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Abstract. The theory of splittings of matrices is a useful tool in the analy-
sis of iterative methods for solving systems of linear equations. When two
splittings are given, it is of interest to compare the spectral radii of the
corresponding iteration matrices. The aim of this paper is to bring out a
few more comparison results for the recent matrix splitting called proper
nonnegative splitting introduced by Mishra (Comput Math Appl 67:136–
144, 2014). Comparison results for double proper nonnegative splittings
are also discussed.
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1. Introduction

A real n × n matrix A is called monotone (or a matrix of “monotone kind”)
if Ax ≥ 0 ⇒ x ≥ 0. Here, y ≥ 0 for (y1, y2, . . . , yn)T = y ∈ R

n means that
yi ≥ 0 (or yi is non-negative) for all i = 1, 2, . . . , n. This notion was intro-
duced by Collatz, who showed that A is monotone if and only if A−1 exists
and A−1 ≥ 0, where the latter denotes that all the entries of A−1 are non-
negative. The book by Collatz [8] has details of how monotone matrices arise
naturally in the study of finite difference approximation methods for certain
elliptic partial differential equations. The problem of characterizing monotone
(also referred as inverse positive) matrices has been extensively dealt with in
the literature. Motivated by Collatz’s result, Mangasarian [17] extended the
concept of monotone matrices to the rectangular case, and proved that a rec-
tangular matrix is monotone if and only if it has a non-negative left inverse.
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The books by Berman and Plemmons [3] and Varga [28] give an excellent
account of many of these characterizations. The former also presents several
extensions of the notion monotonicity to rectangular and singular matrices
in terms of different non-negative generalized inverses. One of the important
generalized inverse is called Moore–Penrose inverse, and the definition is as
follows. For a real m × n matrix A, the matrix G satisfying the four equa-
tions known as Penrose equations: AGA = A, GAG = G, (AG)T = AG and
(GA)T = GA is called the Moore–Penrose inverse of A where BT denotes the
transpose of B. It always exists and unique, and is denoted by A†. In case of
a nonsingular matrix A, we have A† = A−1. If A† ≥ 0, then A is called as a
semi-monotone matrix.

Much effort also has been devoted to characterize semi-monotonicity in
terms of matrix splitting.1 Splitting matrix A into A = U − V , we have the
following iterative method:

x(i+1) = U†V x(i) + U†b (1)

for solving the linear system Ax = b, with A ∈ R
m×n, x ∈ R

n and b ∈ R
m. The

scheme (1) is said to be convergent if the spectral radius of U†V is less than 1,
and U†V is called the iteration matrix. A splitting A = U − V of A ∈ R

m×n

is called a proper splitting [2] if R(U) = R(A) and N(U) = N(A), where
R(A) and N(A) denote the range space and the null space of A, respectively.
Berman and Plemmons [2] showed that the scheme (1) converges to A†b, the
least square solution of minimum norm for any initial vector x0 if and only if the
spectral radius of U†V is less than 1 (see [2], Corollary 1). A characterization
of semi-monotonicity using proper splitting can be found in [2], Theorem 3.
Nevertheless, before Berman and Plemmons [2], Keller [13] considered the
problem of finding solution of a consistent singular and semidefinite linear
system, iteratively. Further extension of such a problem was studied by Joshi
[12] where he obtained necessary and sufficient conditions for finding solution
of a consistent rectangular linear system, iteratively. Further studies on the
problem of finding the solution of consistent singular system of linear equations
by iterative method can be found in [20,25] and [18].

Now, we are going to recall the notion of regular, weak regular and non-
negative splittings for rectangular matrices. Note that earlier, Climent and
Perea [6] also proposed the extension of regular splitting but they simply call
this as regular splitting even for rectangular case (see [6], Definition 1). Again,
Climent et al. [4] introduced extensions of weak regular and nonnegative split-
tings for rectangular matrices in [4], Definition 2, however they call as weak
nonnegative proper splitting of the first type and weak proper splitting of the
first type, respectively. We remark that all the authors in the literature did not

1A splitting of a real rectangular matrix A is an expression of the form A = U − V , where
U and V are matrices of the same order as in A.
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use the same classification even for nonsingular matrices (see [5,7,9,14,16,18–
21,26–28] and [30]). In this article, we will follow the classifications as men-
tioned below. A proper splitting A = U − V of A ∈ R

m×n is

(i) proper regular splitting if U† ≥ 0 and V ≥ 0 [11],
(ii) proper weak regular splitting if U† ≥ 0 and U†V ≥ 0 [11],
(iii) proper nonnegative if U†V ≥ 0 [23].

In case of nonsingular matrices, the above definitions coincide with reg-
ular, weak regular [28] and nonnegative [27] splitting. Jena et al. [11] and
Mishra [23] have proved several convergence and comparison results for the
above splittings. Not only that, the above authors also introduced the notion
of double proper regular and weak regular splittings [11] and double proper
nonnegative splitting [23]. They again obtained convergence and comparison
results for these double splittings. In this note, we are again going to prove
a few more comparison results for proper nonnegative splittings and double
proper nonnegative splittings. More specifically, we provide comparison the-
orems for two proper nonnegative splittings A = U1 − V1 = U2 − V2 of the
same matrix A. Besides these, we prove comparison results for two proper
nonnegative splittings A1 = U1 − V1 and A2 = U2 − V2 arising out of two real
rectangular linear systems A1x = b and A2x = b. The same problem is again
studied using theory of double splitting.

The structure of the paper is as follows. The next section contains nota-
tion, definitions and preliminary tools. Section 3 discusses a few main results
which compare convergence rate of proper nonnegative splittings. While Sect. 4
deals with the case of double proper nonnegative splittings. Finally, we end up
with a section named Conclusions which addresses a scope of this work along
with the summary of this work.

2. Preliminaries

In this section, we gather some notation, definitions and preliminary results
which will be used later. A ∈ R

m×n is non-negative if A ≥ 0, and B ≥ C if
B − C ≥ 0. Let L and M be complementary subspaces of R

n. Let also PL,M

be a projector on L along M . Then PL,MA = A if and only if R(A) ⊆ L and
APL,M = A if and only if N(A) ⊇ M . If L ⊥ M , then PL,M will be denoted
by PL. The following properties of A† [1] will be used in the proofs of the next
section: R(A†) = R(AT ); N(A†) = N(AT ); AA† = PR(A); A†A = PR(AT ).

Berman and Plemmons [2] showed that if A = U −V is a proper splitting
of A ∈ R

m×n, then I − U†V is invertible and A† = (I − U†V )−1U†. Similarly,
the fact U = A + V is a proper splitting implies that I + A†V and I + V A†

are invertible, and U† = (I + A†V )−1A† = A†(I + V A†)−1. (See [2], Theorem
1 and [24], Theorem 3.1 for the respective proofs.) Also, 0 is not an eigenvalue
of I − U†V as I − U†V is invertible. Hence 1 does not lie in the spectra of
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U†V . Similarly, −1 does not lie in the spectra of A†V . The next lemma shows
a relation between the eigenvalues of U†V and A†V .

Lemma 2.1. ([24], Lemma 3.6) Let A = U − V be a proper splitting of A ∈
R

m×n. Let μi, 1 ≤ i ≤ s and λj , 1 ≤ j ≤ s be the eigenvalues of the matrices
U†V and A†V , respectively. Then for every j, we have 1 + λj 	= 0. Also, for
every i, there exists j such that μi = λj

1+λj
and for every j, there exists i such

that λj = μi

1−μi
.

Note that if A = U −V is a proper splitting of A ∈ R
m×n, then U†V A† =

U†(U − A)A† = A† − U† = A†UU† − A†AU† = A†V U†. This fact will be used
in the next section. The spectral radius of A ∈ R

n×n, denoted by ρ(A) is
defined by ρ(A) = max

1≤i≤n
|λi| where λ1, λ2, . . . , λn are the eigenvalues of A. It

is known that for any two rectangular matrices B and C such that BC and
CB are defined, ρ(BC) = ρ(CB). The next results deal with non-negativity
and spectral radius which will used in next two sections.

Theorem 2.2. ([28], Theorem 2.20) Let A be a real square non-negative matrix.
Then

(i) A has a non-negative real eigenvalue equal to its spectral radius.
(ii) There exists a non-negative eigenvector for its spectral radius.

Theorem 2.3. ([28], Theorem 2.7) Let B ∈ R
n×n be an irreducible matrix and

B ≥ 0. Then

(i) B has a positive real eigenvalue equal to its spectral radius.
(ii) To ρ(B) there corresponds an eigenvector x > 0.
(iii) ρ(B) increases when any entry of B increases.
(iv) ρ(B) is a simple eigenvalue of B.

Theorem 2.4. ([28], Theorem 2.21) If A,B ∈ R
n×n and A ≥ B ≥ 0, then

ρ(A) ≥ ρ(B).

Lemma 2.5. ([19], Corollary 3.2) If B ∈ R
n×n, B ≥ 0 and x ≥ 0 is such that

Bx − αx ≥ 0, then α ≤ ρ(B).

Theorem 2.6. ([28], Theorem 3.16) Let X ∈ R
n×n and X ≥ 0. Then ρ(X) < 1

if and only if (I − X)−1 exists and (I − X)−1 =
∞∑

k=0

Xk ≥ 0.

Lemma 2.7. ([26], Lemma 2.2) Let B,C ∈ R
n×n, and I and O are the identity

and null matrices, respectively, of order n. Suppose that X =
(

B C
I O

)
≥ 0

and ρ(B + C) < 1. Then ρ(X) < 1.
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3. Comparison of Proper Nonnegative Splittings

In this section, we first recall some convergence and comparison results which
are proved in [2,4] and [23]. We then present four new comparison results
for proper nonnegative splittings, and also obtain new results for nonnega-
tive splittings as corollaries. The next two are convergence results for proper
nonnegative splitting of a matrix A ∈ R

m×n. The first one is also proved in
[4], Theorem 2, however for a complete rank matrix (or left invertible matrix).
While the author of [23] proved for any rectangular matrix, and is given below.

Lemma 3.1. ([23], Lemma 3.4) Let A = U −V be a proper nonnegative splitting
of A ∈ R

m×n. If A†U ≥ 0, then ρ(U†V ) = ρ(A†U)−1
ρ(A†U)

< 1.

The proofs of the next result given in [2] and [23] are different. However,
[2], Theorem 2 and [4], Theorem 2 are more general than the Lemma given
below.

Lemma 3.2. ([2], Theorem 2 and [23], Lemma 3.5) Let A = U − V be a proper
nonnegative splitting of A ∈ R

m×n. If A†V ≥ 0, then ρ(V U†) = ρ(U†V ) =
ρ(A†V )

1+ρ(A†V )
< 1.

Comparison theorems between the spectral radii of matrices are useful
tools in analysis of rate of convergence of iterative methods or for judging the
efficiency of pre-conditioners. A matrix may have different matrix splittings
A = U1 − V1 = U2 − V2. In practice, we seek such an U which not only makes
the computation xi+1(given xi) simpler but also yields spectral radius of U†V
(which is of course less than 1) as small as possible for better convergence
rate of the scheme (1). An accepted rule for preferring one iteration scheme
to another is to choose the scheme having the smaller spectral radius. In this
context, Jena et al. [11], Mishra and Sivakumar [24] and Mishra [23] have intro-
duced various comparison results for different matrix splittings of rectangular
matrices. We next recall a comparison result which appeared in [23].

Theorem 3.3. ([23],Theorem 3.10) Let A = U1 − V1 = U2 − V2 be two proper
nonnegative splittings of A ∈ R

m×n. If A†V2 ≥ A†V1 ≥ 0, then ρ(U†
1V1) ≤

ρ(U†
2V2) < 1.

Our first result in this direction is given below.

Theorem 3.4. Let A = U1 − V1 = U2 − V2 be two proper nonnegative splittings
of A ∈ R

m×n. If A†U2 ≥ A†U1 ≥ 0, then ρ(U†
1V1) ≤ ρ(U†

2V2) < 1.

Proof. By Lemma 3.1, the conditions A†Ui ≥ 0 for i = 1, 2 imply ρ(U†
i Vi) =

ρ(A†Ui)−1
ρ(A†Ui)

< 1. The condition A†U1 ≤ A†U2 and Theorem 2.4 together yield
ρ(A†U1) ≤ ρ(A†U2). Let λi be the modulus of eigenvalue of A†Ui for i = 1, 2.
Since λi−1

λi
is a strictly increasing function for λi > 0 and ρ(A†U2) ≥ ρ(A†U1),

so we have ρ(A†U2)−1
ρ(A†U2)

≥ ρ(A†U1)−1
ρ(A†U1)

. Hence ρ(U†
1V1) ≤ ρ(U†

2V2) < 1. �
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The next example shows that the converse is not true.

Example 3.5. Let A =
[

8 −5 0
−7 9 0

]
=

[
8 −1 0

−7 7 0

]
−

[
0 4 0
0 −2 0

]
= U1−V1.

Then U†
1V1 =

⎡

⎣
0 26/49 0
0 12/49 0
0 0 0

⎤

⎦ ≥ 0 and A†U1 =

⎡

⎣
1 26/37 0
0 49/37 0
0 0 0

⎤

⎦ ≥ 0. Again

A = U2 − V2 =
[

8 −2 0
−7 8 0

]
−

[
0 3 0
0 −1 0

]
. Then R(U2) = R(A), N(U2) =

N(A), U†
2V2 =

⎡

⎣
0 22/50 0
0 13/50 0
0 0 0

⎤

⎦ ≥ 0 and A†U2 =

⎡

⎣
1 22/37 0
0 50/37 0
0 0 0

⎤

⎦ ≥ 0. So

A = U1 − V1 = U2 − V2 are two proper nonnegative splittings with ρ(U†
1V1) =

.2449 ≤ .2600 = ρ(U†
2V2) < 1. But A†U1 � A†U2.

When A is nonsingular, we have the following result for nonnegative
splitting.

Corollary 3.6. Let A = U1 − V1 = U2 − V2 be two nonnegative splittings of
A ∈ R

n×n. If A−1U2 ≥ A−1U1 ≥ 0, then ρ(U−1
1 V1) ≤ ρ(U−1

2 V2) < 1.

The next result is true only for square matrices.

Theorem 3.7. Let A = U1 − V1 = U2 − V2 be two proper nonnegative splittings
of a semi-monotone matrix A ∈ R

n×n. If V2U
†
2 ≥ U†

1V1 and Vi ≥ 0 for i = 1, 2,
then

ρ(U†
1V1) ≤ ρ(U†

2V2) < 1.

Proof. We have ρ(U†
i Vi) = ρ(ViU

†
i ) for i = 1, 2. Then, Lemma 3.2, ρ(U†

i Vi) < 1
as A†Vi ≥ 0 for i = 1, 2. Also, we have (I +A†V1)−1A† = U†

1 and U†
2 = A†(I +

V2A
†)−1. Now V2U

†
2 ≥ U†

1V1 implies V2A
†(I + V2A

†)−1 ≥ (I + A†V1)−1A†V1.
Then pre-multiplying I + A†V1 and post-multiplying I + V2A

† (as I + A†V1 ≥
0 and I + V2A

† ≥ 0), we obtain V2A
† ≥ A†V1. By Lemma 2.4, we get

ρ(V2A
†) = ρ(A†V2) ≥ ρ(A†V1), i.e., ρ(V2A

†) ≥ ρ(A†V1). Since λ
λ+1 is a

strictly increasing function for λ ≥ 0, we have ρ(A†V2)
1+ρ(A†V2)

≥ ρ(A†V1)
1+ρ(A†V1)

. Hence

ρ(U†
1V1) ≤ ρ(U†

2V2) < 1. �

The example given below demonstrates that the converse of the above
result is not true.

Example 3.8. Let A =
[

5 −4
−7 6

]
=

[
5 −3

−7 5

]
−

[
0 1
0 −1

]
= U1 − V1. Then

U†
1V1 =

[
0 1/2
0 1/2

]
≥ 0. Consider A =

[
5 −2

−7 4

]
−

[
0 2
0 −2

]
= U2 − V2.
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Then U†
2V2 =

[
0 4/6
0 4/6

]
≥ 0 and V2U

†
2 =

[
14/6 10/6

−14/6 −10/6

]
. So ρ(U†

1V1) ≤
ρ(U†

2V2) < 1. But Vi � 0 and U†
1V1 � V2U

†
2 .

Theorem 3.7 admits the following corollary.

Corollary 3.9. Let A = U1 − V1 = U2 − V2 be two nonnegative splittings of a
monotone matrix A ∈ R

n×n. If V2U
−1
2 ≥ U−1

1 V1 and Vi ≥ 0 for i = 1, 2, then

ρ(U−1
1 V1) ≤ ρ(U−1

2 V2) < 1.

We remark that Theorem 3.7 can also be restated as following for proper
regular splittings.

Remark 3.10. Let A = U1 − V1 = U2 − V2 be two proper regular splittings of
a semi-monotone matrix A ∈ R

n×n. If V2U
†
2 ≥ U†

1V1, then

ρ(U†
1V1) ≤ ρ(U†

2V2) < 1.

We now proceed to discuss comparison results for two different linear
system of equations. One of the motivation for comparing two different linear
system comes from theory of pre-conditioning. Suppose that we have two pre-
conditioners P1 and P2 such that A1 = P1A and A2 = P2A, where P1 and
P2 two are real square matrices of order m. It is of then interest to know
which system will converge faster. This will also help us to choose a better
pre-conditioner for solving a linear system. This query is addressed in the next
two results.

Theorem 3.11. Let A1 = U1 − V1 and A2 = U2 − V2 be two proper nonnega-
tive splittings of semi-monotone matrices A1 and A2, respectively. If A†

2V2 ≥
A†

1V1 ≥ 0, then ρ(U†
1V1) ≤ ρ(U†

2V2) < 1.

Proof. Since A1 = U1 − V1 and A2 = U2 − V2 are two proper nonnegative
splitting matrices. We then have U†

1V1 ≥ 0, U†
2V2 ≥ 0 and A†

2V2 ≥ A†
1V1 ≥

0. As A†
iVi ≥ 0, so ρ(U†

i Vi) < 1 for i = 1, 2. We have to now show that
ρ(U†

1V1) ≤ ρ(U†
2V2). Let λi and μi be the modulus of eigenvalues of A†

iVi and
U†

i Vi, respectively. By Lemma 2.1, μi = λi

1+λi
. Hence μi attains its maximum

if λi is maximum. But λi is maximum when λi = ρ(A†
iVi), as a result μi is

maximum when μi = ρ(U†
i Vi). Let f(λi) = λi

1+λi
be the increasing function for

λi ≥ 0 for i = 1, 2. Then ρ(U†
i Vi) = ρ(A†

iVi)

1+ρ(A†
iVi)

is an increasing function for

A†
iVi ≥ 0. The condition A†

2V2 ≥ A†
1V1 yields ρ(A†

2V2)

1+ρ(A†
2V2)

≥ ρ(A†
1V1)

1+ρ(A†
1V1)

. Hence

ρ(U†
1V1) ≤ ρ(U†

2V2) < 1. �

In case of nonsingular matrices, we have the following Corollary which is
also a part of [7], Theorem 15 whether the authors proved the same result in
a more general setting.
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Corollary 3.12. Let A1 = U1 − V1 and A2 = U2 − V2 be two nonnegative
splittings of monotone matrices A1 and A2, respectively. If A−1

2 V2 ≥ A−1
1 V1 ≥

0, then ρ(U−1
1 V1) ≤ ρ(U−1

2 V2) < 1.

Next result deals with comparison results of different types of proper
nonnegative splittings. Note that Climent et al. [4] proposed these definitions
first and call them weak proper splittings of different types (see [4], Definition
2). However, we call them here proper nonnegative of different types. The
definitions are recalled next.

Definition 3.13. ([4], Definition 2) A proper splitting A = U −V of A ∈ R
m×n

is called a proper nonnegative splitting of type I if U†V ≥ 0.

Hence proper nonnegative splitting of type I is same as proper nonneg-
ative splitting. However, proper nonnegative splitting of type II is slightly
different than this, and is presented next.

Definition 3.14. ([4], Definition 2) A proper splitting A = U −V of A ∈ R
m×n

is called a proper nonnegative splitting of type II if V U† ≥ 0.

[4], Remark 2 says that Lemma 3.2 is also true for proper nonnegative
splitting of type II. The next result compares rate of convergence of two dif-
ferent types of proper nonnegative splittings.

Theorem 3.15. Let A1 = U1 − V1 be a proper nonnegative splitting of type II
and 0 	= A2 = U2 − V2 be a proper nonnegative splitting of type I of semi-
monotone matrices A1 and A2, respectively. Suppose that A†

1 − A†
2 ≥ 0 and

A†
2V2 ≥ 0. If U†

1 − U†
2 ≥ A†

1 − A†
2, then ρ(U†

1V1) ≤ ρ(U†
2V2) < 1.

Proof. Since A2 = U2−V2 is a proper nonnegative splitting of type I of a semi-
monotone matrix A2 and A†

2V2 ≥ 0, then ρ(U†
2V2) < 1, by Lemma 3.2. Hence

it suffices to show that ρ(U†
1V1) ≤ ρ(U†

2V2). Since the splittings A1 = U1 − V1

and A2 = U2 − V2 are proper splittings, so we obtain U†
i UiA

†
i = A†

i and
U†

i AiA
†
i = U†

i for i = 1, 2, and we also have A†
1A1U

†
1 = U†

1 and A†
1U1U

†
1 = A†

1.
Using U†

1 − U†
2 ≥ A†

1 − A†
2 and properties of proper nonnegative splitting, we

obtain

U†
2V2A

†
2 = U†

2 (U2 − A2)A
†
2

= A†
2 − U†

2

≥ A†
1 − U†

1

= U†
1 (U1 − A1)A

†
1

= U†
1V1A

†
1

= A†
1V1U

†
1

≥ 0.
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Also, we have V1U
†
1 ≥ 0 and U†

2V2 ≥ 0. By (ii) of Theorem 2.2, there exist two
non-negative vectors x and y such that

V1U
†
1x = ρ(U†

1V1)x, yT U†
2V2 = yT ρ(U†

2V2).

Thus

ρ(U†
2V2)yT A†

2x = yT U†
2V2A

†
2x ≥ yT A†

1V1U
†
1x = ρ(U†

1V1)yT A†
1x.

Since A†
1 ≥ A†

2, so we have

ρ(U†
2V2)yT A†

2x ≥ ρ(U†
1V1)yT A†

2x.

Therefore

ρ(U†
1V1) ≤ ρ(U†

2V2)

in case of yT A†
2x > 0. The case yT A†

2x = 0 is discussed below. Let J be real
matrix of same order as in A1 and A2 such that J > 0. Then

(εJA†
2 + V1U

†
1 )x̂ = λ̂1x̂ (2)

and

ŷT (εA†
1J + U†

2V2) = λ̂2ŷ
T , (3)

by Theorem 2.2, where ε > 0, λ̂1 = ρ(εJA†
2 +V1U

†
1 ) and λ̂2 = ρ(εA†

1J +U†
2V2).

The condition ε > 0 yields that both εJA†
2 + V1U

†
1 and εA†

1J + U†
2V2 are

irreducible. By Theorem 2.3, λ̂1 and λ̂2 are increasing functions of ε ≥ 0, and
λ̂1 = ρ(V1U

†
1 ) and λ̂2 = ρ(U†

2V2). Pre-multiplying A†
1 to Eq. (2) and post-

multiplying A†
2 to Eq. (3), we have

(εA†
1JA†

2 + A†
1V1U

†
1 )x̂ = λ̂1A

†
1x̂

and

ŷT (εA†
1JA†

2 + U†
2V2A

†
2) = λ̂2ŷ

T A†
2.

Using the condition U†
2V2A

†
2 ≥ A†

1V1U
†
1 , we have

(εA†
1JA†

2 + U†
2V2A

†
2)x̂ ≥ (εA†

1JA†
2 + A†

1V1U
†
1 )x̂ = λ̂1A

†
1x̂.

Now, pre-multiplying ŷT to the above equation, we get

λ̂2ŷ
T A†

2x̂ ≥ λ̂1ŷ
T A†

1x̂ ≥ λ̂1ŷ
T A†

2x̂.

Since ε > 0, both vectors x̂ and ŷ are positive, so ŷT A†
2x̂ > 0. Hence λ̂1 ≤ λ̂2.

Taking the limit for ε → 0, we have ρ(U†
1V1) ≤ ρ(U†

2V2) < 1. �

Note that the condition A†
2V2 ≥ 0 in the above result can also be replaced

by A†
2U2 ≥ 0. One easy choice of J is a matrix whose entries are 1. The idea

of the proof for the case yT A†
2x = 0 is borrowed from the remark given in

page 310 of [30]. As a corollary, we have the following result for nonsingular
matrices.
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Corollary 3.16. Let A1 = U1 − V1 be a nonnegative splitting of type II and
0 	= A2 = U2 − V2 be a nonnegative splitting of type I of monotone matrices
A1 and A2, respectively. Suppose that A−1

1 − A−1
2 ≥ 0 and A−1

2 V2 ≥ 0. If
U−1
1 − U−1

2 ≥ A−1
1 − A−1

2 , then ρ(U−1
1 V1) ≤ ρ(U−1

2 V2) < 1.

We remark that Theorem 3.15 extends [22], Theorem 2.4, where the au-
thors have proved a similar result for proper weak regular splittings of different
types. Not only that the proof of [22], Theorem 2.4 did not contain the case
yT A†

2x = 0. Converse of Theorem 3.15 is also not true, and is shown by the
following example.

Example 3.17. Let A1 =
[

4 −5 0
−3 6 0

]
=

[
4 −3 0

−3 5 0

]
−

[
0 2 0
0 −1 0

]
=

U1 − V1. We have A†
1 =

⎡

⎣
6/9 5/9
3/9 4/9
0 0

⎤

⎦ and U†
1 =

⎡

⎣
5/11 3/11
3/11 4/11

0 0

⎤

⎦. Let A2 =

[
7 −3 0

−8 7 0

]
=

[
7 −2 0

−8 9 0

]
−
[

0 1 0
0 2 0

]
=U2−V2. Then A†

2=

⎡

⎣
7/25 3/25
8/25 7/25

0 0

⎤

⎦,

A†
1 − A†

2 =

⎡

⎣
0.3866 0.43555
0.01333 0.16444

0 0

⎤

⎦ and U†
1 − U†

2 =

⎡

⎣
0.2630 0.2301
0.10251 0.21470

0 0

⎤

⎦. Here,

we have A1 = U1 − V1 and A2 = U2 − V2 are proper nonnegative splittings of
type II and type I, respectively, and ρ(U†

1V1) = .1818 ≤ .4681 = ρ(U†
2V2) < 1,

but U†
1 − U†

2 � A†
1 − A†

2.

Finally, we conclude this section with the remark that Theorem 3.15 can
also be proved in a similar way for the case A1 = U1−V1 is a proper nonnegative
splitting of type I and A2 = U2 − V2 is a proper nonnegative splitting of II.

4. Comparison of Double Proper Nonnegative Splittings

One of the necessity to study theory of double splitting is motivated by the
fact that we can not ensure convergence of all proper nonnegative splittings
using the known results. This issue can be partially settled by studying conver-
gence theory of double proper nonnegative splitting because of [23], Theorem
4.3 which says that a convergent double proper nonnegative splitting is also a
convergent proper nonnegative splitting. Study of convergence theory of dou-
ble proper splitting further extends the case of double splitting for nonsingular
matrix introduced by Woźnicki [29]. Standard iterative methods like Jacobi,
Gauss-Seidel, SOR etc. can also be obtained by choosing particular matrices
in the double splitting of A, and is shown in [29]. This section focuses on com-
parison results for double proper nonnegative splittings. Some results even add
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new theory to the existing theory for nonsingular matrices. As an application,
theory of double proper splitting is also helpful in choosing pre-conditioners
(see [21], Sect. 4).

Jena et al. [11] and Mishra [23] proposed different types of double split-
tings for real rectangular matrices and studied their convergence theory. We
now recall the same theory first and then obtain a few comparison results.
A double splitting A = P − R − S of A ∈ R

m×n is called double proper if
R(P ) = R(A) and N(P ) = N(A). A double proper splitting A = P − R − S
of A (to Ax = b) leads to the following iterative scheme spanned by three
iterates:

xi+1 = P †Rxi + P †Sxi−1 + P †b, i > 0. (4)
Then (

xi+1

xi

)
=

(
P †R P †S

I O

) (
xi

xi−1

)
+

(
P †b
O

)
,

i.e.,
yi+1 = Wyi + d, (5)

where yi+1 =
(

xi+1

xi

)
, yi =

(
xi

xi−1

)
, W =

(
P †R P †S

I O

)
and d =

(
P †b
O

)
.

Here I and O stand for identity and null matrices, respectively with appro-
priate order. The iteration scheme (5) is convergent if ρ(W ) < 1, and then
A = P − R − S is called as a convergent double splitting.

Let us recall the definition of a double proper nonnegative splitting in-
troduced by Mishra [23] for a real rectangular matrix.

Definition 4.1. ([23], Definition 4.1) A double splitting A = P − R − S of A ∈
R

m×n is called double proper nonnegative splitting if R(P ) = R(A), N(P ) =
N(A), P †R ≥ 0 and P †S ≥ 0.

Setting P = U and R + S = V in the above Definition, we get a proper
nonnegative splitting. We now reproduce a convergence result which relates
convergence of single and double splitting.

Theorem 4.2. ([23], Theorem 4.3) Let A = P − R − S be a double proper
nonnegative splitting of A ∈ R

m×n. Then ρ(W ) < 1 if and only if ρ(U†V ) < 1,
where U = P and V = R + S.

Another convergence result for double proper nonnegative splitting is
recalled from Mishra [23].

Theorem 4.3. ([23], Theorem 4.5) Let A†P ≥ 0 and A = P −R−S be a double
proper nonnegative splitting of A ∈ R

m×n, then ρ(W ) < 1.

We next proceed to present comparison results for double proper non-
negative splittings. Let A = P1 − R1 − S1 = P2 − R2 − S2 be two double

proper nonnegative splittings of A. We then have W1 =
(

P †
1R1 P †

1S1

I O

)
≥ 0
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and W2 =
(

P †
2R2 P †

2S2

I O

)
≥ 0. Comparison theorems are very useful for

analyzing the rate of convergence of respective methods induced from differ-
ent splittings. On this background, we obtain a result as follows which is a
generalization of [15], Theorem 5 to rectangular matrices.

Theorem 4.4. Let A = P1 − R1 − S1 = P2 − R2 − S2 be two double proper
nonnegative splittings of a non-negative matrix A ∈ R

m×n. If P †
1 ≥ P †

2 and
P †
1R1 ≥ P †

2R2, then ρ(W1) ≤ ρ(W2) < 1 for 0 < ρ(W2) < 1.

Proof. We have now W1 ≥ 0 and W2 ≥ 0. So, applying Theorem 2.2 to W2,
there exists a non-negative vector x = [x1, x2]T , x 	= 0 such that W2x =
ρ(W2)x, i.e.,

P †
2R2x1 + P †

2S2x2 = ρ(W2)x1

x1 = ρ(W2)x2.

Then

W1x − ρ(W2)x =
(

P †
1R1x1 + P †

1S1x2 − ρ(W2)x1

x1 − ρ(W2)x2

)

=

(
(P †

1R1 − P †
2R2)x1 + 1

ρ(W2)
(P †

1S1 − P †
2S2)x1

x1 − ρ(W2)x2

)

The conditions P †
1R1 ≥ P †

2R2 and 0 < ρ(W2) < 1 again imply

W1x − ρ(W2)x ≤ 1
ρ(W2)

(
(P †

1R1 − P †
2R2)x1 + (P †

1S1 − P †
2S2)x1

0

)

=

(
1

ρ(W2)
[P †

1 (R1 + S1) − P †
2 (R2 + S2)]x1

0

)

=

(
1

ρ(W2)
[P †

1 (P1 − A) − P †
2 (P2 − A)]x1

0

)

=

(
1

ρ(W2)
[P †

2 − P †
1 ]Ax1

0

)
≤ 0.

We have used the fact P †
1P1 = P †

2P2 since A = P1−R1−S1 = P2−R2−S2 are
two double proper splittings. Thus, by Lemma 2.5, we have ρ(W1) ≤ ρ(W2) < 1
for 0 < ρ(W2) < 1. �

Theorem 4.4 is true if we replace the condition P †
1R1 ≥ P †

2R2 by R1 ≥ R2.
But it is more general than the theorem given below.

Theorem 4.5. Let A = P1 − R1 − S1 = P2 − R2 − S2 be two double proper
nonnegative splittings of a non-negative matrix A ∈ R

m×n. If P †
1 ≥ P †

2 and
R1 ≥ R2, then ρ(W1) ≤ ρ(W2) < 1 for 0 < ρ(W2) < 1.
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Proof. Since P †
1 ≥ P †

2 and R1 ≥ R2, it is clear that P †
1R1 ≥ P †

2R2, then by
Theorem 4.4, we have ρ(W1) ≤ ρ(W2) < 1. �

The next result compares convergence rate of two different linear systems,
and is an extension of [16], Theorem 6 to rectangular case. The idea of the
proof is similar to proof of [16], Theorem 6 and Theorem 4.4, and hence we
omit it.

Theorem 4.6. Let A1 = P1−R1−S1 and A2 = P2−R2−S2 be two double proper
nonnegative splittings of A ∈ R

m×n. If P †
1A1 ≥ P †

2A2 and P †
1R1 ≥ P †

2R2, then
ρ(W1) ≤ ρ(W2) < 1 for 0 < ρ(W2) < 1.

Other than these generalizations, we have a few new comparison results
for semi-monotone matrices, and are discussed below.

Theorem 4.7. Let A = P1 − R1 − S1 = P2 − R2 − S2 be two double proper
nonnegative splittings of a non-negative and semi-monotone matrix A ∈ R

m×n.
If P1 ≤ P2, and Pi ≥ 0, Ri ≥ 0 and Si ≥ 0 for i = 1, 2, then ρ(W1) ≤ ρ(W2) <
1.

Proof. We have A†Pi ≥ 0. Theorem 4.3 yields ρ(Wi) < 1 for i = 1, 2. Now
P1 ≤ P2 implies A+R1+S1 ≤ A+R2+S2 which again gives R1+S1 ≤ R2+S2,
i.e., R2 + S2 ≥ R1 + S1 ≥ 0. Setting U = P and V = R + S, we have
ρ(P †

1 (R1 + S1)) = ρ(U†
1V1) ≤ ρ(P †

2 (R2 + S2)) = ρ(U†
2V2) < 1 by Theorem 3.3.

Lemma 2.7 then yields ρ(W1) ≤ ρ(W2) < 1. �

The above theorem is also true if we replace the condition P1 ≤ P2 by
S1 ≤ S2 and R1 ≤ R2 which is shown next.

Theorem 4.8. Let A = P1 − R1 − S1 = P2 − R2 − S2 be two double proper
nonnegative splittings of a semi-monotone matrix A ∈ R

m×n. If 0 ≤ R1 ≤ R2

and 0 ≤ S1 ≤ S2, then ρ(W1) ≤ ρ(W2) < 1.

Proof. Since R1 ≤ R2, S1 ≤ S2 imply R1 + S1 ≤ R2 + S2. Hence by the
Theorem 3.3 and Lemma 2.7, we have ρ(W1) ≤ ρ(W2) < 1. �

Another comparison theorem for double proper nonnegative splitting is
as follows.

Theorem 4.9. Let A = P1 − R1 − S1 = P2 − R2 − S2 be two double proper
nonnegative splittings of A ∈ R

m×n. If P †
1S1 − P †

2S2 ≤ 0 and P †
1S1 − P †

2S2 ≤
P †
2R2 − P †

1R1, then ρ(W1) ≤ ρ(W2) < 1 for 0 < ρ(W2) < 1.

Proof. Clearly, from the definition of double proper nonnegative splittings, we
have W1 ≥ 0 and W2 ≥ 0. So, applying Theorem 2.2 to W2, there exists a
non-negative vector x = [x1, x2]T , x 	= 0 such that W2x = ρ(W2)x, i.e.,

P †
2R2x1 + P †

2S2x2 = ρ(W2)x1

x1 = ρ(W2)x2.
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We now have

W1x − ρ(W2)x =
(

P †
1R1x1 + P †

1S1x2 − ρ(W2)x1

x1 − ρ(W2)x2

)

=

(
(P †

1R1 − P †
2R2)x1 + 1

ρ(W2)
(P †

1S1 − P †
2S2)x1

x1 − ρ(W2)x2

)

Using the condition P †
1S1−P †

2S2 ≤ 0 and 0 < ρ(W2) < 1, we have 1
ρ(W2)

[P †
1S1−

P †
2S2]x1 ≤ (P †

1S1 − P †
2S2)x1. Then

W1x − ρ(W2)x ≤
(

(P †
1R1 − P †

2R2)x1 + (P †
1S1 − P †

2S2)x1

0

)

Again, from the condition P †
1S1 − P †

2S2 ≤ P †
2R2 − P †

1R1, we have P †
1 (R1 +

S1) − P †
2 (R2 + S2) ≤ 0. Then

W1x − ρ(W2)x ≤
(

[P †
1 (R1 + S1) − P †

2 (R2 + S2)]x1

0

)
≤ 0

From Lemma 2.5, we have ρ(W1) ≤ ρ(W2) < 1 for 0 < ρ(W2) < 1. �

The example given below describes that the converse of above theorem
is not true.

Example 4.10. Let A =
(

1 −1 0
−1 2 0

)
. Setting P2 =

(
3 0 0
0 3 0

)
, R2 =

(
1 0 0
1 0 0

)
and S2 =

(
1 1 0
0 1 0

)
, and P1 =

(
2 0 0
0 2 0

)
, R1 =

(
1 0 0
1 0 0

)
and

S1 =
(

0 1 0
0 0 0

)
, we have A = P1−R1−S1 = P2−R2−S2 two double proper

nonnegative splittings with A† ≥ 0. Then ρ(W1) ≤ ρ(W2) < 1 for 0 ≤ ρ(W2) <

1. But P †
1S1 − P †

2S2 =

⎛

⎝
−0.3333 0.1167 0

0 −0.3333 0
0 0 0

⎞

⎠ �

⎛

⎝
−0.1667 0 0
−0.1667 0 0

0 0 0

⎞

⎠ =

P †
2R2 − P †

1R1.

5. Conclusions

Improving convergence rate of iteration scheme (1) is a problem of interest
for getting solution faster. In this direction, Climent and Perea [6] proposed
multisplitting theory for rectangular matrices while the authors of [9] and [14]
studied the same problem for nonsingular matrices by using two stage iterative
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method. Iterative technique for solving rectangular system also avoids use of
the normal system AT Ax = AT b where AT A is frequently ill-conditioned and
influenced greatly by roundoff errors (see [10]).

In this note, we have presented a few results for computing least square
minimum norm solution of a rectangular system Ax = b in a faster way using
theory of proper nonnegative and double proper nonnegative splittings. We
also have produced some results which are helpful in choosing an effective pre-
conditioner for solving rectangular linear system in more faster way. While
computing Drazin inverse and Drazin inverse solution ADb to a square singular
system Ax = b is still a challenging problem as the solution ADb lies in the
Krylov subspace of (A, b), i.e., Ks(A, b) = span{b, Ab,A2b, . . . , As−1b}. Using
these approach, one can even solve the above stated problem.

Finally, we remark that a part of this work was presented by the second
author in International Conference in Linear Algebra and Applications, Dec
18–20, 2014 held at Manipal University, India.
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