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Abstract. Given numbers n,s € N, n > 2, and the nth-degree monic
Chebyshev polynomial of the first kind T (z), the polynomial system
“induced” by T (z) is the system of orthogonal polynomials {pp°} cor-
responding to the modified measure do™*(z) = T2°(z)do(z), where
do(z) = 1/4/1 — z2 dzx is the Chebyshev measure of the first kind. Here
we are concerned with the problem of determining the coefficients in the
three-term recurrence relation for the polynomials p;’°. The desired co-
efficients are obtained analytically in a closed form.
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1. Introduction

Let do(xz) be a positive measure on R, with finite or unbounded support,
having finite moments of all orders, and let {py}, k € Ny, be the corresponding
(monic) orthogonal polynomials,

pr(z) = pr(x; do), k € Ny,
which satisfy the following three-term recurrence relation (cf. [5, p. 97])
pr1(®) = (z — ap)pe(@) — Brpr—1(x), k€ No,
po(z) =1, p_1(z) =0,
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where ay, = a(do) € R, B = Bk(do) > 0, and by convention, By = Go(do) =
do(R). Orthogonal polynomials can be characterized in terms of extremal
problems (cf. [5, pp. 89-93]), as unique (monic) polynomials which minimize
the L?(do)-norm, i.e.,

in [ [p(a)do(e) = [ Ipu(o)l? do(a). (1)

PEP

where f/JSk is the set of all monic polynomials of degree k. It can be extended
to L?*72(do)-norm (s € Np) and it then leads to a case of the power orthog-
onality, precisely to the so-called s-orthogonal polynomials {pi s}, k € Ny, as
unique (monic) polynomials which minimize

mm/m )25+ do(x) /@m )25+ do(a).

pEP

These (monic) polynomials must satisfy the “orthogonality conditions” (cf.
Ghizzetti and Ossicini [4])

/}R(p,w(m))%+1 “do(z) =0, v=0,1,...,k—1. (1.2)

In the case s = 0, the s-orthogonal polynomials reduce to the standard or-
thogonal polynomials, py.o0 = pk-

For given n and s, putting do™*(z) = (p,s(x))?* do(x), Milovanovié [6]
reinterpreted (1.2) in terms of conditions for standard orthogonal polynomials,
i.e., as

/fﬁumhwWW@=0,k=QL~wn—L (1.3)
R

where {p;*} is a sequence of monic orthogonal polynomials with respect to the
new measure do™*(x) = (pp, S( ))25 do(x). Notice that p, s(x) = pl»*(z). As
we can see, the polynomials p;”®, k = 0,1,..., are implicitly defined, because
the new measure do™*(x) depends of pp s(x).

According the previous fact, in order to find s-orthogonal polynomials

Pn,s, 0 =0,1,..., N, we need to construct the standard polynomials p,"*(x),
k<n (orthogonal w.r.t. do™*(z) = (pns(z))* do(z)), for each n < N, and
take p,, s = pp®,m =0,1,..., N. A survey on power orthogonality, quadratures

with multiple nodes, and moment-preserving spline approximation was given
by Milovanovié [7].
In this paper we consider a special case with the Chebyshev measure on
the first kind, do(z) = (1 — 2?)~%2dz on (—1,1), and for fixed n,s € N,
n > 2, we define a new measure do™* by
n,s e TS _ Tgs(x)
do™?*(z) := w™*(x) dx T3 dzx, (1.4)
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where T),(z) = T,(x)/2""' = cos(narccosz)/2"! is the nth-degree monic
Chebyshev polynomial of the first kind. In 1930, Bernstein [1] showed that the
monic Chebyshev polynomial 7T}, (¢) minimizes all integrals of the form

1 k1
|7 ()]
/_1 o k=20

where 7, is an arbitrary monic polynomial of degree n. It means that the
monic Chebyshev polynomials T,, are s-orthogonal on [—1, 1] for each s > 0.
The set of orthogonal polynomials we wish to study is

pr*(x) = pp®(x; do™®), ke Ny,
for which we know that p»* = p, s = fn Their existence is assured, since
do™*(z) is a positive measure.
In [3], Gautschi and Li considered the special case s = 1 and proved the

following result, which will be used in the proof of our main result as a base
of induction.

Theorem 1.1. For any n > 2, the polynomials pi(z) = p}(z; do™), k € Ny,
where do™(x) = T2(x)/V/1 — 22 dx, satisfy
P (@) = api(z) — Brpi_1(2), k€ N,

pi(x) =1, ply(z) =0,

where
0 .
22T if k=0,
1 (—1)k/n .
-1 - — =
4( ) if k=0 (mod n) (k#0),
B =
Ly CDED™N 21 (mod
iUt i) YRS (modm),
1 otherwise
4’ ’

In the next section we give recurrence coefficients for the modified Cheby-
shev measure do™*(z).

2. Recurrence Coefficients for the Modified Chebyshev
Measure of the First Kind

Our main result is given in the following statement:

Theorem 2.1. For anyn,s € N, n > 2, the polynomials p,"° (x) =p,.* (z; do™*),
k € Ny, satisfy the three-term recurrence relation
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n,s n,s mn,s

Py () = zpp®(x) = B ppty (x), k€ No,

2.1
po(z) =1, p"i(z) =0, @1)

2
where (3" = = ( ;) and for k € N

922ns
K f k=0 (mod 2n)
— = m n
4(k + ns)’ ! ’
k+2ns—-1
m, Zf k=1 (mOd 277,),
n,s k‘—i—?ns .
= - = 2 2.2
L 10T ns)’ if k=mn (mod 2n), (2.2)
k-1
m, Zf k:n+1 (Inod 2”)7
L therui
4, otherwese.

Proof. Suppose for each n,s € N, n > 2, the sequence {p;"*}ren, is given by
(2.1), with 8, as in (2.2). Evidently, every py® is a monic polynomial.
First we compute the coefficient 3)°. By definition, we have

n,s n s 1 0 cos“’ nt . 1 ™ 2%
Bo’ - 22(71—1)3/7T sint (—sint)dt = W/o cos“® nt dt.

Further we get

n,s __

1nt —int\ 28
+ e
(U 22(77, 1)5 ) d

T 25
_ 1jnte—i(2s—j)nt dt
22(n 1)s+25 /(; ( >

T 2s
_ 21 / (23> e—2i(s—i)nt g4
2= Jo =0 \J
2s T
_ 1 (25> / e—2i(s—i)nt g4
22ns ] 0
=0
B 1 S 2s\ 1 — 672i(sfj)n7r
- Q2ns J 2i(s — j)n
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In the sequel, in order to short notations, we will omit arguments of poly-
nomials, so that we will put, for example, only 772py> instead of T, (z)?*p55 (z).
Now, we show that for each k£ € Ny the following relations hold true:

Fas _ met (k25— 2)(2k + 25 — 1)p"75—1
nt’2nk 2n(k+1) 22n(2]€+5 o 1)(2]€+S) 2nk

T2 mn,s _ n,s—1 k+s n,s—1
nPankcts = Panter )i P50k 5) (2 + 5 + 1) 20+

(2k + 25 — 1)(2k + 2$)pn13_1‘
22n(2k + 5)2 nk+y?

j=1...,n—1,

T2, 1,8 _ ms—1 (2k + 28)(2k + 2s + 1) n,s—1 (23)
nP2nkin = Pon(ert)yen T 92n (2 1 ) (2 + 5 + 1) 20kt

~,

2, 1,8 _ oms—1
nPonk+n+j = Pon(k+1)+ntj

2k+2s+1 S
22j(2k +s+ 1)(2k + s+ 2)p2n(k+1)+n_j

(2k +2s)(2k +2s+1) , o4 L 1
22n(2k + s + 1)2 Ponktntjr J=L...,m—1

Since the sequence of polynomials given by the left hand side in (2.3)
obviously satisfies the relation

Tapkyy — o Tapp” + B0 Tapity = T (pify — ap”* + B °pi%y) =0
for each k € Ny, it suffices to show that sequence given by the right hand
side, say {¢; }ien,, in (2.3) satisfies the same relation and that T2p;"* = qo and

n
2p1* = q1 as well.
To prove that g; 41 —zq; +3;"°qi—1 = 0 for all i € N, we distinguish eight

cases.
Case i =1 (mod 2n).
Here, we have to prove that the following term
n,s—1 + k +s n,s—1
Pontervy+2 ™ 939k 4 5)(2k + 5 + 1)1 2n(b+1)-2
(2k 425 — 1)(2k 4+ 25) ,, 51
221 (2% + 5)2 Ponk+2

n,s—1 k+s n,s—1
—Z\ Popkgny41 22k + 5)(2k + 5 + 1) 20k -1
(2k + 25 — 1)(2k +25) o
221 (2k + 5)2 Pank+1

n 2k + 2s ns—1 (2k+2s—=2)(2k+2s—1) ,, 1
22(2k + ) \L2n(t) T T2k 15— 1)(2k 1 5) P20k
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is equal to zero. We will use the fact that we can transform the expression into

n,s—1 n,s—1 n,s—1

n,s—1 s
Pon(k41)+2 — TPap(kt1)+1 T /62n(k+1)+1p2n(k+1)

2k + 2s n,s—1 n,s—1 n,s—1 n,s—1 n,s—1
- 2(2k + s) - an(k+1)+1 (an(k+1) + 2P0kt —1 ~ ﬂQn(k+l)—1p2n(k+1)—2>

(k425 — 1)k +25) ot met  omet met
227 (2k + s)? (pZ"kJr? = TP3net1 + Bonkg1Ponk )7

which is shown to be true after expansion of the f-coefficients. We can clearly
see that every row in the prevous equation equals zero.

Casei=j (mod 2n), j=2,...,n—2.

In this case we have to consider the following term

n,s—1 k+s n,s—1
Pon(kt1)+j+1 T 92/ H1(2k + s)(2k + 5 + l)pzn(lcﬂ)—jq

(2k + 25 — 1)(2k +25) 4,51

22n(2k + 8)2 p2’ﬂk+j+1

n,s—1 k+s n,s—1

- <p2n(k+1)+j + 22712k + s)(2k + 5 + 1)p2n(k+1)7j

(2k 425 — 1)(2k 4+ 25) ,, 51

22n(2k + 8)2 p2nk+j>

1 ( n,s—1 k + s n,s—1

+ 1 2n(k+1)+5—-1 + 22j*3(2k + S)(Qk + 5+ 1)p2n(k+1)—j+1

(2k +2s — 1)(2k +2s) 4, 51
22n(2k + 5)2 Ponktj-1)-

This term can be written in the form

n,s—1 _ n,s—1 + ﬁn,s—l )
DPon(k+1)+5+1 ~ TP2an(k+1)+j on(k+1)+1P2n(k+1)+j—1

) n,s—1 n,s—1 n,s—1 n,s—1
+tugs (an(kH)—jH ~ TPonkt1)—j T 62n(k+1)7jp2n(k+1)7j71)

n,s—1 n,s—1 n,s—1

(n) [, n,s—1 _
+ Uk s (Ponktirtr — TPonkrj T Bonkr jPonkti—1) = 05

where
NON k+s and o) — (2R + 25— 1)(2k + 25)
ks T 220-1(2k + 5)(2k + s + 1) k. 22n(2k + s)2

Clearly, its value is zero.
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Case i =n — 1 (mod 2n).
In this case we obtain
n,s—1 (2k +2s5)(2k +254+1) ,, 1
Panthrt)ytn ™ 9202k 1 5)(2k + 5 + 1) 2nhtn

_ n,s—1 + k+s n,s—1
T\ Pon(k+1)+n—1 22n=3(2k + 5)(2k 4 s + 1)p2n(k+1)fn+1

(2k + 25 — 1)(2k +25) o
221 (2k + 5)2 Ponktn—1

1 n,s—1 k+ S n,s—1
4

7 Panternn—2 F 9215 (2k + 5)(2k + 5 + 1) 2n(k+1)—n+2

(2k 425 —1)(2k+25) 4,51
221(2k + 5)2 Ponk+4n—2 |

which can be written as

n,s—1 _ n,s—1 _’_an,sfl n,s—1
Ponk+1)+n — TP2n(k+1)+n—1 2n(k+1)+n—1P2n(k+1)+n—2

n,s—1 n,s—1

(n) n,s—1
+Up s (p2n(k+1)—n+2 = TPop(kt1)—nt+1 T 62n(k+1)—n+1p2n(k+1)—n

o) (Pt = BBt B Pzokin-2),
where again every row equals zero. Here
k 2k +2s —1)(2k + 2
u,(cn) R and U](Cns) = (2 +25 — 1)(2k + 25)

s T 2m3(2k + 5)(2k + 5 + 1) 221 (2k + 5)2

Case i = n (mod 2n).
In this case the corresponding term becomes

n,s—1 _ 2k +2s+1 n,s—1
Pon(et Dm0 ™ 40k 15 + 1) (2k + 5 4 2) 7 20+ D41

(2k +25)(2k + 25 + 1) 41
220 (2k + s+ 1)2 Ponktnt1

— 7 n,s—1 + (2k + 28)(2k +2s+ 1) n,s—1
p2n(k+1)+n 22"(2]{: T 8)(2k L5+ 1)p2nk+n

2k+28+ ]. n,s—1 k—’-S n,s—1
42k + 5+ 1)

(2k + 25 — 1)(2k +25) o
221 (2k + 5)2 Ponkqn-1 |

449

Pon(kt1)+n—1 T+ 22n=3(2k + 5)(2k + s + 1)p2n(k+1)fn+1
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which can be written in the form

n,s—1 7,5 +ﬁns 1 n,s—1
Pon(kt1)+nt1 — prn(k-i—l)-i—n 2n(k+1)+nP2n(k+1)4n—1

(2k+28)(2k+25+1) n,s—1 n,s—1 n,s—1 mn,s—1 -0
22 (2k + 5)(2h + 5 + 1) \P2oktntr ~ Ponkn T BanknPankin-1) = 0-

Again it is equal to zero since every row equals to zero.

Case i =n+ 1 (mod 2n).
The corresponding term in this case is

n,s—1 2k + 2s + 1 n,s—1
Pop(kt1)4n+2 — 24(2k+8+1)(2k+8+2)p2n(k+1)+n 2

(2k+2s)(2k + 25+ 1) ;5.1
D2(2k 54 1)7 L 2nkEn

n,s—1 2k—|—28—|—1 n,s—1
T\ Pan(k+1)+n+1 — 22(2k+s+1)(2k+5+2)p2n(k+1)+n—1

22”(2k Ts+ 1)2 Ponk+nt1

L 2kHl (ner L R 29)kH2541) e
222k + 5+ 1) \V2nletn T 92 (o) gy 2k + 5 + 1) 20k En

_nsl n,s—1 +ﬁn81 n,s—1
Pon(kt1)4n+2 ~ TPon(kr1)4nt1 2n(k+1)+nt+1P2n(k+1)4+n

- n,s—1 n,s—1 +ﬁnsl n,s—1
Uk,s  Pon(kt1)4n ~ TPon(k41)+n—1 T Pon(k+1)+n—1P2n(k+1)4n—2

(n) n,s—1 n,s—1 n,s—1 n,s—1
+ vk s p2nk+n+2 prnk+n+1 + ﬂ2nk+n+1p2nk+n 07
where

2k + 25+ 1 and o™ — (2k + 25)(2k + 25 4+ 1)
(2k +s+1)(2k + s+ 2) ks 222k 454 1)2

Again it is equal to zero since every row equals to zero.

Uk, s =

Casei=n+j+1 (mod 2n), j=1,...,n—3.

n,s—1 2k+2s+1 n,s—1
Pon(kt1)4nt+j+2 ~ 22(]+2)(2k+8+1)(2k+S+2)p2n(k+1)+n j—2

(2k +25)(2k +2s+1) , 51
2 (2k + 5+ 1) Ponk+n+j+2

n,s—1 2k +2s+1 n,s—1
T\ Pop(k41)+ntj+1 22(]+1)(2k+8+1)(2k+s+2)p2n(k+l)+n j-1
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(2k +25)(2k +25+1) 5,51
92 (2k + 5+ 1)2 D2kttt

1 ( n,s—1 2k + 2s + 1 n,s—1
4

g\ Pty ensg ~ 2% (2k + 5+ 1)(2k + s + 2) 20kt D) +n—j

(2k +25)(2k +25+1) ;51
(2% 45+ 1)2 Dktnts )

which reduces to
n,s—1

Dan(k+1)+n+j+2 = TP2n(k+1)+n+j+1 T ﬂgn(k+1)+n+j+1p2n(k+1)+n+j

_ (@) n,—1 _ n,s—1 + 671,5—1 n,s—1

Uk,s \Pon(k+1)+n—5 ~ TPon(k+1)+n—j—1 2n(k+1)+n—j—1P2n(k+1)+n—j—2
(n) n,s—1 n,5—1 n,s—1 n,s—1

T Vs \Ponkintjt2 ™ TPonktntjt1 T 52nk+n+j+1p2nk+n+j )

which is equal to zero, since, every row equals zero. Here,

u(j) _ 2k +2s+1 and (n) _ (2k+28)(2k+28+ 1)
Ros T 2242(2k + s+ 1)(2k + s + 2) B 220(2k 4 5+ 1)2

Case i =2n — 1 (mod 2n).
In this case we have

me=l (2k+2s5)(2k +2s+1)
Pon(k+2) 22n(2k+8+1)(2k+8+2)p2n(k+1)

_ n,5—1 _ 2k+2s+1 n,5—1
T\ Pop(k+2)—1 2277‘71(2]{7_’_8_’_1)(2k+8+2)p2n(k+1)+1

(2k +25)(2k + 25 +1) oy
22n(2k + 5+ 1)2  L2n(1)-1

+ n,s—1 2k +2s5+1 n,s—1
1 Don(k+2)—2 22n_2(2k+8+1)(2k+8+2)p2n(k+1)+2

(2k +25)(2k +2s+1) ,, 51
921 (2k + 5 + 1)2 Pon(kt+1)—2 |+

which reduces to

n,s—1 o n,s—1 _’_ﬁn,sfl n,s—1
DPon(k+2) — TPon(k+2)—1 2n(k+2)—1P2n(k+2)—2

n,s—1

(n) n,s—1 n,s—1 n,s—1
— Ups \Pon(kt1)+2 — TPon(it1)+1 T 62n(k+1)+1p2n(k+1)

(n) n,s—1 n,s—1 n,s—1
+ vk,s ’

n,s—1
Pon(k41) ~ TPop(ky1)—1 T /82n(k+1)—1p2n(k+1)—2



452 A. S. Cvetkovié¢ et al. Results. Math.

which is equal to zero since every row equals zero. Here,

(n) 2k +2s+1 (n) (2k +2s)(2k +2s+ 1)
Uy o = 53777 and v, = 5 3
22n=1(2k + s+ 1)(2k +s+2) : 272k +s+1)
Case i = 2n (mod 2n).
In this case we have
n,s—1 + k + s+ 1 n,s—1
Pante2)+1 ¥ 9008 1 5 + 2)(2k + s + 3)p?"<’€+2)*1

(2k+25+1)(2k+254+2) , 1
220 (2k + 5 + 2)2 Pon(k+1)+1

n,s—1 (Qk + 28)(2k + 2s + 1) n,s—1
E\Ponh+2) T 930 (98 1 5 1 1) (2K + 5 + 2) 200D

2(k+1) n,s—1 2k+2s+1 n,s—1
4(2k+8+2) p2n(k+2)—1 22n— 1(2k+8+1)(2k+8+2)p2n(k+1)+1

(2k +25)(2k + 25+ 1) ,, 51
92 (2k + 5 + 1)z 2n(kt1)-1
which reduces to

n,s—1 n, n,s—1 n,s—1
Pon(k+2)+1 — $p2n(k+2 +52n(k+2)p2n(k+2) 1

(2k+28)(2k+25+1) n,s—1 n,s—1 n,s—1
22k + s+ 1)(2k + 5 + 2) (an(k+1)+1 prn(IH—l) +ﬂ2n(k+l)p2n(k+1) 1)
which is again equal to zero since every row equals zero.
Now we should check the following equality

T\2 _ pn,sfl + (25 - 2)(25 B 1)

n 2n 22n(s — 1)8 (24)

Notice that for the monic Chebyshev polynomial of the first kind T,, we have
T2 1/22n=1 4 Tgn Using the recurrence relation for Chebyshev polynomials
Tn+1 = :z:T Tn 1/4 and the fact that

1+ 2s 1 s

n,s —

T dxs) 4 Ay

we get
S ~
- e - Tn Tnf 5
pn—i—l :Epn ﬁ pn 1 +1 = 4(S+ 1) 1
~ ST -~ S =
UL — n,s n,5 _ T'n, _ Tn, Tn
Pua = 2Puk1 ~ Bulap Ty DR TPy
If we denote by
S j:, ST ~ + S ~
Uy = ——— _ Ul = —————: —_—
0 4(S+1) n—1; 1 4(S+1) n—1 4(S+1) n
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we can write
pik =Thyr +ur—1

where sequence of the polynomials ug, k = 0,...,n — 1, satisfy the relation
Ukt = LU = 7 Uk—1-

We can prove easily that

S ~ o~ ~ ~
= T 1 Tho1— 1Ty),
Uup, 4(S+1)(Uk 1= Uk1Th)

using induction, where Uk is the kth-degree monic Chebyshev polynomial of
the second kind.

Now we have

n,s - - S = - 73 T
Pon = Ton + Up—1 = Top — m(Un—lTn—l - Un—2Tn)
~ 1
= T2n - i

4(s+ 1) 22n—3’
wherefrom it follows
1 s 1 ~9 1 2s+1

n,s_fQ _ - /-
Pon =0 = 91 T g 91 T 0 T a1 gy

which is exactly (2.4) for s := s+ 1.

2 n,s

It remains to show that fnpl = ¢i1. Thus, we have

_ . mn,s—1 1 n,sfl_'_ 2s—1 n,s—1
qr = Pojyr T mpznq Son—1gP1

o n,s—1 n,s—1 n,s—1 1 n,s—1 25 —1
=TPap  —Pan Papa +72(S+1)P2n71 17

n,s—1 1 n,s—1

1 n.s—1 28 — 1
= TPy, Pon—1 t 57T Pon—1 t 53727
2(s+1) 2(s+1) 22n—lg

25 —1 ~
,s—1 2,1,
<pgns + 22"_18) T = Tnp;’ll %

Having established (2.3) we now turn to verifying orthogonality of the
mn,S
sequences {p,"" }ren, for n,s € N, n > 2.

Here we use an induction on s. The case s = 1 is just Theorem 1.1.

If we suppose that n,s € N, n > 2, are such that {pZ’S_l}keNo is a
sequence of monic polynomials orthogonal with respect to the weight function
w™*~1 then the ortAhogonality of the sequence {p;*}ren, easily follows from
the relation w™* = T2w™*~1. After multiplying (2.3) by an appropriate p?’s_l
and taking the integral of the both sides we get
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1 1
/ P ™ da = / Tepnpl® tw™~da = 0.
-1 1
Thus, the proof is finished. O

We used symbolic computations in MATHEMATICA, with the software
package OrthogonalPolynomials, described in [2], in order to verify all given
formulas.
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