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Abstract. In this paper, we calculate the Laplacian of the norm of the
cubic Simon form for a hypersurface with a relative normalization. The
method used here is developed in the rigidity theory of minimal submani-
folds. As consequences, we obtain some local and global rigidity theorems
about relative Tchebychev hypersurfaces.
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Introduction

Relative differential geometry is a general theory of the affine geometry of
hypersurfaces in an affine space. It contains equiaffine and centroaffine geom-
etry as special cases. For details of relative differential geometry, one refers to
[18,28].

Affine spheres are the most simple but very important objects in equiaffine
differential geometry. Many authors contribute their efforts to this subject.
Some properties and more references about affine spheres can be found in
[18,25,28]. In a series of papers [3,8–13,20–22], symmetric affine spheres were
intensively studied by F. Dillen, Z. Hu, C. Li, H. Li, X. Li, U. Simon, L.
Vrancken, etc.

Wang [30] introduced the concepts of a Tchebychev operator and of
Tchebychev hypersurfaces in centroaffine geometry. The conformal classifi-
cation of Tchebychev hypersurfaces is given in [23]. For some results about
Tchebychev hypersurfaces we refer to [14,17,19,23,24,29].

The authors of the paper [17] introduced the concept of a relative Tcheby-
chev hypersurface (in relative geometry) which includes the concepts of an

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-015-0487-6&domain=pdf
http://orcid.org/0000-0002-4139-6596


284 M. Li Results. Math.

affine sphere in equiaffine geometry and of a Tchebychev hypersurface in cen-
troaffine geometry as special cases. They also stated some local and global
Ricci-pinching theorems for relative Tchebychev hypersurfaces.

In the past two decades, the studies of affine hypersurfaces and of La-
grangian submanifolds interacted each other. Recently, [20] gives a direct cor-
responding between symmetric equiaffine spheres and symmetric minimal La-
grangian submanifolds in certain complex space forms. Inspired by the work
on rigidity theorems of minimal submanifolds and Lagrangian submanifolds,
such as [5,6,16], we are going to study rigidity problems about cubic forms for
relative Tchebychev hypersurfaces.

This paper is organized as follows. In Sect. 1, we review some basic facts in
relative geometry. In Sect. 2, first we review some basic facts about cubic Simon
forms and relative Tchebychev operators. Then we give a detailed calculation of
the Laplacian of the norm of the cubic Simon form. In Sect. 3, we obtain some
local and global rigidity results about the cubic form for relative Tchebychev
hypersurfaces.

1. Preliminaries

In this section, we would like to review the fundamental equations of an affine
hypersurface with a relative normalization. For details of the contents, one
refers to [18,28].

1.1. Relative Normalization of a Nondegenerate Hypersurface

Let A be an affine space which is modelled on a real vector space V of dimension
n + 1. Let V ∗ be the dual space of V , and 〈 , 〉 : V × V ∗ → R the canonical
pairing. A has a smooth manifold structure. Moreover TpA ∼= V and T ∗

p A ∼= V ∗

for each point p ∈ M . Let ∇̄ be a flat affine connection on TA, and ∇̄∗ the
dual connection on T ∗A.

Let x : M → A be an immersed connected oriented smooth manifold M
of dimension n. Then for each point p ∈ M , dx(TpM) is an n dimensional
subspace of Tx(p)A, and defines a one dimensional subspace CpM = {v∗

p ∈
V ∗| ker v∗

p = dx(TpM)} ⊂ T ∗
p A. The trivial line bundle CM =

⋃
p CpM is

called the conormal line bundle of x.
Let Y be a nowhere vanishing section of CM . If rank(dY, Y ) = n + 1,

then x is called a nondegenerate hypersurface. The nondegeneracy is inde-
pendent of the choice of the conormal field Y . In this paper, we will only
discuss nondegenerate hypersurfaces. Let y : M → V be a vector field with
rank(y, dx) = n+1. If 〈Y, dy〉 = 0, then y is called a relative normal field. Fur-
thermore, if 〈Y, y〉 = 1, then the pair {Y, y} is called a relative normalization of
x. From now on , all normalizations considered are relative normalizations. A
nondegenerate hypersurface x with a given relative normalization {Y, y} will
be denoted by a triple {x, Y, y}.
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We state the structure equations of such a triple {x, Y, y} as follows:

∇̄vy = dy(v) = −dx(S(v)),

∇̄vdx(w) = dx(∇vw) + h(v, w)y,

∇̄∗
vdY (w) = dY (∇∗

vw) − Ŝ(v, w)Y,

where S is the affine shape operator, h is a nondegenerate symmetric (0, 2)-
tensor, ∇ and ∇∗ are torsion free affine connections on TM respectively, and Ŝ
is a symmetric (0,2)-tensor. h is definite if and only if x(M) is locally strongly
convex; in this case, choosing an appropriate orientation of the normalization,
h is positive definite and thus a Riemannian metric (In the case that h is
nondegenerate one can consider h as a semi-Riemannian metric).

These geometric quantities satisfy the relations

Ŝ(v, w) = h(S(v), w) = h(v, S(w)),
dh(v1, v2) = h(∇v1, v2) + h(v1,∇∗v2). (1.1)

∇ and ∇∗ are torsion free affine connections on the tangent bundle TM of the
manifold M . If the triple {∇, h,∇∗} satisfies (1.1), then ∇ and ∇∗ are called
conjugate connections.

1.2. Consequences of Conjugate Connections

For a triple of conjugate connections {∇, h,∇∗}, one can define C = 1
2 (∇ −

∇∗) ∈ Ω1(M,End(TM)). By (1.1), the (0, 3)-tensor Ĉ := h ◦ C is totally sym-
metric and called the cubic form of {∇, h,∇∗}. For {∇, h,∇∗}, the Tchebychev
form T̂ is defined as the normalized trace of C,

T̂ =
1
n

trC.

The Tchebychev field T is the dual of T̂ with respect to h.
For conjugate connections {∇, h,∇∗}, the curvature tensors R, R∗ and

Rh of ∇, ∇∗ and ∇h, respectively, are related as follows

R = Rh + [∇h, C] + C ∧ C, (1.2)

R∗ = Rh − [∇h, C] + C ∧ C, (1.3)

where ∇h is the Levi-Civita connection of the semi-Riemannian metric h. The
Ricci tensors have the relations

Ric = Rich + divhC − n∇hT̂ + n〈T̂ , C〉 − α, (1.4)

Ric∗ = Rich − divhC + n∇hT̂ + n〈T̂ , C〉 − α, (1.5)

where α denotes the following symmetric (0,2)-tensor

α(U, V ) := tr{w → C(C(w)U)V }. (1.6)

For the conjugate connections {∇, h,∇∗}, induced by an affine hypersur-
face x(M) with a relative normalization {Y, y}, one can prove that ∇ and ∇∗
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are Ricci symmetric, and that the Tchebychev form is closed dT̂ = 0; see e.g.
[28].

1.3. Integrability Conditions

We have the following equations from the integrability of an affine hypersurface
x(M) with a relative normalization {Y, y},

(∇US)(V ) = (∇V S)(U), (1.7)
R(U, V )W = −(h(U,W )S(V ) − h(V,W )S(U)), (1.8)

and

(∇∗
U Ŝ)(V,W ) = (∇∗

V Ŝ)(U,W ), (1.9)

R∗(U, V )W = −(Ŝ(U,W )V − Ŝ(V,W )U). (1.10)

Using (1.2) and (1.3), it is clear that (1.7)–(1.10) imply the following
complete integrability conditions in terms of ∇h,

Rh(U, V )W = −1
2

[
h(U,W )S(V ) − h(V,W )S(U) + Ŝ(U,W )V − Ŝ(V,W )U

]

+ [C(C(U)W )V − C(C(V )W )U ] , (1.11)

(∇h
UC)(V )W − (∇h

V C)(U)W

= −1
2

[
h(U,W )S(V ) − h(V,W )S(U) − Ŝ(U,W )V + Ŝ(V,W )U

]
, (1.12)

and

(∇h
US)V − (∇h

V S)U = C(SU)V − C(SV )U. (1.13)

We list here two formulas about the Ricci curvature and scalar curvature
as they will be used soon after,

Rich = α − n〈T̂ , C〉 +
1
2
((trS)h + (n − 2)Ŝ), (1.14)

and

n(n − 1)κ =: trRich = (n − 1)trS + ‖C‖2 − n2‖T‖2; (1.15)

κ is called the normalized scalar curvature.
Note that (1.14) and (1.15) follow directly from the integrability condition

(1.11).

2. Some Properties of Cubic Forms

2.1. Cubic Simon Forms, Quadrics and Relative Tchebychev Hypersurfaces

Let x : M → A be a nondegenerate n-dimensional hypersurface immersed into
an (n+1)-dimensional affine space A. For any relative normalization {Y, y} of
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x(M), the cubic Simon form C̃ as a (1,2)-tensor field is defined as the traceless
part of the cubic form C:

C̃(U, V ) := C(U, V ) − n

n + 2
{h(U, V )T + h(U, T )V + h(V, T )U} . (2.1)

It is proved that C̃ is independent of the choice of the relative normal-
ization. Moreover, the equation C̃ = 0 characterizes quadrics (cf. [28]).
The following (1,1)-tensor fields

L :=
1
2
S − n

n + 2
∇hT and L̃ := L − 1

n
trL id

are defined in [17]. Following [17], a hypersurface x(M) is called a relative
Tchebychev hypersurface with respect to a relative normalization {Y, y}, if
L = λ id, or equivalently L̃ = 0. One should note that the concept of a relative
Tchebychev hypersurface depends on the choice of the normalization.

Lemma 1 [17]. Let x(M) be a nondegenerate hypersurface with a relative nor-
malization {Y, y}. Then the following equation holds

(∇h
U C̃)(V,W ) − (∇h

V C̃)(U,W )

= −
[
h(U,W )L̃(V ) − h(V,W )L̃(U) − h(L̃(U),W )V + h(L̃(V ),W )U

]
.

(2.2)

It implies that divhC̃ = −nh ◦ L̃. As consequences, the following condi-
tions are equivalent

(i) x(M) is a relative Tchebychev hypersurface;
(ii) (∇h

U C̃)(V,W ) = (∇h
V C̃)(U,W ) for any vector fields U, V,W ∈ Γ(TM);

(iii) divhC̃ = 0.

2.2. Estimates of Δh‖C̃‖2

Let x : M → A be a nondegenerate immersed hypersurface of dim M = n. Let
{Y, y} be a relative normalization of x(M). A local frame field e1, . . . , en, en+1

is called an adapted relative affine frame field if en+1 = y and e1, . . . , en are
local orthonormal tangent vector fields with respect to h. Their dual frame
fields are θ1, . . . , θn, θn+1 = Y . In this paper we adopt the index range

1 ≤ i, j, k, l, p, q, s, t ≤ n.

Then from (1.11) and (2.1), we have

R j
i kl = −1

2

(
δkiS

j
l − δliS

j
k + Skiδ

j
l − Sliδ

j
k

)
+

(
Ct

kiC
j
tl − Ct

liC
j
tk

)
, (2.3)

and

C̃k
ij = Ck

ij − n

n + 2
(
T kδij + T iδjk + T jδki

)

= Ck
ij − Bk

ij , (2.4)
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where R j
i kl = h

(
Rh(ek, el)ei, ej

)
, Ck

ij = h(C(ei)ej , ek), T k = h(T, ek) and

Bk
ij :=

n

n + 2
(
T kδij + T iδjk + T jδki

)
.

Theorem 1. Let x(M) be an affine hypersurface with a given relative normal-
ization {Y, y}. Then the Laplacian of ‖C̃‖2 with respect to the metric h has
the following expression:

1
2
Δh‖C̃‖2 = ‖∇hC̃‖2 − (n + 2)

∑

ijk

C̃k
ijL̃

k
i,j +

n + 2
2

∑

jp

α̃jpSjp +
1
2
trS‖C̃‖2

+
∑

ij

N
(
C̃iC̃j − C̃jC̃i

)
+ ‖α̃‖2

− n
∑

jkst

C̃k
ijC̃

k
jtC̃

s
tiT

s − n2

n + 2

∑

ijksp

C̃k
ijC̃

k
pjT

iT p − n2

n + 2
‖C̃‖2‖T‖2,

(2.5)

where the notation N(A) := trAtA =
∑

ij(aij)2 is used for a matrix A = (aij)
as usual (cf. [5,6,16]), C̃i denotes the matrix (C̃i

kt) and α̃ij :=
∑

kt C̃i
ktC̃

j
kt.

Proof. By definition, one has

1
2
Δh‖C̃‖2 = ‖∇hC̃‖2 +

∑

ijk

C̃k
ijΔ

hC̃k
ij ,

where ΔhC̃k
ij :=

∑
t C̃k

ij,tt; using the local calculus, the comma “,” indicates
covariant differentiation in terms of ∇h.

We reformulate (2.2) under the adapted frame field as

C̃k
ij,t − C̃k

it,j = −
(
δtiL̃

k
j − δjiL̃

k
t − L̃tiδ

k
j + L̃jiδ

k
t

)
. (2.6)

The Ricci identity reads

C̃k
ij,ts − C̃k

ij,st = C̃k
pjR

p
i ts + C̃k

ipR
p
j ts − C̃p

ijR
k
p ts. (2.7)

By (2.6) and (2.7), we have
∑

t

C̃k
ij,tt =

∑

t

C̃k
it,jt −

∑

t

(
δtiL̃

k
j,t − δjiL̃

k
t,t − L̃ti,tδ

k
j + L̃ji,tδ

k
t

)

=
∑

t

C̃k
it,tj +

∑

t

(
C̃k

ptR
p
i jt + C̃k

ipR
p
t jt − C̃p

itR
k
p jt

)

−
∑

t

(
δtiL̃

k
j,t − δjiL̃

k
t,t − L̃ti,tδ

k
j + L̃ji,tδ

k
t

)

=
∑

t

C̃k
tt,ij −

∑

t

(
δttL̃

k
i,j − δitL̃

k
t,j − L̃tt,jδ

k
i + L̃it,jδ

k
t

)
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+
∑

t

(
C̃k

ptR
p
i jt + C̃k

ipR
p
t jt − C̃p

itR
k
p jt

)

−
∑

t

(
δtiL̃

k
j,t − δjiL̃

k
t,t − L̃ti,tδ

k
j + L̃ji,tδ

k
t

)
. (2.8)

Since C̃ is traceless, by (2.3) and (2.8), we get
∑

ijk

C̃k
ijΔ

hC̃k
ij =

∑

ijkt

C̃k
ijC̃

k
ij,tt

= −(n + 2)
∑

ijk

C̃k
ijL̃

k
i,j +

∑

ijktp

C̃k
ij

(
C̃k

ptR
p
i jt + C̃k

ipR
p
t jt − C̃p

itR
k
p jt

)

= −(n + 2)
∑

ijk

C̃k
ijL̃

k
i,j

+
∑

ijkstp

C̃k
ijC̃

k
pt

[

−1
2

(
δjiS

p
t −δtiS

p
j +Sjiδ

p
t − Stiδ

p
j

)
+

(
Cs

jiC
p
st−Cs

tiC
p
sj

)
]

+
∑

ijkstp

C̃k
ijC̃

k
ip

[

−1
2

(
δjtS

p
t −δttS

p
j + Sjtδ

p
t −Sttδ

p
j

)
+

(
Cs

jtC
p
st−Cs

ttC
p
sj

)
]

−
∑

ijkstp

C̃k
ijC̃

p
it

[

−1
2

(
δjpS

k
t −δtpS

k
j + Sjpδ

k
t −Stpδ

k
j

)
+

(
Cs

jpC
k
st−Cs

tpC
k
sj

)
]

= −(n + 2)
∑

ijk

C̃k
ijL̃

k
i,j +

n + 2
2

∑

ijkp

C̃k
ijC̃

k
piSjp +

1
2
trS‖C̃‖2

+
∑

ijkstp

C̃k
ijC̃

k
pt

(
Cs

jiC
p
st − Cs

tiC
p
sj

)

︸ ︷︷ ︸
I

+
∑

ijkstp

C̃k
ijC̃

k
ip

(
Cs

jtC
p
st − Cs

ttC
p
sj

)

︸ ︷︷ ︸
II

−
∑

ijkstp

C̃k
ijC̃

p
it

(
Cs

jpC
k
st − Cs

tpC
k
sj

)

︸ ︷︷ ︸
III

.

The three terms I, II, III have the following expressions,

I =
∑

ijkstp

C̃k
ijC̃

k
pt

(
C̃s

jiC̃
p
st − C̃s

tiC̃
p
sj

)

+
∑

ijkstp

C̃k
ijC̃

k
pt

(
C̃s

jiB
p
st + Bs

jiC̃
p
st − C̃s

tiB
p
sj − Bs

tiC̃
p
sj

)

+
∑

ijkstp

C̃k
ijC̃

k
pt

(
Bs

jiB
p
st − Bs

tiB
p
sj

)

=
∑

ijkstp

C̃k
ijC̃

k
pt

(
C̃s

jiC̃
p
st − C̃s

tiC̃
p
sj

)
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− 2n

n + 2

∑

ijkst

C̃k
ijC̃

k
jtC̃

s
tiT

s − 2n2

(n + 2)2
∑

ijksp

C̃k
ijC̃

k
pjT

iT p

− n2

(n + 2)2
‖C̃‖2‖T‖2,

II =
∑

ijkstp

C̃k
ijC̃

k
ip

(
C̃s

jtC̃
p
st − C̃s

ttC̃
p
sj

)

+
∑

ijkstp

C̃k
ijC̃

k
ip

(
C̃s

jtB
p
st + Bs

jtC̃
p
st − C̃s

ttB
p
sj − Bs

ttC̃
p
sj

)

+
∑

ijkstp

C̃k
ijC̃

k
ip

(
Bs

jtB
p
st − Bs

ttB
p
sj

)

=
∑

ijkstp

C̃k
ijC̃

k
ipC̃

s
jtC̃

p
st − n(n − 2)

n + 2

∑

ijksp

C̃k
ijC̃

k
ipC̃

p
sjT

s

− n2(n − 2)
(n + 2)2

∑

ijksp

C̃k
ijC̃

k
ipT

jT p

− n3

(n + 2)2
‖C̃‖2‖T‖2,

III =
∑

ijkstp

C̃k
ijC̃

p
it

(
C̃s

jpC̃
k
st − C̃s

tpC̃
k
sj

)

+
∑

ijkstp

C̃k
ijC̃

p
it

(
C̃s

jpB
k
st + Bs

jpC̃
k
st − C̃s

tpB
k
sj − Bs

tpC̃
k
sj

)

+
∑

ijkstp

C̃k
ijC̃

p
it

(
Bs

jpB
k
st − Bs

tpB
k
sj

)

=
∑

ijkstp

C̃k
ijC̃

p
it

(
C̃s

jpC̃
k
st − C̃s

tpC̃
k
sj

)

+
2n

n + 2

∑

ijkst

C̃k
ijC̃

j
itC̃

k
stT

s +
2n2

(n + 2)2
∑

ijkt

C̃k
ijC̃

j
itT

kT t

+
n2

(n + 2)2
‖C̃‖2‖T‖2.

Combining the above formulae about I, II and III, we have
1
2
Δh‖C̃‖2 = ‖∇hC̃‖2 +

∑

ijk

C̃k
ijΔ

hC̃k
ij

= ‖∇hC̃‖2 − (n + 2)
∑

ijk

C̃k
ijL̃

k
i,j +

n + 2
2

∑

ijkp

C̃k
ijC̃

k
piSjp +

1
2
trS‖C̃‖2

+
∑

ijkstp

C̃k
ijC̃

k
pt

(
C̃s

jiC̃
p
st − C̃s

tiC̃
p
sj

)
+

∑

ijkstp

C̃k
ijC̃

k
ipC̃

s
jtC̃

p
st
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−
∑

ijkstp

C̃k
ijC̃

p
it

(
C̃s

jpC̃
k
st − C̃s

tpC̃
k
sj

)

− n
∑

jkst

C̃k
ijC̃

k
jtC̃

s
tiT

s − n2

n + 2

∑

ijksp

C̃k
ijC̃

k
pjT

iT p − n2

n + 2
‖C̃‖2‖T‖2

= ‖∇hC̃‖2 − (n + 2)
∑

ijk

C̃k
ijL̃

k
i,j +

n + 2
2

∑

jp

α̃jpSjp +
1
2
trS‖C̃‖2

− n2

n + 2
‖C̃‖2‖T‖2

+
∑

ij

N
(
C̃iC̃j − C̃jC̃i

)
+ ‖α̃‖2 − n

∑

jkst

C̃k
ijC̃

k
jtC̃

s
tiT

s

− n2

n + 2

∑

ijksp

C̃k
ijC̃

k
pjT

iT p.

�

From Theorem 1, we have some estimates of Δh‖C̃‖2. For locally strongly
convex hypersurfaces, the following theorem holds.

Theorem 2. Let x(M) be a locally strongly convex hypersurface with a relative
normalization {Y, y}. Then

1

2
Δh‖C̃‖2 ≥ −(n + 2)

∑

ijk

C̃k
ijL̃

k
i,j

+ ‖C̃‖2

[

(n + 1)λmin(S) − n2(n + 10)

4(n + 2)
‖T‖2 +

1

n
‖C̃‖2

]

,

where λmin(S) denotes the minimal eigenvalue of S. Moreover, if x(M) is a
locally strongly convex relative Tchebychev hypersurface, then L̃ = 0 and

1
2
Δh‖C̃‖2 ≥ ‖C̃‖2

[

(n + 1)λmin(S) − n2(n + 10)
4(n + 2)

‖T‖2 +
1
n

‖C̃‖2
]

. (2.9)

Proof. On the set where T is not zero, we can choose an adapted local frame
such that e1 = T/‖T‖. Then

1
2
Δh‖C̃‖2 = ‖∇hC̃‖2 − (n + 2)

∑

ijk

C̃k
ijL̃

k
i,j +

n + 2
2

∑

jp

α̃jpSjp +
1
2
trS‖C̃‖2

− n2

n + 2
‖C̃‖2‖T‖2 +

∑

ij

N
(
C̃iC̃j − C̃jC̃i

)

+
∑

ij

α̃2
ij − n

∑

ij

α̃ijC̃
1
ij‖T‖ − n2

n + 2

∑

ij

(C̃1
ij)

2‖T‖2

= ‖∇hC̃‖2 − (n + 2)
∑

ijk

C̃k
ijL̃

k
i,j +

n + 2
2

∑

jp

α̃jpSjp +
1
2
trS‖C̃‖2
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− n2

n + 2
‖C̃‖2‖T‖2 +

∑

ij

N
(
C̃iC̃j − C̃jC̃i

)

+
∑

ij

(
α̃ij − n

2
C̃1

ij‖T‖
)2

− n2(n + 6)
4(n + 2)

∑

ij

(C̃1
ij)

2‖T‖2

≥ −(n + 2)
∑

ijk

C̃k
ijL̃

k
i,j + (n + 1)λmin(S)‖C̃‖2

+
1
n

‖C̃‖4 − n2(n + 10)
4(n + 2)

‖T‖2‖C̃‖2.

We have used the following inequalities
∑

ij

N
(
C̃iC̃j − C̃jC̃i

)
≥ 1

n
‖C̃‖4, (2.10)

and
∑

jp

α̃jpSjp = tr(α̃S) ≥ tr(α̃)λmin(S) = ‖C̃‖2λmin(S), (2.11)

as α̃ is semi-positive for locally strongly convex hypersurfaces, and S is sym-
metric.

On the set where T = 0, one easily has the required inequalities. �

For nondegenerate relative spheres, i.e., S = λ id for some constant λ,
we have the following estimate.

Theorem 3. Let x(M) be a nondegenerate relative sphere with respect to a
normalization {Y, y}, thus S = λ id. If x(M) is also a relative Tchebychev
hypersurface then

1
2
Δh‖C̃‖2 ≥ ‖C̃‖2

[

(n + 1)λ − n2(n + 10)
4(n + 2)

‖T‖2 +
1
n

‖C̃‖2
]

. (2.12)

The proof of Theorem 3 is similar to that of Theorem 2, except (2.11).
In this case, (2.11) is an equation

∑

jp

α̃jpSjp = λ‖C̃‖2.

More specifically, if we consider nondegenerate equiaffine spheres then
the following inequalities hold as a corollary of Theorem 3.

Corollary 1. Let x(M) be a nondegenerate equiaffine sphere, thus S = λ id.
As T = 0 here, M is automatically a relative Tchebychev hypersurface, and
then (2.12) has a simpler form

1
2
Δh‖C‖2 ≥ ‖C‖2

[

(n + 1)λ +
1
n

‖C‖2
]

. (2.13)
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Remark 1. We compare our results with classical results about the Pick in-
variant [15,18,25–27],

1
2
Δh‖C‖2 ≥ ‖C‖2

[

(n + 1)λ +
n + 1

n(n − 1)
‖C‖2

]

, (2.14)

we observe that our estimates are not optimal for equiaffine spheres; in this
case one needs more careful estimates.

In the case n > 2, the following expression of Δh‖C̃‖2 was obtained in
the paper [17] for the purpose of Ricci-pinching theory,

1
2
Δh‖C̃‖2 = ‖∇hC̃‖2 − (n + 2)

∑

ijk

C̃k
ijL̃

k
i,j + ‖W‖2

+
n + 2
n − 2

∑

ij

α̃ij

(

Rij − 2n

n + 2
κδij

)

, (2.15)

where W is the Weyl conformal curvature tensor,

Wijkl := Rijkl − 1
n − 2

(Rikδjl + Rjlδik − Rilδjk − Rjkδil)

+
nκ

n − 2
(δikδjl − δilδjk) .

Comparing the formulae (2.5) and (2.15), one gets a formula about the
norm of the Weyl tensor.

Corollary 2. The norm of the Weyl tensor can be expressed in terms of C̃ and
h only, namely:

‖W‖2 =
2

(n − 1)(n − 2)
‖C̃‖4 +

∑

ij

N
(
C̃iC̃j − C̃jC̃i

)
− 4

n − 2

∑

ij

α̃2
ij

+
2n2

n + 2

∑

ijksp

C̃k
ijC̃

k
pjT

iT p +
n2

n + 2
‖C̃‖2‖T‖2. (2.16)

Proof. First one notes that

α̃ = α − 4n

n + 2
〈T̂ , C〉 − n2(n − 2)

(n + 2)2
T̂ ⊗ T̂ +

2n2

(n + 2)2
‖T̂‖2h. (2.17)

Using a local adapted frame field, one combines (1.14), (2.4) and (2.17)
to get

n + 2
n − 2

∑

ij

α̃ijRij

=
n + 2

2

∑

ij

α̃ijSij +
1
2

(

1 +
4

n − 2

)

trS‖C̃‖2 +
(

1 +
4

n − 2

) ∑

ij

α̃2
ij



294 M. Li Results. Math.

− n
∑

jkst

C̃k
ijC̃

k
jtC̃

s
tiT

s − 3n2

n + 2

∑

ijksp

C̃k
ijC̃

k
pjT

iT p

− n2

n + 2

(

2 +
2

n − 2

)

‖C̃‖2‖T‖2. (2.18)

By (2.4), (2.18) and (1.15), we have

‖W‖2 +
n + 2
n − 2

∑

ij

α̃ij

(

Rij − 2n

n + 2
κδij

)

= ‖W‖2 +
n + 2
n − 2

∑

ij

α̃ijRij − 2n

n − 2
κ‖C̃‖2 = ‖W‖2 +

n + 2
n − 2

∑

ij

α̃ijRij

− 2‖C̃‖2
(n − 1)(n − 2)

[

(n − 1)trS + ‖C̃‖2 − n − 1
n + 2

n2‖T‖2
]

=
n + 2

2

∑

ij

α̃ijSij +
1
2
trS‖C̃‖2 +

∑

ij

α̃2
ij +

∑

ij

N
(
C̃iC̃j − C̃jC̃i

)

− n
∑

jkst

C̃k
ijC̃

k
jtC̃

s
tiT

s − n2

n + 2

∑

ijksp

C̃k
ijC̃

k
pjT

iT p − n2

n + 2
‖C̃‖2‖T‖2

+

⎡

⎣ 4
n − 2

∑

ij

α̃2
ij − 2

(n − 1)(n − 2)
‖C̃‖4 −

∑

ij

N
(
C̃iC̃j − C̃jC̃i

)

− 2n2

n + 2

∑

ijksp

C̃k
ijC̃

k
pjT

iT p − n2

n + 2
‖C̃‖2‖T‖2

⎤

⎦ + ‖W‖2.

Then the corollary follows form (2.5) and (2.15). �

Remark 2. If one uses the expression (2.15), by (1.14), (1.15), (2.4) and (2.17),
there is also a formula similar to (2.5). But the derived estimates will not be
better than Theorems 2 and 3.

3. Rigidity Theorems for Relative Tchebychev Hypersurfaces

As applications of Theorems 2 and 3, in this section we are going to prove
some rigidity theorems for relative Tchebychev hypersurfaces.

Theorem 4. Let x(M) be a locally strongly convex relative Tchebychev hyper-
surface with respect to the relative normalization {Y, y}. Assume that x(M)
satisfies

(i) ‖C̃‖2 = constant,

(ii) ‖T‖2 <
4(n + 2)

n2(n + 10)

(

(n + 1)λmin(S) +
1
n

‖C̃‖2
)

.
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Then x(M) is a quadric.

Proof. The assumptions (i) and (2.9) imply that

0 ≥ ‖C̃‖2
[

(n + 1)λmin(S) − n2(n + 10)
4(n + 2)

‖T‖2 +
1
n

‖C̃‖2
]

≥ 0.

By the above formula and (ii), one gets ‖C̃‖2 = 0 on x(M). So x(M) is
a quadric. �

The classification of locally strongly convex equiaffine hypersurfaces with
parallel cubic form shows that there exist many non-quadratic hypersurfaces
in this class, they are hyperbolic affine spheres (cf. [12,13,20]). For such hy-
persurfaces, we have an upper bound of the norm of the cubic form.

Corollary 3. Let x(M) be a locally strongly hypersurface with equiaffine nor-
malization. Let ∇hC = 0 and C �= 0. It is well known that M is a hyperbolic
affine sphere and S = λ id. Then

‖C‖2 ≤ n(n + 1)|λ|.
Proof. The apolarity condition for the equiaffine normalization states that
T = 0, and this implies C̃ = C. As already stated ∇hC = 0 implies that
M is a hyperbolic affine sphere (cf. [3,8]); moreover ∇hC = 0 also gives that
‖C‖2 = constant. Finally we get that (n + 1)λ + 1

n‖C‖2 ≤ 0. �

For a hyperovaloid, we have the following gap theorem.

Theorem 5. Let x(M) be a hyperovaloid and additionally a relative Tchebychev
hypersurface with respect to a relative normalization {Y, y}. Assume that x(M)
satisfies

‖T‖2 <
4(n + 2)

n2(n + 10)

(

(n + 1)λmin(S) +
1
n

‖C̃‖2
)

.

Then x(M) is an ellipsoid.

Proof. Since M is closed, we have

0 =
∫

M

1
2
Δh‖C̃‖2 ≥

∫

M

‖C̃‖2
[

(n + 1)λmin(S) − n2(n + 10)
4(n + 2)

‖T‖2 +
1
n

‖C̃‖2
]

.

By the assumption, ‖C̃‖2 must be zero everywhere. As x(M) is locally
strongly convex this implies C̃ = 0, and thus x(M) is an ellipsoid. �

Remark 3. In the paper [24], Liu and Wang proved that relative Tchebychev
ovaloids in A3 must be ellipsoids. So Theorem 5 gives new information only
for dimension n ≥ 3.

When the normalization of the closed manifold M is centroaffine, then
x(M) is always a relative sphere and satisfies S = id. In this case, we have the
following theorem of Blaschke–Deicke [1,2,4,7,25] as a corollary of Theorem 5.
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Corollary 4 (Blaschke–Deicke). Let x(M) be a hyperovaloid with centroaffine
normalization {Y,−x}. If the centroafine Tchebychev field satisfies T = 0 then
C = 0 and x(M) is an ellipsoid.

Proof. T = 0 implies that x(M) is a centroaffine Tchebychev hypersurface. In
this case C̃ = C, and the following inequality holds

0 = ‖T‖2 <
4(n + 2)

n2(n + 10)

(

(n + 1) +
1
n

‖C‖2
)

.

Then Theorem 5 implies that C = 0 and x(M) is an ellipsoid. �
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