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Abstract. In this paper, we introduce a certain class of linear positive
operators via a generating function, which includes the non-tensor MKZ
operators and their non-trivial extension. In investigating the approxima-
tion properties, we prove a new Korovkin type approximation theorem by
using appropriate test functions. We compute the rate of convergence of
these operators by means of the modulus of continuity and the elements
of modified Lipschitz class functions. Furthermore, we give functional
partial differential equations for this class. Using the corresponding equa-
tions, we calculate the first few moments of the non-tensor MKZ operators
and investigate their approximation properties. Finally, we state the mul-
tivariate versions of the results and obtain the convergence properties of
the multivariate Meyer—Konig and Zeller operators.
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1. Introduction

It was Korovkin who introduced the idea of approximation to a function by
means of positive linear operators [18]. Different variants of the Korovkin’s
theorems can be found in [7]. Especially in the last two decades, many math-
ematicians studied and improved this theory by defining positive linear oper-
ators on various function spaces (see [12-14,21]). In the present paper, we are
concerned with the celebrated Meyer—Konig and Zeller operators which were
defined in [20] by

M (f;a) = if <n—l—l]z—i—1) <”Zk)xk(1 ) e e [01).
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Different variants of these operators and their approximation properties have
been an area of intensive research during the last five decades (see [2,3,11,15,
23]). The slightly modified form of these operators were given by Cheney and
Sharma [9], where they replaced the nodes ﬁ by niwc and introduced the
modified operators, which they called Bernstein power series. In 2005, Altin
et al. [6] considered a generating function extension of the Bernstein power
series and proved a Korovkin type approximation theorem by using the test

functions f,(t) = (&) (i = 0,1,2). It should be noticed that, if one uses the
usual Korovkin’s theorem (where the test functions are f;(t) =t (i = 0,1,2))
in investigating the approximation properties of the operators M, (f;z), it is
not easy to calculate the second moment. Alkemade [5] solved this problem,
but the result was not sufficiently useful. For the estimation of the higher order

moments, we refer [1,8,16]. Another generalization of Bernstein power series

was given in [10], where the author used the test functions f;(t) to prove a
Voronovskaja type asymptotic formula. The uniform approximation properties
of the Bernstein power series were obtained very recently in [17].

Tagdelen and Erengin [22] introduced the bivariate tensor type generaliza-
tion of the Bernstein power series by means of the generating functions. They
proved a Korovkin type approximation theorem by introducing the test func-
tions fO(Svt):Lfl(sat)* 1—s sa f2(5 t) and f3(5 t) (1 g)2+(%—t)2'
Recently, the multivariable version of the above mentioned Korovkin theorem
involving the matrix summability methods was given in [4].

Let

Sa={x=(z,y):0<2<A<1, 0<y<A-z}.

In the present paper, we introduce the following non-tensor two variable op-
erators:

o0
Ak ln Ck,l,n
L ‘T 30y sl
nlfizy) = Q(u,v;2,y) kzljof (ak,l,n + Chin + b Qi + Chan + bn)
X Pk,l(u, v)zFy! (1)
where
a C
holon holon €84,(0<A<1)

)
Qi + Chin +bn Qg in + Crin + by

Py (u,v) > 0 for all Sq4 € R? and {2, (s,t; 2, y) fnen is the generating function
for the double indexed function sequence {P};(u,v)}x ien, given in the form

Qu(u,vi,y) = > Py(u,0)z’y', (2)
k,1=0
(Ivy) € SA

It is clear that L, (f;z,y) is linear and positive and therefore monotone.
Throughout the paper, we assume that the following conditions hold:
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(1) Qn(uvv; ZL',y) = (1 —T—= y)Qn+1(u,v;x, y)7
(i) k1,00 P (u,v) = bn+1ng1(u,v), Cra+1,n PR (U, 0) = bn+1p;?fl
(u,v),
(111) Ak+1,l,;n = Okl n+1 + dp, ag,1,n = 0, ‘dn| <K <o (Vn € N),
(iV) Ck,l+1,n = Ck,l,n+1 T €n, Ck0n = 0, |6n| <Ky < o0 (VTL S N)
(v) Timy, o0 by = 00, lim, o bn+1 =1andb, #0 (Vn eN).

Note that, choosing Q, (u,v;z,y) = W7 we see from (2) that
P,zfl(u,v) = (":kH)!. Further, taking ag;, =k, cxin =1 and b, = n in (1),

]
we obtain the non-tensor bivariate Meyer—Konig and Zeller operators (see [19])

o
+k+1D)! k l
ML (f- —(1—z— g (n 2ot .
n(fizy)=Q1-2 k;_:o nlkl v k+l+n"k+1l+n

Letting u,v > 0 to be fixed, and taking Q,(u,v;z,y) = W
then P (u,v) will be

PI () = n+utv+k+1\ Th+ut+v+k+1+1)
RV )= k1 T Ttutot DR

Choosing, axn =k, ckin =1 and b, = n+ v+ v, we define the generalized
form of non-tensor bivariate Meyer—-Konig and Zeller operators:

. bty n—|—u—|—v—|—k+l
WO (fray) =1 —a - **“Z( ) aty'f
k,1=0
k l
x (k+l+n+u+v’k+l+n+u+v>’ ®)

Clearly, ML, (f;z,y) = Aglo,o)(f; z,y).

2. Korovkin Type Theorem

Throughout the paper, we consider the following test functions

s t
@O(Sa ) ) 901(57 ) 1—5—t, 4)02(8 ) 1—S—t,

et = (7=2) + (=)

Clearly, for

s — Ay ko n t— Cky ,k2,n
— b=
Aky ka,n T Chy ko + bn Qky kayn F Chiy ko yn T On
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we have
( Aky ko n Cky,ka,n ) _ ki kan (4)
- )
Ay ko F Chykan & 0n Gkt ko n + Chy ko + Dn by,
( Ay, ko n Cky ,ka,n ) _ Cky kg, (5)
- )
Aky ko,n + Chykzn + bn Qky kon + Chy ko + bn bn
( akl ko,m Ckl ka,m )
Aky koyn + Ckl;k27n + bn Qky kon + Chy ko + by,

2
akl k?z ckl kz n
— yR2,1 22, . 6

In this paper, we consider the following function space

Ho(Sa) s ={f € C(Sa) : [f(s,8) = fz,9)] < w ([ (15, 1), p2(s,1))
_(<P1($ay)7ﬂp2($ay))|)} (7)
where C'(S4) denotes the space of continuous functions defined on Sy,

[(p1(8:1), p2(s,t)) — (@1(5573/)7902(53&))‘

= (@1(5,8) — 01(3,9)) + (93(5,1) — @3, ))?

and

o(£:0) =sup {11(5,0) = Fe] (520 (o) € Sa (s =2 4 (00" < 0}

is the modulus of continuity of f satisfying the following properties:

(a) w is non-negative and increasing function of ¢,
(b) w(fv 51 + 52) < w(fa 51) + w(fv 52))
(¢) lims o+w(f,0) =0.

Clearly, for each (s,t), (z,y) € Sa and for all f € H,,(S4), we have
|f(8 t) —f((E y)‘ Sw(f (5) (1+ |(901(87t)7902(37t)) — (wl(xay)ﬂO?(xvy)”) )

5
(8)

In the following theorem, we prove one of the main result of the paper.

Theorem 1. Let T, : H,(Sa) — C(Sa) be a sequence of linear positive opera-
tors satisfying

nh_{I;o 1T (i35 -) — ‘piHC(SA) =0, (1=0,1,2,3) 9)

where || - ||¢(s,) denotes the usual supremum norm on C(Sa). Then for all
fe€H,(Sa), we have

nlLH;O 1T (f5+) = Fllogsay =0
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Proof. Let f € H,(S4) be given. For all € > 0, we have from property (c) that

|f(8at) - f(xuy)| <e€
for (s,t), (x,y) € Sa, satisfying

s T 2 t Y 2
- - 0
<l—s—t 1—:E—y> +(1—s—t 1—x—y) <

with some § > 0. On the other hand, since f € C(S4), for (s,t),(x,y) € Sa

with
s x ? 3 ?
l-s—-t 1—-xz-—y l—-s—-t 1—-zaz—y
we have
2M s z 0\’
5 — 2 _
|f(8,) f(x’y)|< 62 {(1—S—t 1—(E—y>

2
T —
(1—s—t 1—x—y> }’

where M is the bound of f. Combining the above inequalities, we get for all
(s,t), (z,y) € Sa and f € H,(Sa) that

2M s fﬂ i
|f(s,t)f(:c,y)|<€+5z{(1_s_t 1—x—y)

+(1_i_t‘1_5_y)2}- (10)

By linearity and positivity of the operators T,,, we can write
T (fr2yy) = )| < T ([f(s,8) = Fz,9)]52,9)
+ 1 f (@ 9l [Tn(pos 2, y) — polz, y)] -
Using the inequality (10), we get

T (f;2,y) — flz,y)] < e+ (6+M+ 2MB(A)) T (003 2,y) — @ol,y)

2
AM
~z B UTalers2,9) = ea(@,y)l

+Tn (025 2,y) — pa(x, y)| }
oM
+t5 T (352, 9) — p3(x,y)|

+

where

B(A) = max {(

22 + y? x Y }
(z,y)€Sa ’

l—z—y)?’l-axz—y l—z—y
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Taking into account (9), the proof is completed. O

3. Approximation of L,,(f;x,y) in H,(Sa)

In this section, we prove the convergence of the operators L, (f;z,y) in the
space H,,(S4). It is obvious from (1) and (2) that L,(1;z,y) = 1. For the
other moments, we need the following Lemma.

Lemma 2. Assume that the conditions (1)—(iv) are satisfied. Then, for the op-
erators L, defined by (1) and (2), we have

(a) Ly(p1;2,y) = b"“w(w ),
(b) Ly(p2;2,y) = "*1@2(96 Y),
(©) Lupsie,y) = 5tz o (0, ) 4 Lobito g (o, y) 4+ Losten oy, ).

Proof. Using (4), we get

1 o Qhin
L . — L pn k l.
n(%plvxay) Qn(u,v;x,y) k;() by, k,l(u7 1})1‘ Y

Considering the conditions (i) and (ii), we have

1 oo

ak'ln k.l
L ; = E P
n(@hx’y) (1 —l'—y)Qn+1(u v T y T k:l u U)'r Yy
bpi1x >
_ n+1 z : Pknj_l(u,l})l'kyl.

bp(1 — 2 —y) Qg1 (u,v;2,y) =0

By (1), we get (a) at once. In a similar manner, using (5), then considering
the conditions (i) and the second part of (ii), we get (b).
Finally, by (6),

1 = (apy n)2 + (cky n>2 k1
Ln ; , — sl sl Pn , .
(@3 T y) Qn (U, vz, y) kzlz:o b% k,l (’LL ’U)LC Yy

By the conditions (i)—(iv), we obtain

T o0
Ln(¢3§$,y)=m—v.w Z akln) P i(u,v)z Py
n ’ k=1,l=0
) = k,l—1
_ n) P
b2Q (u,v;x,y) k_zl:_l i) balu- )"y
(o)

k,l
E (ak+1,1,n) Plzl-i-l,l(uvv)x Y

=72
b2, ( uvxyklo
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oo
Y 2 k1
R ST N O—— c Pl (u,v)x
b2 Q0 (u, v; z, y) ;O( kitin)” P (v, v)2ty
Lﬂ S Gusran PR (o)’
b2, (u, v; x,y)
k,1=0
Y k,l
+L c w )z
b2, (u, v; x, y) kzl:o l+1,n 0 kl ( )z y
bn+13j il
T 20 (v a1 Ly (u,0) 2"y
b1y o
+L Chl, +1P"+1(u,v)xkyl
oo

2dp byt
——nnr Pn+1 ko1l
+b%Qn(u,v;x,y) Z el (u,v)2"y

o0
yenbn+1 n-+1 ko1
BTy a— P (u,v)zy
078 (1, v 2, y) k;_:o ol

bn+15172

= n—+1 k1

—zﬁfﬁrig‘iE:““%wwﬂkﬂﬂwwxy
n-“n L] ,il/ k:,l:O

oo

bn+ly2 1
E k1
950 (o Ck,l+1,n+1pgf+1(u,v)x Y
078 (1, v 2, y) k=0 '

b7z+1 €n

bni1dy
L@l(xvy) + b2 ——pa(z,y)

+b721

= M i Pn+2(u U)xk 1
b2 (u,vs,y) A M Y

oo

2

y bn+1bn+2 2 .
ToA~ 7 N P

JFb%Qn(U,U;a?,y) Z k,l (u,v)z"y

k,i=0
A (0,) + R ()
= bn%;f”sﬂa(%y)‘i‘ bnz% ~p1(2,y) + n;;% ~p2(2,y)
Therefore we get (c). O

By Theorem 1 and Lemma 2, we have the following approximation the-
orem.
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Theorem 3. Let L, : Ho,(Sa) — C(Sa) be a sequence of linear positive oper-
ators defined by (1) and (2). Assume that the conditions (1)—(v) are satisfied.
Then for all f € H,(S4), we have

nlggo [Ln (fs-:) — f||c(sA) =0.
Proof. According to Theorem 1, we should prove that
Jim [ L (i57) = @illogs,y =00 (0=10,1,2,3).

By (1) and (2), Ln(po; %,y) = wo(z,y).
Now let B(A) = sup(, ,)es,{%1(2: ), p2(2,9), ¢3(7,y) }. From Lemma 2
(a) and (b), we have

b
| Ly, (¢1§'a')_801||c(5/4) < Z-H —1‘B(A)

and

[ Ln (0255 7) = P2llos,) <

bZH—l‘B(A).

Therefore, from (v) we obtain
Jim [ L (@i550) = pillogs,y = 0, (1= 1,2).

Finally, by Lemma 2 (c¢) and (iii)—(iv), we get

bpa1by
Ln (i) = alon) = |22 1] gaon)
bpi1dy, bpa1€n
+;;721()01(£L',y)+;;721902($,y)
and hence
. bn+1bn+2
|Ln (p332,y) — p3(z,y)| < Til e3(z,y)
bpi1dy, bpa1€n
e () + T e ()
bni1bn
< % —1‘903(95’9)
b1 K bp1 K.
+$sﬁ(%y) + %@2(%2/)

Taking supremum over S 4 and letting B(A) = sup{p1(z,v), v2(z,y), p3(x,y)},
we get

Lo (93:2,) — pa(a )| < B(A) [

bn 1bn 2 bn 1
+b2n+—1’+(K1+K2) e

n
Passing to limit as n — oo and using (v), the proof is completed. O
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4. The Order of Approximation

In this section, we compute the order of approximation of L, (f;z,y) to f(z,y)
in terms of the modulus of continuity and the modified Lipschitz class func-
tionals. We start with the following lemma.

Lemma 4. Let L, be a sequence of linear positive operators defined by (1) and
(2). Then the following estimate

Lo (Vo1 = 1) + ea(5:0) — paten) sz

g%&@[

holds true, where

bn+1 bn+2 bn+1

b7,

~1|+4

by
—4Hm+m)“}

n b,

B(A) = sup {¢i(z,y), p2(x,y), ¢3(x,y)}
(z,y)€SA

and K1, Ko are the positive constants given in (iii) and (iv).

Proof. Using Cauchy—Schwarz inequality and noting that L, (1;z,y) = 1, we
get

Ly (% (e1(5.1) — 1(, ) + (a(s, 1) — pale,9)) s 2, y)

< 20 (61650~ @100 + (2(5,0) — ol ) 52.0).
On the other hand by Lemma 2, we can write

Lo ((e1(5:1) = e1(2.9))* + (e2(5,1) — el ) 12.y)
2y

< |Ln (p332,y) — ws(@,y)| + 1-z—y |Ln (¢2:2,y) — pa(z,y)|
2x
T . Ln s Ly - 9
1_x_yl (p13:2,y) — p1(z,y)|
bpi1bn by by,
SB(A){W1’+4 b“1’+(K1+K2) bﬂ.
Whence the result. O

Theorem 5. Let L,, be a sequence of linear positive operators defined by (1)
and (2). Then for all f € H,(S4), we have

1L (f5+52) = Fllesa

<2 <f, \/ B |

where B(A), Ky and Ks are the same as in Lemma 4.

bn+1bn+2
- 1] +4

by by
b+1 _ 1’ + (K, + K>) b;rlD ,

n
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Proof. Because of linearity and monotonicity of the operators L,,, we get by
(7) and (8) that

\Lo(f32,y) = f(z,y)| < L ([f(s,8) = f(@,9)];2,y)
( (f \/@1 —¢1(z,9))? +(s02(8,t)—<p2(33,y))2> wy)

L, W (916 =010+ (2l ) palo ) P
On

w(f,0n) |1+

Now using Lemma 4 and choosing

5, = \/B(A) {

we get the result after taking supremum over S4 on both sides of the inequality.
O

bn+1 bn+2
2
bn

—1‘—1—4

bn+1 bn+1
-1 K+ K
bn ‘ ( 1+ 2) b2 :|a

n

Now, we are aimed to compute the order of convergence of the operators
in terms of the modified Lipschitz class functionals. We introduce the modified
Lipschitz class functions by

Lipy (o) := q f € C(Sa) 1 |f(s,t) — f(z,y)]

2
s T
(1—s—t 1—x—y>
a/2

+< t oy y)Q] © (t,s),(z,y) €54 b,

IA
S

l—-s—t 1—xz—

where M is positive constant depending on f and « € (0, 1].

Theorem 6. Let L,, be a sequence of linear positive operators defined by (1)
and (2). Then for all f € Lip},(a), we have

1L (Fir) = Fllogsyy < M [B(A) [

bn+1bn+2
T -1

+4

b+1 b+1 a/2
Z _1’ (K1+K2)2 ” )

n

where B(A), Ky and Ks be the same as in Lemma 4.
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Proof. Using linearity and monotonicity properties of the operators L, and
considering that f € Lip},(«a), we get

|Ln(fi2,y) — flz,y)| < Lo (|f(s,t) — f(zy)] s 2,9)

2
gMLn<K S )
l-s—t 1—-z-—y

97 /2
+ ! - Y HH
l—s—t 1—2—y Y

Applying Hélder inequality with p = L and ¢ = {1~ and taking into account
that L, (1;z,y) = 1, we obtain

La(f2,9) — F(a,) )
<M {Ln W (01(5,8) — @1(,1)” + (p2(5,1) — p2(w )’ xy) } |

Taking supremum over S4 on both sides of the above inequality and consid-
ering Lemma 4, the proof is completed. O

5. Functional Partial Differential Equations and Their
Consequences

In this section, we obtain a functional partial differential equation satisfied by
the particular case of the operators L, (f;x,y). We consider the operators

1 > k l
LE(f: - - P k,l
w(fiz,y) O lu 0 0) kglzof(k+l+bn’k+l+bn> (s v)a*y
(11)

where Q,,(u,v; z,y) is given by (2).

Theorem 7. Let (x,y) € Sa, f € C(Sa), Li(f;z,y) be defined by (11) and
(2). Assume that

0
P (Qn(u,v;2,9)) = Ap(z,9) U (u, vy 2, y), (12)
0
% (Qn(u,v;2,y)) = By (z,y) Q0 (u, v; 2, y). (13)

Then L% (f;x,y) satisfy the following functional partial differential equations
8 * * *
vo-Lu(fiz,y) = —wdn(@,y) Lo (fi2,9) + baLlp (o1 fiz,y),  (14)

)
yafyLZ(f;x,y) = —yBu(x,y) Ly (f;2,y) + b Ly (02 f;2,y)  (15)
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(””ai ; y;‘y) Li(fravy) = (—wAu(ery) — yBala,y) L 2.9)
b L (i), (16)

where h(s,t) = =5 + —t—.

Proof. Since f € C(S4), it is clear by (2) that the series in (11) converges uni-
formly for all (x,y) € Sa. Therefore, term by term differentiation is permissible
in S4. Differentiating both sides of (11) with respect to « and considering (12),
we get

D Lifsw0) = ~ A )L (i)

1 k I
- - P k—1 l.
o (uvzy)klzlo f<k+l+b k+l+bn> s 0)z™ "y

Multiplying both sides by z, we have

a . .
z%Ln(fv‘Tay) = fon(x,y)Ln(f;x,y)

oo

b k k l
__n i pr k1
Tz, y) g_:obnf<k+Z+bn’k+z+bn) ulw v)7y

= —zAn(z,y) L, (f;2,y) + bu Ly (01 f52,y),

which gives (14). Now, differentiating both sides of (11) with respect to y and
taking into account (13), we get

0

a*LZ(f;x,y) = —Bu(z,y)L,(f;2,y)

S I
P k l—l.
+Qn(u v, r y OZ <k+l_|_b k+l+bn> k,l(u7v)x Yy

Multiplying both sides by y, we obtain

o . .
yafyLn(f;ar,y) = —aBy(z,y) L, (f;2,y)

oo

= - .
+Q”(u’v;x’y)kzObnf(k+l+bn’k+l+bn) et (u,v) "y

= —yBy(z,y) Ly (f;x,y) + b L} (02 f52,y).

This proves (15). Adding (14) and (15), then taking into account that L* is
linear, we get (16) O
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Obviously, letting Q,, (u,v; z,y) = W and b, =n in (11), we get
the non-tensor bivariate Meyer—Konig and Zeller operators
— (n+k+1) k !
M., (f: — (1 — g — ) H? (n k,l )
(fizy) =1 -z-y) Z nlk!l! vy k+l+n’ k+1l+n

k,1=0

Hence we have the following Corollary at once.

Corollary 8. Let (x,y) € Sa, f € C(Sa). Then M, (f;x,y) satisfy the follow-
ing functional partial differential equations

0 — 1

s Ma(Fi) = TR M (i) + (i), (17)
0 —y(n

y@Mn(f;x,y) = MMn(f;x,y) +nMn(p2fi2,y)  (18)

(xaax * y;y) M (f;2,y) = m (@ +y) M (f; 2, y) + nMy (R f; 2, y),

where h(s,t) = 5= + 4.

Although, one can write the first few moments of the operators M, (f; z,y)
directly from Lemma 2, we saw in the proof of this lemma that the computa-
tions are rigorous. The above corollary is very useful in computing the moments
easily. For instance taking f = ¢ = 1 in (17), we get

n+1
Mn(@l;xay): n L;01(:'67:[/)

Under the same choice in (18), we obtain

n+1
Mo (252, y) = ——p2(,y)-
Now set hq(z,y) = (17357?/)2 and ho(x,y) = (1737.1,)2' Choosing f = ¢1, in
(17) and f = @9 in (18), we have
n+1)(n-+2 n+1
Mo(insz,y) = DI Dy 1 O o )
and
n+1)(n+2 n+1
M (o) = “EDEED )+ O ),

respectively. Adding both sides of the above equalities, we get

(n+1)(n+2) (n+1)

M, (@332, y) = = p3(2,y) + 5= (e1(z,y) + @2(2,9)).

We should note that, the formulae for the moments M, (p;;z,y), i = 1,2,3,
agrees with the corresponding formulae from Lemma 2. As a consequence of
Theorem 1, we can state the following corollary.
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Corollary 9. For all f € H,(Sa), we have
T}EI;O My, (f5+5-) — ch(sA) = 0.

Following the similar procedures as in the proofs of Theorems 5 and 6, we
can state the following corollaries, which gives the order of approximation by
the non-tensor bivariate Meyer—Konig and Zeller operators in terms of modulus
of continuity and Lipschitz class functions, respectively.

Corollary 10. For all f € H,(S4), we have

4
IM,, (f;, ) — f”C(SA) < 2w (f, B(A) {9717;‘ }) ;
where B(A) = sup (g y)es,{91(2,9), p2(2, ), ¢3(2,y) -

Corollary 11. Let o € (0,1]. For all f € Lip}, (), we have

on + 47772
n2 ’

M (F5) — Fllegs, < M [B(A) [

where B(A) = sup(, y)es, {91(2, ), p2(2, ), p3(2,y)}-

6. Multivariate Korovkin Type Theorem

In this section we consider the domain
m
Sa:= {x:(ml,...,xm) ER™:2;>0(i=1,...,m), Zmi§A<1},
i=1

and introduce the space of functions
Ho(Sa) : ={f € C(Sa) : [f(s) = f(x)]
< w(fillea(s), - om(s) = (r(x), ... om(x)))}

where x = (21,...,2Zm), s = (S1,---,8m), i(s) = 1_'|S‘ (i=1,...,m), |s| :=
>, s and

(1(8), -y om(8)) = (01(%), - (X)) = | D (ils) — pil(x))*.

i=1

In a similar manner as in Theorem 1, we can give the m—dimensional version
of our Korovkin type theorem as follows:

Theorem 12. Let T), : H,,(Sa) — C(Sa) be a sequence of linear positive oper-
ators satisfying

dim T, (pis ) = @illogs,y =00 i=0,1,2,...,m+1
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where
po(s) =1,
pi(s) = 15"'8' (i=1,...,m),
2
pm1(e Z (1 18] )
and || - [|¢(s,) denotes the usual supremum norm on C(Sa). Then for all f €

H.(S4), we have
nh—>H;o ||Tn (fa X ) - f”C(SA) =0.

Now, lets consider the multivariate Meyer—Konig and Zeller operators
(see [19])

. 7; = n+k|> k
Mn(fax)* (1|X|)n+11§)< k X, (HEN,XGSA)

Where X = (21, s Tm), k= (k1. ., km), 0=(0,...,0m7 ) xk = xlfl
xhm x| =21 4+ -+ 2, and
n+lkl\ (ki +- k)
k N ikl k! '

Theorem 13. Let x € Sa, f € C(Sa). Then M, (f;x) satisfy the following
functional partial differential equations

0 . - _(TL-‘rl).’Ei
%Mn(f7x)_ T

(sz > e ) _(n+1)1|_X||X|Mn(f§x)+nMn(hf§x)7

where h(s) = 1|—S|‘s|'
Using the above theorem, the moments are computed in the following

lemma.

M, (f;x) + nM, (i f;%x), (i=1,...,m),

Ty

Lemma 14. For the multivariate Meyer—Konig and Zeller operators, we have
M, (po; x) = 1,
n+1
M, (901'7 X) =

@i(x)7 (7’ = 1,- "am)a
(n+1)(n+2) i

1
’I’L2 QDWH’

M, (omi1,%) =

Therefore, as a consequence of Theorem 12 and Lemma 14, we can state
the following approximation theorem.
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Theorem 15. For all f € H,(Sa), we have
nlgrolo M, (f5+5-) — f”c(sA) = 0.
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