∣
∣
Tm,n (e1;x, y) − e1(x, y)

σ (x, y)

∣
∣
∣
∣

+
∣
∣
∣
∣
Tm,n (e2;x, y) − e2(x, y)

σ (x, y)

∣
∣
∣
∣

+
∣
∣
∣
∣
Tm,n (e3;x, y) − e3(x, y)

σ (x, y)

∣
∣
∣
∣

}
,

where K := max
{

ε + M +
4M

δ2
E2,

4M

δ2
E,

2M

δ2

}
. Now, applying the modular

ρ to both-sides of the above inequality, since ρ is monotone and
σ (x, y) = max {|σi (x, y)| ; i = 0, 1, 2, 3} , we have

ρ

(
η

(
Tm,ng − g

σ

))
≤ ρ

(
η

ε

|σ| + ηK

∣
∣
∣
∣
Tm,ne0 − e0

σ0

∣
∣
∣
∣ + ηK

∣
∣
∣
∣
Tm,ne1 − e1

σ1

∣
∣
∣
∣

+ ηK

∣
∣
∣
∣
Tm,ne2 − e2

σ2

∣
∣
∣
∣ + ηK

∣
∣
∣
∣
Tm,ne3 − e3

σ3

∣
∣
∣
∣

)
.

Hence, we may write that

ρ

(
η

(
Tm,ng − g

σ

))
≤ ρ

(
5ηε

σ

)
+ ρ

(
5ηK

(
Tm,ne0 − e0

σ0

))

+ ρ

(
5ηK

(
Tm,ne1 − e1

σ1

))

+ ρ

(
5ηK

(
Tm,ne2 − e2

σ2

))
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+ ρ

(
5ηK

(
Tm,ne3 − e3

σ3

))

Since ρ is N -quasi semiconvex and strongly finite, we have, assuming
0 < ε ≤ 1,

ρ

(
η

(
Tm,ng − g

σ

))
≤ Nερ

(
5ηN

σ

)
+ ρ

(
5ηK

(
Tm,ne0 − e0

σ0

))

+ ρ

(
5ηK

(
Tm,ne1 − e1

σ1

))

+ ρ

(
5ηK

(
Tm,ne2 − e2

σ2

))

+ ρ

(
5ηK

(
Tm,ne3 − e3

σ3

))
.

For a given r > 0, choose an ε ∈ (0, 1] such that Nερ
(

5ηN
σ

)
< r. Now

define the following sets:

Gη : =
{

(m,n) : ρ

(
η

(
Tm,ng − g

σ

))
≥ r

}

Gη,i : =

⎧
⎨

⎩
(m,n) : ρ

(
5ηK

(
Tm,nei − ei

σi

))
≥

r − Nερ
(

5ηN
σ

)

4

⎫
⎬

⎭
,

where i = 0, 1, 2, 3. Then, it is easy to see that Gη ⊆ ⋃3
i=0 Gη,i. So, we can

write that

δ2 (Gη) ≤
3∑

i=0

δ2 (Gη,i) .

Using the hypothesis (6), we get

δ2 (Gη) = 0,

which proves our claim (8). Obviously (8) also holds for every g ∈ C∞(I2).
Now let f ∈ Lρ

(
I2

)
satisfying f − g ∈ XT for every g ∈ C∞ (

I2
)
. Since

μ
(
I2

)
< ∞ and ρ is strongly finite and absolutely continuous, we can see that

ρ is also absolutely finite on X(I2). Using these properties of the modular ρ,
it is known from [4,17] that the space C∞(I2) is modularly dense in Lρ

(
I2

)
,

i.e., there exists a sequence {gk,j} ⊂ C∞ (
I2

)
such that

P − lim
k,j

ρ (3λ∗
0 (gk,j − f)) = 0 for some λ∗

0 > 0.

This means that, for every ε > 0, there is a positive number k0 = k0(ε)
so that

ρ (3λ∗
0 (gk,j − f)) < ε for every k, j ≥ k0. (12)
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On the other hand, by the linearity and positivity of the operators Tm,n,
we may write that

λ∗
0 |Tm,n(f ;x, y) − f(x, y)| ≤ λ∗

0 |Tm,n(f − gk0,k0 ;x, y)|
+λ∗

0 |Tm,n(gk0,k0 ;x, y) − gk0k0(x, y)|
+λ∗

0 |gk0,k0(x, y) − f(x, y)|
holds for every x, y ∈ I and m,n ∈ N. Applying the modular ρ in the last
inequality and using the monotonicity of ρ and moreover multiplying the both-
sides of the above inequality by 1

|σ(x,y)| , we have

ρ

(
λ∗
0

(
Tm,nf − f

σ

))
≤ ρ

(
3λ∗

0

Tm,n (f − gk0,k0)
σ

)

+ ρ

(
3λ∗

0

(
Tm,ngk0,k0 − gk0,k0

σ

))

+ ρ

(
3λ∗

0

(
gk0,k0 − f

σ

))
.

Hence, observing |σ| ≥ a > 0(a = max {ai : i = 0, 1, 2, 3}) we may write
that

ρ

(
λ∗
0

(
Tm,nf − f

σ

))
≤ ρ

(
3λ∗

0

Tm,n (f − gk0,k0)
σ

)

+ ρ

(
3λ∗

0

(
Tm,ngk0,k0 − gk0,k0

σ

))

+ ρ

(
3λ∗

0

a
(gk0,k0 − f)

)
. (13)

Then, it follows from (12) and (13) that

ρ

(
λ∗
0

(
Tm,nf − f

σ

))
≤ ε + ρ

(
3λ∗

0

Tm,n (f − gk0,k0)
σ

)

+ ρ

(
3λ∗

0

(
Tm,ngk0,k0 − gk0,k0

σ

))
. (14)

So, taking statistical limit superior as m,n → ∞ in the both-sides of (14)
and also using the facts that gk0,k0 ∈ C∞(I2) and f −gk0,k0 ∈ XT, we obtained
from (5) that

st2 − lim sup
m,n

ρ

(
λ∗
0

(
Tm,nf − f

σ

))

≤ ε + Rρ (3λ∗
0(f − gk0,k0))

+ st2 − lim sup
m,n

ρ

(
3λ∗

0

(
Tm,ngk0,k0 − gk0,k0

σ

))
,
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which gives

st2 − lim sup
m,n

ρ

(
λ∗
0

(
Tm,nf − f

σ

))

≤ ε(R + 1) + st2 − lim sup
m,n

ρ

(
3λ∗

0

(
Tm,ngk0,k0 − gk0,k0

σ

))
. (15)

By (8), since

st2 − lim
m,n

ρ

(
3λ∗

0

(
Tm,ngk0,k0 − gk0,k0

σ

))
= 0,

we get

st2 − lim sup
m,n

ρ

(
3λ∗

0

(
Tm,ngk0,k0 − gk0,k0

σ

))
= 0. (16)

Combining (15) with (16), we conclude that

st2 − lim sup
m,n

ρ

(
λ∗
0

(
Tm,nf − f

σ

))
≤ ε(R + 1).

Since ε > 0 was arbitrary, we find

st2 − lim sup
m,n

ρ

(
λ∗
0

(
Tm,nf − f

σ

))
= 0.

Furthermore, since ρ
(
λ∗
0

(
Tm,nf−f

σ

))
is non-negative for all m,n ∈ N,

we can easily show that

st2 − lim
m,n

ρ

(
λ∗
0

(
Tm,nf − f

σ

))
= 0,

which completes the proof. �
If the modular ρ satisfies the Δ2-condition, then one can get immediately

the following result from Theorem 1.

Theorem 2. Let T := {Tm,n}, ρ and σ be the same as in Theorem 1. If ρ
satisfies the Δ2-condition, then the following statements are equivalent:

(a) st2 − lim
m,n

ρ
(
λ

(
Tm,nei−ei

σi

))
= 0 for every λ > 0 and i = 0, 1, 2, 3,

(b) st2 − lim
m,n

ρ
(
λ

(
Tm,nf−f

σ

))
= 0 for every λ > 0 provided that f is any

function belonging to Lρ(I2) such that f −g ∈ XT for every g ∈ C∞ (
I2

)
.

If one replaces the scale function by a nonzero constant, then the condi-
tion (5) reduces to

st2 − lim sup
m,n

ρ (λ (Tm,nh)) ≤ Rρ (λh) (17)

for every h ∈ XT, λ > 0 and for an absolute positive constant R. In this case,
the next results which were obtained in [22] follows from our main theorems,
Theorems 1 and 2.
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Corollary 1 [22]. Let ρ be a monotone, strongly finite, absolutely continuous
and N -quasi semiconvex modular on X

(
I2

)
. Let T := {Tm,n} be a double

sequence of positive linear operators from D into X
(
I2

)
satisfying (17). If

{Tm,nei} is statistically strongly convergent to ei for each i = 0, 1, 2, 3, then
{Tm,nf} is statistically modularly convergent to f provided that f is any func-
tion belonging to Lρ

(
I2

)
such that f − g ∈ XT for every g ∈ C∞ (

I2
)
.

Corollary 2 [22]. T := {Tm,n} and ρ be the same as in Corollary 1. If ρ
satisfies the Δ2-condition, then the following statements are equivalent:
(a) {Tm,nei} is statistically strongly convergent to ei for each i = 0, 1, 2, 3,
(b) {Tm,nf} is statistically strongly convergent to f provided that f is any

function belonging to Lρ(I2) such that f −g ∈ XT for every g ∈ C∞ (
I2

)
.

If one replaces the statistical limit by the Pringsheim limit, then the
condition (5) reduces to

P − lim sup
m,n

ρ

(
λ

(
Tm,nh

σ

))
≤ Rρ (λh) (18)

for every h ∈ XT, λ > 0 and for an absolute positive constant R. In this case,
the following results immediately follows from our Theorems 1 and 2.

Corollary 3. Let ρ be a monotone, strongly finite, absolutely continuous and
N -quasi semiconvex modular on X

(
I2

)
. Let T := {Tm,n} be a double se-

quence of positive linear operators from D into X
(
I2

)
satisfying (18). More-

over suppose that σi (x, y) is an unbounded function satisfying |σi (x, y)| ≥
ai > 0(i = 0, 1, 2, 3). If {Tm,nei} is relatively strongly convergent to ei for each
i = 0, 1, 2, 3, then {Tm,nf} is relatively modularly convergent to f provided
that f is any function belonging to Lρ

(
I2

)
such that f − g ∈ XT for every

g ∈ C∞ (
I2

)
.

Corollary 4. T := {Tm,n}, ρ and σi(i = 0, 1, 2, 3) be the same as in Corollary 3.
If ρ satisfies the Δ2-condition, then the following statements are equivalent:
(a) {Tm,nei} is relatively strongly convergent to ei for each i = 0, 1, 2, 3,
(b) {Tm,nf} is relatively strongly convergent to f provided that f is any func-

tion belonging to Lρ(I2) such that f − g ∈ XT for every g ∈ C∞ (
I2

)
.

3. Concluding Remarks

In this section, we display an example such that our Korovkin-type statistical
approximation results in modular spaces are stronger than the Corollaries 1
and 3.

Example 2. Take I = [0, 1] and ϕ, ρϕ and Lρ
ϕ

(
I2

)
be the same as in Example 1.

Then consider the following bivariate Bernstein-Kantorovich operatorU :=
{Um,n} on the space Lρ

ϕ

(
I2

)
which is defined by:
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Um,n(f ;x, y)

=
m∑

i=0

n∑

k=0

p
(m,n)
i,k (x, y) (m + 1) (n + 1) ×

(i+1)/(m+1)∫

i/(m+1)

(k+1)/(n+1)∫

k/(n+1)

f (t, s) dsdt

(19)

for x, y ∈ I, where p
(m,n)
i,k (x, y) defined by

p
(m,n)
i,k (x, y) =

(
m

i

)(
n

k

)
xiyk (1 − x)m−i (1 − y)n−k

.

Also, it is clear that,
m∑

i=0

n∑

k=0

p
(m,n)
i,k (x, y) = 1. (20)

Observe that the operator Um,n maps Lρ
ϕ

(
I2

)
into itself. Because of (20),

as in the proof of [2] Lemma 5.1 and similar to Example 1 [22], we can use the
Jensen inequality and obtain that for every f ∈ Lρ

ϕ

(
I2

)
and m,n ∈ N there is

an absolute constant M > 0 such that

ρϕ

(
Um,nf

σ

)
≤ Mρϕ(f).

Moreover, the property (18) is satisfied with the choice of XU := Lρ
ϕ(I2).

Then, by Corollary 3, we know that, for any function f ∈ Lρ
ϕ

(
I2

)
such that

f −g ∈ XU for every g ∈ C∞ (
I2

)
, {Um,nf} is relatively modularly convergent

to f.
If ϕ (x) = xp for 1 ≤ p < ∞, x ≥ 0, then Lρ

ϕ

(
I2

)
= Lp

(
I2

)
. Moreover

we have ρϕ(f) = ‖f‖p
Lp

. For p = 1, we have ρϕ(f) = ‖f‖L1
.Then, using

the operators Um,n, we define the sequence of positive linear operators V :=
{Vm,n} on L1

(
I2

)
as follows:

Vm,n(f ;x, y) = (1 + gm,n (x, y))Um,n (f ;x, y)

for f ∈ L1

(
I2

)
, (x, y) ∈ I2 and m,n ∈ N (21)

where {gm,n} is the same as in (3) and we choose σi (x, y) = σ (x, y) (i =

0, 1, 2, 3), where σ (x, y) =
{

1, (x, y) = (0, 0)
1

x2y , (x, y) ∈ (0, 1] × (0, 1] . As in the proof of

Lemma 5.1 [2] and similar to Example 1 [22], we get, for every f ∈ L1

(
I2

)
,

λ > 0 and for positive constant C, that

st2 − lim sup
m,n

∥
∥
∥
∥λ

(
Vm,nf

σ

)∥
∥
∥
∥

L1

≤ C ‖λf‖L1
. (22)

We now claim that

st2 − lim
m,n

∥
∥
∥
∥λ

(
Vm,nei − ei

σ

)∥
∥
∥
∥

L1

= 0, i = 0, 1, 2, 3. (23)
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Indeed, first observe that

Vm,n(e0;x, y) = 1 + gm,n (x, y) ,

Vm,n(e1;x, y) = (1 + gm,n (x, y))
(

mx

m + 1
+

1
2 (m + 1)

)
,

Vm,n(e2;x, y) = (1 + gm,n (x, y))
(

ny

n + 1
+

1
2 (n + 1)

)
,

Vm,n(e3;x, y) = (1 + gm,n (x, y))

(
m (m − 1) x2

(m + 1)2
+

2mx

(m + 1)2
+

1
3 (m + 1)2

+
n (n − 1) y2

(n + 1)2
+

2ny

(n + 1)2
+

1
3 (n + 1)2

)

.

So, we can see, for any λ > 0, that
∥
∥
∥
∥λ

(
Vm,n(e0;x, y) − e0 (x, y)

σ (x, y)

)∥
∥
∥
∥

L1

= λ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1∫

0

1∫

0

x2ydxdy, m = k2 and n = l2

1
n∫

0

1
m∫

0

m2n(x2y − mnx3y2)dxdy, m �= k2 and n �= l2
, k, l = 1, 2, . . . ,

= λ

{
1
6 m = k2 and n = l2

1
12mn m �= k2 and n �= l2

, k, l = 1, 2, . . . , (24)

Now, since P − lim
m,n→∞

1
12mn = 0, we get

st2 − lim
m,n

∥
∥
∥
∥λ

(
Vm,ne0 − e0

σ

)∥
∥
∥
∥

L1

= 0.

which guarantees that (23) holds true for i = 0. Also, we have
∥
∥
∥
∥λ

(
Vm,n (e1;x, y) − e1(x, y)

σ (x, y)

)∥
∥
∥
∥

L1

≤
∥
∥
∥
∥λ

gm,n (x, y)
σ (x, y)

(
mx

m + 1
+

1
2 (m + 1)

)∥
∥
∥
∥

L1

+
∥
∥
∥
∥λ

x2y − 2x3y

2 (m + 1)

∥
∥
∥
∥

L1

<

∥
∥
∥
∥λ

gm,n (x, y)
σ (x, y)

∥
∥
∥
∥

L1

+
λ

24 (m + 1)
,

because of st2 − lim
m,n

∥
∥
∥λ

gm,n(x,y)
σ(x,y)

∥
∥
∥

L1

= 0 and P − lim
m,n

λ
24(m+1) = 0, we get

st2 − lim
m,n

∥
∥
∥
∥λ

(
Vm,n (e1;x, y) − e1(x, y)

σ (x, y)

)∥
∥
∥
∥

L1

= 0.
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Hence (23) is valid for i = 1. Similarly, we have

st2 − lim
m,n

∥
∥
∥
∥λ

(
Vm,n (e2;x, y) − e2(x, y)

σ (x, y)

)∥
∥
∥
∥

L1

= 0.

Finally, since
∥
∥
∥
∥λ

(
Vm,n (e3;x, y) − e3(x, y)

σ (x, y)

)∥
∥
∥
∥

L1

≤
∥
∥
∥
∥
∥
λ

gm,n (x, y)
σ (x, y)

(
m (m − 1) x2

(m + 1)2
+

2mx

(m + 1)2

+
1

3 (m + 1)2
n (n − 1) y2

(n + 1)2
+

2ny

(n + 1)2
+

1
3 (n + 1)2

)∥
∥
∥
∥
∥

L1

+

∥
∥
∥
∥
∥
λ

(
(3m + 1) x4y

(m + 1)2
+

(3n + 1) x2y3

(n + 1)2
+

2mx3y

(m + 1)2
+

2nx2y2

(n + 1)2

+x2y

(
1

3 (m + 1)2
+

1
3 (n + 1)2

))∥
∥
∥
∥
∥

L1

< 6
∥
∥
∥
∥λ

gm,n (x, y)
σ (x, y)

∥
∥
∥
∥

L1

+
λ (3m + 1)
10 (m + 1)2

+
λ (3n + 1)
12 (n + 1)2

+
λm

4 (m + 1)2

+
2λn

9 (n + 1)2
+

λ

6

(
1

3 (m + 1)2
+

1
3 (n + 1)2

)

,

then we have,

st2 − lim
m,n

∥
∥
∥
∥λ

(
Vm,n (e3;x, y) − e3(x, y)

σ (x, y)

)∥
∥
∥
∥

L1

= 0.

So, our claim (23) holds true for each i = 0, 1, 2, 3 and for any λ > 0.
Now, from (22) and (23), we can say that our sequence V := {Vm,n} defined
by (21) satisfy all assumptions of Theorem 1. Therefore, we conclude that

st2 − lim
m,n

∥
∥
∥
∥λ

(
Vm,n (f ;x, y) − f(x, y)

σ (x, y)

)∥
∥
∥
∥

L1

= 0 for some λ0 > 0

holds for any f ∈ L1

(
I2

)
such that f − g ∈ XV = L1(I2) for every g ∈

C∞ (
I2

)
.

However, from (24) it can be seen that the sequence
‖λ(Vm,n(e0;x,y)−e0(x,y)

σ(x,y) )‖L1 has two subsequences with different limit points.

Since P − lim
m,n

‖λ(Vm,ne0−e0
σ )‖L1 �= 0, Corollary 3 does not work for the sequence

V := {Vm,n}. Also, since st2 − lim
m,n

‖λ (Vm,ne0 − e0)‖L1
�= 0, Corollary 1 does

not work for the sequence V := {Vm,n} as well.
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