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1. Introduction

We recall that the classical Euler’s gamma function may be defined by

Γ(z) =
∫ ∞

0

tz−1e−t d t (1)

for �(z) > 0, that the logarithmic derivative of Γ(x) is called the psi or di-
gamma function and denoted by

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

(2)

for x > 0, that the derivatives ψ′(x) and ψ′′(x) for x > 0 are respectively called
the tri-gamma and tetra-gamma functions, and that the derivatives ψ(i)(x) for
i ∈ N and x > 0 are called the polygamma functions.
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We also recall from [3, Chapter XIII] and [17, Chapter IV] that a function
f(x) is said to be completely monotonic on an interval I if it has derivatives of
all orders on I and satisfies 0 ≤ (−1)nf (n)(x) < ∞ for x ∈ I and all integers
n ≥ 0. The class of completely monotonic functions may be characterized by
the celebrated Bernstein-Widder Theorem [17, p. 160, Theorem 12a] which
reads that a necessary and sufficient condition that f(x) should be completely
monotonic in 0 ≤ x < ∞ is that

f(x) =
∫ ∞

0

e−xt dα(t), (3)

where α(t) is bounded and non-decreasing and the integral converges for 0 ≤
x < ∞.

In [16, Theorem 2.1], it was proved that the function

Fα(x) = ln Γ(x + 1) − x ln x + x − 1
2

ln x − 1
2

ln(2π) − 1
12

ψ′(x + α) (4)

is completely monotonic on (0,∞) if and only if α ≥ 1
2 and that the function

−Fα(x) is completely monotonic on (0,∞) if and only if α = 0. Consequently,
the double inequality

xx

ex

√
2πx exp

(
1
12

ψ′
(

x +
1
2

))
< Γ(x + 1) <

xx

ex

√
2πx exp

(
1
12

ψ′(x)
)

(5)

was derived in [16, Corollary 2.1]. These results were also established in the
preprint [10] independently from a different origin and by a different motiva-
tion. For some more information on bounding the gamma function Γ, please
refer to the newly published papers [4–8,14], the survey articles [11–13], and
plenty of references collected therein.

The goal of this paper is to discover best asymptotic formulas and double
inequalities for the factorial n! = Γ(n + 1) and the gamma function Γ(x) in
terms of the tri-gamma function ψ′(x + 1

2

)
. These results have something to

do with the function Fα(x) and the double inequality (5).

2. An Asymptotic Formula and a Double Inequality for n!

In this section, we establish a best asymptotic formula and a double inequality
for the factorial n! = Γ(n + 1) in terms of the tri-gamma function ψ′(x + 1

2

)
.

Theorem 1. As n → ∞, the asymptotic formula

n! ∼ nn

en

√
2πn exp

(
1
12

ψ′
(

n +
1
2

))
(6)

is the most accurate one among all approximations of the form

n! ∼ nn

en

√
2πn exp

(
1
12

ψ′(n + a)
)
, (7)

where a ∈ R.
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Proof. For n ≥ 1, define a sequence wn by

n! = Γ(n + 1) =
√

2π nn+1/2e−n exp
(

1
12

ψ′(n + a)
)

exp wn.

Taking into account

ψ(k)(z + 1) = ψ(k)(z) + (−1)k k!
zk+1

(8)

for k = 1, see [1, p. 260, 6.4.6], yields

wn+1 − wn = 1 + ln(n + 1) −
(

n +
3
2

)
ln(n + 1)

+
(

n +
1
2

)
ln n +

1
12(n + a)2

and

wn+1 − wn =
(

−1
6
a +

1
12

)
1
n3

+
(

1
4
a2 − 3

40

)
1
n4

+ O

(
1
n5

)
.

Hence, we have

lim
n→∞

{
n3

[
wn+1 − wn

]}
=

1
12

− 1
6
a.

Lemma 1.1 in [4,15] states that if the sequence {ωn : n ∈ N} converges to 0
and

lim
n→∞ nk(ωn − ωn+1) = � ∈ R (9)

for k > 1, then

lim
n→∞ nk−1ωn =

�

k − 1
. (10)

Consequently, the sequence wn converges fastest only if a = 1
2 . �

Theorem 2. For every integer n ≥ 1, we have

exp
(

1
240n3

− 11
6720n5

)
<

enn!
nn

√
2πn exp

(
1
12ψ′(n + 1

2

)) < exp
1

240n3
. (11)

Proof. The double inequality (11) may be rewritten as

f(n) = ln Γ(n + 1) −
(

n +
1
2

)
ln n + n − 1

2
ln(2π) − 1

12
ψ′

(
n +

1
2

)
− 1

240n3

≤ 0 (12)

and

g(n) = ln Γ(n + 1) −
(

n +
1
2

)
ln n + n − 1

2
ln(2π)

− 1
12

ψ′
(

n +
1
2

)
− 1

240n3
+

11
6720n5

≥ 0. (13)
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Employing the recurrence formula (8) applied to k = 1 and straightforwardly
computing reveal that f(n + 1) − f(n) = u(n) and g(n + 1) − g(n) = v(n),
where

u(x) = 1 + ln(x + 1) −
(

x +
3
2

)
ln(x + 1) +

(
x +

1
2

)
ln x

+
1

12
(
x + 1

2

)2 − 1
240(x + 1)3

+
1

240x3

and

v(x) = 1 + ln(x + 1) −
(

x +
3
2

)
ln(x + 1) +

(
x +

1
2

)
ln x +

1

12
(
x + 1

2

)2
− 1

240(x + 1)3
+

1
240x3

+
11

6720(x + 1)5
− 11

6720x5
.

It is not difficult to verify that

u′′(x) =
13x + 74x2 + 232x3 + 391x4 + 330x5 + 110x6 + 1

20x5(x + 1)5(2x + 1)4
> 0

and

v′′(x) = − Q(x)
1120x7(x + 1)7(2x + 1)4

< 0,

where

Q(x) = 825x + 5499x2 + 21325x3 + 52589x4

+ 83867x5 + 83881x6 + 47936x7 + 11984x8 + 55.

This shows that u(x) is strictly convex and v(x) is strictly concave on (0,∞).
Further considering limx→∞ u(x) = limx→∞ v(x) = 0, we obtain that u(x) > 0
and v(x) < 0 on (0,∞). Consequently, the sequence f(n) is strictly increasing
and g(n) is strictly decreasing while they both converge to 0. As a result, we
conclude that f(n) < 0 and g(n) > 0 for every integer n ≥ 1. The proof of
Theorem 2 is complete. �

3. An Asymptotic Series and a Double Inequality for Γ

We now discover an asymptotic series and a double inequality for the gamma
function Γ(x) in terms of the tri-gamma function ψ′(x + 1

2

)
.

Theorem 3. As x → ∞, we have

Γ(x + 1) ∼
√

2π xx+1/2 exp
(

1
12

ψ′
(

x +
1
2

)
− x

+
1

240
1
x3

− 11
6720

1
x5

+
107

80640
1
x7

− 2911
1520640

1
x9

+ · · ·
)
. (14)
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Proof. Motivated by the inequality (11), we now consider a new function h(x)
defined by

Γ(x + 1) =
√

2π xx+1/2e−x exp
(

1
12

ψ′
(

x +
1
2

))
exph(x),

that is,

h(x) =
[
ln Γ(x + 1) −

(
x +

1
2

)
ln x + x − ln

√
2π

]
− 1

12
ψ′

(
x +

1
2

)
.

Using the formulas

ln Γ(x + 1) −
(

x +
1
2

)
ln x + x − ln

√
2π =

∞∑
m=1

B2m

2m(2m − 1)x2m−1

and

ψ′(x) =
1
x

+
1

2x2
+

∞∑
m=1

B2m

x2m+1
=

∞∑
m=1

Bm−1

xm
,

see [1, p. 257, 6.1.40] and [1, p. 260, 6.4.11], figures out

h(x) =
∞∑

m=1

B2m

2m(2m − 1)x2m−1
−

∞∑
m=1

Bm−1

12
(
x + 1

2

)m , (15)

where Bk for k ≥ 0 denote the Bernoulli numbers which may be generated by

z

ez − 1
=

∞∑
k=0

Bk
zk

k!
= 1 − z

2
+

∞∑
k=1

B2k
z2k

(2k)!
, |z| < 2π.

Making use of
m∑

k=1

ak(
x + 1

2

)k
=

m∑
k=1

ak

(
1 +

1
2x

)−k 1
xk

=
m∑

k=1

ak

[ ∞∑
i=0

(−k

i

)
1

2ixi

]
1
xk

=
m∑

k=1

∞∑
i=0

ak

2i

(−k

i

)
1

xk+i

in (15), where ak is any sequence and
(−k

i

)
=

1
i!

i−1∏
�=0

(−k − �),

we obtain that

h(x) =
1

240
1
x3

− 11
6720

1
x5

+
107

80640
1
x7

− 2911
1520640

1
x9

+ O

(
1

x11

)
.

The proof of Theorem 3 is complete. �

By truncation of the series (14), under- and upper- approximations can be
obtained. The method for proving this fact is illustrated in the next theorem.
For sake of simplicity, we choose to prove (11).
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Theorem 4. Inequality (11) holds true, for every real number n ≥ 1.

Proof. Let f(x) and g(x) for x ∈ [1,∞) be defined by (12) and (13) respec-
tively. Making use of inequalities

1
12x

− 1
360x3

+
1

1260x5
− 1

1680x7
< ln Γ(x + 1)−

(
x+

1
2

)
ln x + x − 1

2
ln(2π)

<
1

12x
− 1

360x3
+

1
1260x5

and

1
x

+
1

2x2
+

1
6x3

− 1
30x5

< ψ′(x) <
1
x

+
1

2x2
+

1
6x3

− 1
30x5

+
1

42x7
,

which may be deduced from [2, Theorem 2 and Corollary 1], finds that f(x) <
a(x) and g(x) > b(x), where

a(x) =
1

12x
− 1

360x3
+

1
1260x5

− 1
12

[
1

x + 1
2

+
1

2
(
x + 1

2

)2

+
1

6
(
x + 1

2

)3 − 1

30
(
x + 1

2

)5
]

− 1
240x3

= − A(x − 1)
5040x5(2x + 1)5

< 0,

b(x) =
1

12x
− 1

360x3
+

1
1260x5

− 1
1680x7

− 1
12

[
1

x + 1
2

+
1

2
(
x + 1

2

)2

+
1

6
(
x + 1

2

)3 − 1

30
(
x + 1

2

)5 +
1

42
(
x + 1

2

)7
]

− 1
240x3

+
11

6720x5

=
B(x − 1)

20160x7(2x + 1)7

> 0,

A(x) = 3760x + 6565x2 + 5310x3 + 1980x4 + 264x5 + 785,

B(x) = 93268x + 263179x2 + 382830x3

+ 315336x4 + 147504x5 + 35952x6 + 3424x7 + 12547.

The proof of Theorem 4 is thus complete. �

Remark 1. This paper is a slightly revised version of the preprint [9].
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