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1. Introduction

This note is motivated by a conjecture proposed by Barker and Larman in the
frames of the geometric tomography theory [1,2].

Conjecture. Let P , Q, M ⊂ R
n be convex bodies such that M belongs to

the interiors of P and Q. Assume that whenever H ⊂ R
n is a hyperplane

supporting M , the (n−1)-volumes vol(P ∩H) and vol(Q∩H) are equal. Then
P coincides with Q.

For the general case this problem remains open, the answer is known to
be affirmative for some particular cases only. For instance, the Barker–Larman
conjecture is shown to be true if P , Q are convex polygons and M is a strongly
convex centrally-symmetric body with analytical boundary in R

2, see [3], or if
P , Q are convex polyhedra and M is a ball in R

n, n ≥ 3, see [4].
It is quite natural to ask whether the Barker–Larman conjecture holds

true for convex bodies in non-Euclidean geometries like hyperbolic or spherical
one. Comparing to the Euclidean case, one has to consider geodesic lines and
totally geodesic hyperplanes instead of straight lines and hyperplanes, and the
volumes of involved sets have to be measured with respect to corresponding
non-Euclidean metric structures.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-015-0458-y&domain=pdf
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The theorem bellow affirms the Barker–Larman conjecture for convex
polygons in the hyperbolic plane H

2.

Theorem. Let P , Q ⊂ H
2 be convex polygons, which contain a disk Ω of

radius t > 0 in their interiors. Assume the lengths of segments P ∩τ and Q∩τ
are equal for every geodesic τ ⊂ H

2 tangent to the circle Σ = ∂Ω. Then P
coincides with Q.

Our proof is based on ideas developed by Yaskin in [4] for convex polygons
in the Euclidean plane. The principal observation, which follows from the proof,
is that the Barker–Larman conjecture in the two-dimensional case does not
depend on the particular metric structure of R2 or H

2. Apparently, one can
accomplish the proof for a large class of metric spaces realized in terms of R2

or domains of R2 equipped with non-Euclidean distance functions possessing
generic analyticity properties. We discuss the case of H2 just as a simple and
illustrative example only.

Notice that a more general case of convex polyhedra in R
n, n ≥ 3, was

treated in [4] in a slightly different manner, so it would be interesting to adapt
Yaskin’s technics in order to prove a multi-dimensional analogue of the theorem
for convex bodies in H

n or in other non-Euclidean metric spaces with dimension
n ≥ 3.

2. Proof

There are various models for the hyperbolic geometry. We will apply the classi-
cal Beltrami–Klein model H2 = (D2, dH), where the hyperbolic plane is viewed
as the disc D2 ⊂ R

2 of radius R with the distance between points x, y ∈ D2

given by

dH(x, y) =
R

2
ln

(
bx

ax
· ay

by

)
, (1)

here a, b ∈ ∂D2 are the endpoints of the chord in D2 passing through x and
y, they are arranged so that the direction from a to b coincides with the direc-

tion from x to y; besides,
bx

ax
and

ya

ya
denote quotients of directed Euclidean

segments in D2. The constant R determines the curvature −1/R2 of the hyper-
bolic plane.

Geodesics of the hyperbolic plane are represented by chords of D2, hence
convex polygons in the hyperbolic plane are represented by convex polygons in
D2. Besides, if the center of a circle in the hyperbolic plane corresponds to the
center O of the disk D2, then this circle is represented by a circle in D2, and
the hyperbolic and Euclidean radii are related by the formula rE = tanh rH

R .
Applying the Beltrami–Klein model, we will treat P and Q as convex

polygons inside the disk D2. By assumption, the interiors of P and Q have a
non-empty intersection, which contains a circle Σ of radius rH = t. Without
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Figure 1. Circle Σ and tangent chord τ(α), segments eP
j of

∂P , segments eQ
j of ∂Q, intersection points pj and qj

loss of generality, we assume that the center of Σ corresponds to the center O
of D2, this may be always provided by using an isometry of H2. Hence Σ is
represented by a Euclidean circle in D2 centered at O with Euclidean radius
ε = tanh t

R .
Draw an arbitrary chord τ in D2 tangent to Σ. Clearly, τ intersects P

and Q along some segments p1p2 and q1q2 respectively. By assumption, the
lengths of segments calculated with the help of (1) are equal,

dH(p1, p2) = dH(q1, q2). (2)

Let us demonstrate, that if (2) holds true for every chord τ tangent to the
circle Σ, then P coincides with Q.

Suppose P does not coincide with Q. Because of (2), neither of these
polygons can be a subset of the other, so their boundaries ∂P , ∂Q have a
non-empty intersection. Moreover, there exists a point x1 ∈ ∂P ∩ ∂Q, where
∂P meets transversally ∂Q, i.e. a segment of ∂P meets transversally a segment
of ∂Q at x1. Denote these line segments by eP

1 ⊂ ∂P and eQ
1 ⊂ ∂Q. The point

x1 may be either an intrinsic point of both segments (see Fig. 1, left), or their
common endpoint (see Fig. 1, right), the latter happens if x1 is a vertex for
∂P or for ∂Q.

Parameterize the circle Σ by a natural angle parameter α. The chord in
D2 tangent to Σ at α will be denoted by τ(α).

There exists a chord τ(α0) passing through x1. Clearly, this chord inter-
sects ∂P and ∂Q at the point x1 and at some other point x2, which is also an
intersection point for ∂P and ∂Q due to (2). Denote corresponding segments
of ∂P and ∂Q, which contain x2, by eP

2 and eQ
2 respectively.

It is easy to see, that there exist a sufficiently small neighborhood U of
α0 in Σ (or a semi-neighborhood, if x1 or x2 is a vertex for P or Q) such
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that every chord τ(α), α ∈ U , intersects the segments eP
1 , eQ

1 and eP
2 , eQ

2 , the
intersection points are still denoted by p1, q1 and p2, q2 respectively, see Fig.1.

By assumption, the points pj , qj satisfy (2) whenever α ∈ U . In particu-
lar, it immediately follows from (2) that eP

2 and eQ
2 are transversal at x2, since

eP
1 and eQ

1 are transversal at x1.
In order to apply (2) with the help of (1), consider the endpoints of τ(α)

denoted by aτ and bτ . Then (2) reads as follows:

R

2
ln

(
bτp1
aτp1

· aτp2
bτp2

)
=

R

2
ln

(
bτq1
aτq1

· aτq2
bτq2

)
, (3)

and hence we get

bτp1
aτp1

· aτp2
bτp2

· aτq1
bτq1

· bτq2
aτq2

= 1. (4)

By assumption, (4) holds true for all α ∈ U . Notice that both (3) and
(4) remains true if one interchanges aτ and bτ , so one can ignore how the
endpoints aτ and bτ in τ(α) are arranged with respect to pj and qj .

Let us rewrite (4) in Cartesian coordinates. Denote by êP
j , êQ

j , τ̂(α) the
straight lines in R

2 containing the segments eP
j , eQ

j , τ(α) respectively. Besides,
denote by ξj , ηj , τ unit direction vectors of êP

j , êQ
j , τ̂(α) respectively. The

vector τ being the unit speed vector of Σ with respect to the parametrization
α, rearrange the endpoints aτ , bτ of τ(α) so that τ is directed from aτ to bτ .

The straight line êP
j is represented by r = xj + tjξj , where tj stands

for an arc length of êP
j . Similarly, the straight line êQ

j is represented by r =
xj + sjηj , where sj denotes an arc length of êQ

j . Finally, the straight line τ̂(α)
is represented by r = ετ⊥ + στ , where σ stands for the arc length of τ̂(α)
measured from the point α ∈ Σ in the direction of τ , and τ⊥ denotes a unit
vector orthogonal to τ .

For the intersection points pj and qj we have:

pj = xj + tj(pj)ξj = ετ⊥ + σ(pj)τ , (5)

qj = xj + sj(qj)ηj = ετ⊥ + σ(qj)τ . (6)

From (5)–(6) we get:

σ(pj) =
ε〈ξj , τ 〉 + 〈xj , τ 〉〈ξj , τ

⊥〉 − 〈xj , τ
⊥〉〈ξj , τ 〉

〈ξj , τ
⊥〉 =

ε〈ξj , τ 〉 +
[
ξj ,xj

]
〈ξj , τ

⊥〉 ,

(7)

σ(qj) =
ε〈ηj , τ 〉 + 〈xj , τ 〉〈ηj , τ

⊥〉 − 〈xj , τ
⊥〉〈ηj , τ 〉

〈ηj , τ
⊥〉 =

ε〈ηj , τ 〉 +
[
ηj ,xj

]
〈ηj , τ

⊥〉 ,

(8)
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where 〈, 〉 and [, ] stand for the scalar and vector products respectively; it is
assumed that the pair τ⊥, τ is positively oriented, so [τ⊥, τ ] = 1. Moreover,
σ(aτ ) = −ρ, σ(bτ ) = ρ, where ρ =

√
R2 − ε2.

Consequently, we obtain:

aτpj = σ(pj) + ρ, bτpj = σ(pj) − ρ, (9)
aτqj = σ(qj) + ρ, bτqj = σ(qj) − ρ. (10)

Substituting (9)–(10) and (7)–(8) into (4), we get:

ρ − ε〈ξ1,τ〉+[ξ1,x1]

〈ξ1,τ⊥〉
ρ + ε〈ξ1,τ〉+[ξ1,x1]

〈ξ1,τ⊥〉
·

ρ + ε〈ξ2,τ〉+[ξ2,x2]

〈ξ2,τ⊥〉
ρ − ε〈ξ2,τ〉+[ξ2,x2]

〈ξ2,τ⊥〉
·

ρ + ε〈η1,τ〉+[η1,x1]

〈η1,τ⊥〉
ρ − ε〈η1,τ〉+[η1,x1]

〈η1,τ⊥〉
·

ρ − ε〈η2,τ〉+[η2,x2]

〈η2,τ⊥〉
ρ + ε〈η2,τ〉+[η2,x2]

〈η2,τ⊥〉
= 1.

Finally, this leads to the following equality:(
ρ〈ξ1, τ

⊥〉 − ε〈ξ1, τ 〉 − [ξ1,x1]
) (

ρ〈ξ2, τ
⊥〉 + ε〈ξ2, τ 〉 + [ξ2,x2]

)
· (ρ〈η1, τ

⊥〉 + ε〈η1, τ 〉 + [η1,x1]
) (

ρ〈η2, τ
⊥〉 − ε〈η2, τ 〉 − [η2,x2]

)
=

(
ρ〈ξ1, τ

⊥〉 + ε〈ξ1, τ 〉 + [ξ1,x1]
) (

ρ〈ξ2, τ
⊥〉 − ε〈ξ2, τ 〉 − [ξ2,x2]

)
· (ρ〈η1, τ

⊥〉 − ε〈η1, τ 〉 − [η1,x1]
) (

ρ〈η2, τ
⊥〉 + ε〈η2, τ 〉 + [η2,x2]

)
.

(11)

This equality holds true for all α ∈ U . Moreover, if one introduces
Cartesian coordinates in R

2 with the origin O so that τ⊥ = (cos α, sin α),
τ = (− sin α, cos α), then (11) will be rewritten as a trigonometric identity
with respect to α, its coefficients depend both on coordinates of xj and on
coordinates of ξj ,ηj . Since this trigonometric identity holds true for all α in
an open U ⊂ Σ, it holds true for all α ∈ Σ.

Now, consider a pair of straight lines in R
2 passing through x1 and tangent

to Σ. These straight lines don’t coincide, since t > 0. One of them is just τ̂(α0),
which passes through x1 and x2. The other one is some τ̂(α∗

0), which passes
through x1 and does not pass through x2. For this tangent straight line, i.e.
for α = α∗

0, the equality (11) reduces to the following:(
ρ〈ξ2, τ

⊥〉 + ε〈ξ2, τ 〉 + [x2, ξ2]
) · (

ρ〈η2, τ
⊥〉 − ε〈η2, τ 〉 − [x2,η2]

)
=

(
ρ〈ξ2, τ

⊥〉 − ε〈ξ2, τ 〉 − [x2, ξ2]
) · (

ρ〈η2, τ
⊥〉 + ε〈η2, τ 〉 + [x2,η2]

)
.

(12)

Simplifying (12), we get:

ρ [ξ2,η2]
(
ε − 〈x2, τ

⊥〉) = 0. (13)

On the other hand, ρ does not vanish because ε < R. Next, [ξ2,η2] does not
vanish because ξ2, η2 are transversal by assumption. Finally, ε−〈x2, τ

⊥〉 does
not vanish because x2 does not belong to τ̂(α∗

0). Thus, the equality (13) does
not hold true. This contradiction shows that our initial assumption, P 	= Q,
is false, q.e.d.



524 V. Gorkavyy and D. Kalinin Results. Math.

3. Remarks

Remark 1. Evidently, the proved theorem remains true, if one replaces Ω with
an arbitrary convex domain in D2 ⊂ R

2 bounded by a regular curve with an
analytical support function h : S1 → R

1. All that we need to modify is to
replace ε and ρ in (11) by h and by

√
R2 − h2 respectively. The analyticity of

h(α) allows us to maintain the key point of the proof: if (11) holds for α ∈ U ,
then it holds for α ∈ S1.

Remark 2. A similar statement can be proved for convex polygons in the
spherical geometry, when instead of R2 and H

2 we consider a half-sphere S
2
+

of radius R.

Namely, let P , Q be convex polygons in S
2
+, which contain in their inte-

riors a disk Ω of radius t > 0 centered at the pole of S2+. Assume the lengths
of segments P ∩ τ and Q ∩ τ are equal for every geodesic τ ⊂ S

2
+ tangent to

the circle Σ = ∂Ω. Then P coincides with Q.
Here by segments we mean geodesics (arcs of great circles) in S

2
+, their

lengths are measured with respect to the intrinsic distance function in S
2
+.

In order to prove this statement, one can apply to S
2
+ ⊂ R

3 the projection
map Π from the center of sphere to the plane R

2 tangent to S
2
+ at its pole.

Under such one-to-one projection, points of S
2
+ correspond to points of R

2,
geodesic curves in S

2
+ correspond to straight lines in R

2, convex polygons in
S
2
+ are represented by convex polygons in R

2, the disc Ω in S
2
+ is represented

by some disc in R
2. So, we have to prove Theorem not for convex polygons

in S
2
+ but for convex polygons in R

2, the only essential difference is that the
distance between points x, y in R

2 must be defined as the distance between
pre-image points Π−1(x), Π−1(y) in S

2
+. So, instead of the classical Euclidean

distance dE or the hyperbolic distance dH given by (1), we have to consider in
R

2 the distance function given by

dS(x, y) = R arccos
〈x,y〉 + R2√|x|2 + R2

√|y|2 + R2
. (14)

The method of proof remains the same as in the hyperbolic case.

Remark 3. It would be natural to prove our theorem for the case of convex
polygons in R

2 equipped with a distance function different from dE, dH, dS.
The question is to what extent the class of distance functions, for which the
Barker–Larman conjecture remains true, can be extended.
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