C 2015 Springer International Pu 1422-6383/16/030533-5 *published online* December 28, 2015
DOL 10 1007/s00025-015-0519-2 putted bilitie December 28, 2019
DOI 10.1007/s00025-015-0519-2 **Results in Mathematics**

Cellular Covers of Mixed Abelian Groups

Ulrich Albrecht

Abstract. In this paper, we answer a question of R. Göbel and L. Fuchs by showing that there exits large classes of non-splitting mixed groups which have no non-trivial cellular covers.

Mathematics Subject Classification. 20K21.

Keywords. Mixed Group, cellular cover.

^A *cellular covering sequence* for an Abelian group A is an exact sequence

$$
0 \to K \to G \xrightarrow{\gamma} A \to 0
$$

for which the induced map $\gamma_* : \text{Hom}(G, G) \to \text{Hom}(G, A)$ is an isomorphism. Every group A admits a cellular covering sequence $0 \to 0 \to A \stackrel{\gamma}{\to} A \to 0$
with γ an automorphism of A celled a trivial cellular cover Cellular covers with γ an automorphism of A, *called a trivial cellular cover*. Cellular covers of Abelian groups have been investigated by several authors over the last ten years (see [\[2](#page-3-0)[–5](#page-4-0)]). While these investigations revealed interesting connections to infinite combinatorial principles, this paper focuses on cellular covers of mixed groups of finite torsion-free rank.

Unfortunately, a satisfactory description of torsion-free groups with nontrivial cellular covers exits only for subgroups of Q: A torsion-free group of rank 1 admits a non-trivial cellular covering sequence if and only if its type is not idempotent $[5,$ $[5,$ Theorem 5.4. Fuchs and Göbel also showed that no reduced torsion group has a non-trivial cellular cover [\[5](#page-4-0), Theorem 5.4], and asked whether there exist (large classes of) honest, i.e. non-splitting, mixed groups without any non-trivial covering sequences. It is the goal of this paper to give a positive answer to this question (Theorem 2). Often, non-trivial cellular covers $0 \to K \to G \to A \to 0$ of a torsion-free group A are constructed in such a way that $E(A) \cong E(G)$ [\[5,](#page-4-0) Lemma [2](#page-1-0).2]. Theorem 2 will also show that this approach may fail for mixed groups.

B Birkhäuser

Lemma 1 [\[5](#page-4-0), Lemma 2.1 and Theorem 4.3]. *Whenever* $0 \to K \to G \stackrel{\gamma}{\to} A \to 0$
is a cellular covering sequence of a reduced Abelian group A then is a cellular covering sequence of a reduced Abelian group A*, then*

- (i) K *is torsion-free and reduced,*
- (ii) $\phi(K)=0$ *for all* $\phi \in \text{Hom}(G, A)$ *, and*
- (iii) $\gamma | tG : tG \to tA$ *is an isomorphism.*

Let Γ be the class of reduced mixed groups G such that G_n is bounded for all primes p and G/tG is divisible. It contains the class G of (honest) selfsmall mixed groups A of finite torsion-free rank such that A/tA is divisible. The classes Γ and $\mathcal G$ play an important role in the theory of mixed torsion-free Abelian groups, and have been investigated in detail by several authors (see $[1,6]$ $[1,6]$).

Theorem 2. (a) No Abelian group
$$
A \in \Gamma
$$
 has a non-trivial cellular cover.
(b) Let A be a mixed Abelian group of finite torsion-free rank such that A

(b) Let A be a mixed Abelian group of finite torsion-free rank such that A_p is
finite for all primes p. If A/nA is finite for all primes p. with $A_p \neq 0$ and *finite for all primes p. If* A/pA *is finite for all primes p with* $A_p \neq 0$ *and* $A = pA$ *for all primes* p *with* $A_p = 0$ *, then* A *has no non-trivial covering* $sequence 0 \to K \to G \to A \to 0$ *with* $tE(G) \cong tE(A)$ *.*

Proof. (a) We will show that $K = 0$ whenever $0 \to K \to G \stackrel{\gamma}{\to} A \to 0$ is a cellular covering sequence of a group $A \in \Gamma$. By Lemma 1 $\sim |tG|$ is an is a cellular covering sequence of a group $A \in \Gamma$. By Lemma [1,](#page-0-0) $\gamma |tG|$ is an isomorphism, and K is a torsion-free group which fits into the commutative diagram

The Snake-Lemma yields an exact sequence $0 \to K \to G/tG \to A/tA \to 0$.
For $\alpha \in E(A)$ there is a unique $\beta \in E(G)$ with $\alpha \beta = \alpha \alpha$ since α is

For $\alpha \in E(A)$, there is a unique $\beta \in E(G)$ with $\gamma\beta = \alpha\gamma$ since γ_* is an isomorphism. Define a map $\phi : E(A) \to E(G)$ by $\phi(\alpha) = \beta$. To see that ϕ is a ring homomorphism, consider $\alpha_1, \alpha_2 \in E(A)$, and select $\beta_1, \beta_2 \in E(G)$ with $\gamma \beta_i = \alpha_i \gamma$. Since $(\alpha_1 \alpha_2) \gamma = \alpha_1(\gamma \beta_2) = \gamma(\beta_1 \beta_2)$, we obtain $\phi(\alpha_1 \alpha_2) =$ $\beta_1\beta_2 = \phi(\alpha_1)\phi(\alpha_2)$. Moreover, $\phi(1_A) = 1_G$ because of $\gamma 1_G = 1_A\gamma$. Finally, if $\phi(\alpha) = 0$, then $0 = \gamma \beta$ yields $\beta = 0$ since γ_* is an isomorphism. Thus, $\alpha = 0$.

Since $tE(G)$ is a two-sided ideal of $E(G)$, the canonical projection π : $E(G) \to S = E(G)/tE(G)$ is a ring homomorphism. The ring-homomorphism $\pi\phi : E(A) \to S$ induces a ring-monomorphism $\lambda : E(A)/tE(A) \to S$ such that $\lambda(1_A + tE(A)) = 1_S$. Therefore, we can view S as a right module over $R = \lambda (E(A)/tE(A))$ whose additive group is torsion-free.

Because of $A \in \Gamma$, the restriction maps induce a pure embedding of $E(A)$ into $\Pi_p E(A_p)$. Since each A_p is bounded, $tE(A) = \bigoplus_p E(A_p)$ and $\big|E(A)/\big|$ $tE(A)|^+$ is isomorphic to a pure subgroup of the divisible Abelian group $\Pi_pE(A_p)/\oplus_p E(A_p)$. Thus, R^+ is divisible, and the additive group of S is divisible too. For $0 \neq n \in \mathbb{Z}$, there are $\sigma \in E(G)$ and $\tau \in tE(G)$ such that $1_G - n\sigma = \tau$. Since $\tau(G) \subset tG$, we have $q - n\sigma(q) = \tau(q) \in tG$ for all $q \in G$. Thus, G/tG is divisible. Since $0 \to K \to G/tG \to A/tA \to 0$ is exact, K is divisible too. By Lemma [1,](#page-0-0) this is only possible if $K = 0$.

(b) As in the proof of a), a cellular covering sequence $0 \to K \to G \to 0$ of A satisfies $tA \cong tG$ and induces an exact sequence $0 \to K \to 0$ $A \rightarrow 0$ of A satisfies $tA \cong tG$, and induces an exact sequence $0 \rightarrow K \rightarrow$ $G/tG \rightarrow A/tA \rightarrow 0$. Referring to [\[5,](#page-4-0) Proposition 2.6], we may also assume that multiplication by p is an automorphism of G and K whenever $A_p = 0$ since $A = pA$ in this case.

Let p be a prime with $A_p \neq 0$. Since A_p is finite, we can write $A = A_p \oplus B$ where $A/tA \cong B/tB$ and $\text{Hom}(B/tB, A_p) \cong \text{Hom}(B, A_p)$ since Hom $(tB, A_p) = 0$. If $F_p \cong \bigoplus_{m_p} \mathbb{Z}$ is a p-basic subgroup of B/tB , then

$$
F_p/pF_p \cong (B/tB)/p(B/tB) \cong B/(pB+tB)
$$

is finite as an image of the finite group A/pA . Thus,

$$
Hom(A/tA, A_p) \cong Hom(B/tB, A_p) \cong \bigoplus_{m_p} A_p.
$$

Therefore, $E(A)_p = \text{Hom}(A, A_p) \cong E(A_p) \oplus \text{Hom}(A/tA, A_p)$ is finite since $B_p = 0$. Because of $tE(A) \cong tE(G)$, we obtain that $E(G)_p$ is finite too. However, $G_p \cong A_p$ is finite, and $G = G_p \oplus H$. As before, $H/tH \cong G/tG$ and $Hom(H, G_p) \cong Hom(H/tH, G_p)$. We obtain

$$
E(G)_p = \text{Hom}(G, G_p) \cong E(G_p) \oplus \text{Hom}(G/tG, G_p)
$$

since $H_p = 0$. However, $E(A)_p \cong E(G)_p$ is finite. Hence, $|\text{Hom}(G/tG, G_p)| < \infty$. Consequently ∞. Consequently,

$$
|\operatorname{Hom}(A/tA, A_p)| = \frac{|E(A_p)|}{|E(A_p)|}
$$

$$
= \frac{|E(G_p)|}{|E(G_p)|} = |\operatorname{Hom}(G/tG, A_p)| < \infty
$$

 $|E(G_p)|$
Therefore, the first map in the sequence

 $0 \to \text{Hom}(A/tA, A_p) \to \text{Hom}(G/tG, A_p) \to \text{Hom}(K, A_p) \to \text{Ext}(G/tG, A_p)=0$ has to be an isomorphism. Since the Ext-group vanishes because A_p is finite, Hom $(K, A_p) = 0$. This is only possible if $K = pK$ in view of the fact that K is torsion-free. Thus, K is divisible. By Lemma 1, $K = 0$. is torsion-free. Thus, K is divisible. By Lemma [1,](#page-0-0) $K = 0$.

We want to emphasize two particular classes of mixed groups without non-trivial cellular covers:

Corollary 3. (a) *If* $A \in \mathcal{G}$ *, then* A *does not have a non-trivial cellular cover.* (b) If A_p *is bounded for each prime p, then* $\Pi_p A_p$ *does not have a non-trivial cellular cover.*

Part (a) of the last corollary raises the question whether all self-small mixed groups have only trivial cellular covers. The next result shows that this is not the case:

Theorem 4. There exist honest self-small mixed group A_1 and A_2 of torsion*free rank* $n \geq 2$ *with* $tA_1 \cong tA_2$ *and* $E(A_1) \cong E(A_2)$ *such that* A_1 *admits a non-trivial cellular cover* $0 \to K \to G \to A_1 \to 0$ *with* $E(G) \cong E(A_1)$ *, while* ^A² *admits no non-trivial cellular covering sequences at all.*

Proof. Divide the set P of primes into two infinite disjoint subsets P_1 and P_2 . Choose a group $B \in \mathcal{G}$ with torsion-free rank $n-1$ such that $B_p \neq 0$ if $p \in \mathcal{P}_1$ and $B_p = 0$ otherwise. Select a rank 1 group B_1 with type $\tau_1 = [k_p]$ where $k_p = 1$ if $p \in \mathcal{P}_2$ and $k_p = \infty$ otherwise. Similarly, choose a rank 1 group B_2 with type $\tau_2 = [k_p]$ where $k_p = 0$ if $p \in \mathcal{P}_2$ and $k_p = \infty$ otherwise. Then, $E(B_1) \cong E(B_2)$. We consider $A_i = B_i \oplus B$ for $i = 1, 2$.

Since Hom $(B_1, B_p) =$ Hom $(B_2, B_p) = 0$ for all primes $p \in \mathcal{P}_1$ yields $\text{Hom}(B_i, B) = 0$ for $i = 1, 2$, we obtain that A_1 and A_2 are self-small groups with $E(A_i) \cong \mathbb{Z}_{\mathcal{P}_1} \times E(B)$. [\[5,](#page-4-0) Proposition 2.6 and Theorem 5.4] yield that B_1 has a non-trivial cellular cover $0 \to K \to G \to B_1 \to 0$ such that $G = pG$ and $K = pK$ for all $p \in \mathcal{P}_1$ and $E(G) \cong E(B_1)$. Since $B \in \mathcal{G}$, we have $Hom(B, B_i) = Hom(B, K) = 0$ for $i = 1, 2$. By [\[5](#page-4-0), Proposition 2.5], $0 \rightarrow K \rightarrow$ $G \oplus B \to B_1 \oplus B \to 0$ is a non-trivial cellular covering sequence of A_1 . As before, $\text{Hom}(B,G) = 0 = \text{Hom}(G, B)$ yields $E(G \oplus B) \cong E(B) \times E(B_1) \cong E(A_1)$.

It remains to show that A_2 does not have a non-trivial cellular cover. If $0 \to K' \to G' \to A_2 \to 0$ were a non-trivial cellular cover, then it would induce an non-trivial cellular cover either for B_2 or for B. However, either by Fuchs' and Göbel's results on rank 1 torsion-free groups in $[5]$ and Part (a) of Theorem [2,](#page-1-0) this is not possible. \square

This result shows that one cannot expect to obtain a classification of the self-small mixed groups which admit non-trivial cellular covers.

References

- [1] Albrecht, U., Goeters, H.P., Wickless, W.: The Flat Dimension of Mixed Abelian Groups Flat as E-Modules. Rocky Mt. J. Math. **25**, 569–590 (1995)
- [2] Dugas, M.: Localizations of torsion-free Abelian groups. J. Algebra **278**, 411– 420 (2004)
- [3] Dugas, M.: Co-local subgroups of Abelian groups II. J. Pure Appl. Algebra **208**, 117–126 (2007)
- [4] Farjoun, E.D.: Cellular spaces, null spaces and homotopy localization, Lecture Notes in Math. 1622, Springer Verlag, Berlin (1996)
- [5] Fuchs, L., G¨obel, R.: Cellular covers of Abelian groups. Result. Math. **53**, 59– 76 (2009)
- [6] Glaz, S., Wickless, W.: Regular and Principal projective Endomorphism Ring of Mixed Abelian Groups. Commun. Algebra **22**, 1161–1176 (1994)

Ulrich Albrecht Department of Mathematics Auburn University Auburn, AL 36849 USA e-mail: albreuf@auburn.edu; albreuf@mail.auburnu

Received: June 16, 2015. Accepted: December 9, 2015.