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Abstract. In this paper we study the structure of an immersed submani-
fold Mn in a Riemannian manifold with flat normal bundle in two ways.
Firstly, we prove that if Mn is compact and satisfies some pointwise pinch-
ing condition, and assume further that the ambient space has pure curva-
ture tensor and non-negative isotropic curvature, then the Betti numbers
βp(M) = 0 for 2 ≤ p ≤ n − 2. Secondly, suppose that Mn is a complete
non-compact submanifold in the Euclidean space with finite total cur-
vature in the sense that its traceless second fundament form has finite
Ln-norm, then we show that the spaces of L2 harmonic p-forms on Mn

have finite dimensions for all 2 ≤ p ≤ n − 2.
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1. Introduction

The geometric structure and topological properties of submanifolds in various
ambient space have been studied extensively during past few years. In [2], Cao–
Shen–Zhu showed that a complete stable minimal immersed hypersurface Mn

in R
n+1 with n ≥ 3 must have only one end. The proof of Cao–Shen–Zhu

mainly use a Liouville theorem of Schoen–Yau [11] asserting that a complete
stable minimal hypersurface of Rn+1 can not admit a non-constant harmonic
function with finite Dirichlet integral. This result was generalized by Li–Wang

Supported by NSFC grant Nos 11326045,11401099.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-015-0435-5&domain=pdf


314 H. Lin Results. Math.

[10], they showed that if a complete minimal hypersurface Mn in R
n+1 has

finite index, then the dimension of the space of L2 harmonic 1-forms on M is
finite, and M has finitely many ends. In [13], Yun proved that for a complete
oriented minimal hypersurface Mn in R

n+1 with n ≥ 3, if the Ln-norm of
its second fundamental form is less than an explicit constant, then there are
no nontrivial L2 harmonic 1-forms on M , and M has only one end. Fu–Xu
[6] obtained that if an oriented complete submanifold Mn (n ≥ 3) in R

n+k

has finite total mean curvature and finite total curvature, then Li–Wang’s
conclusion still holds. Recently, Cavalcante, Mirandola and Vitório [4] obtained
a generalization of the result of Fu–Xu without any additional hypothesis on
the mean curvature.

In general, one is interested in understanding relations between the topol-
ogy and geometry of a Riemanian manifold M and the spaces of harmonic
forms. When M is compact, by Hodge theory, the space of harmonic p-forms
on M is isomorphic to its p-th de Rham cohomology group. When M is non-
compact, the Hodge theory does not work anymore, and it is natural to con-
sider L2 harmonic forms, as it is showed that L2-Hodge theory remains valid
in noncompact manifolds as classical Hodge theory work well in the compact
case.

We denote the space of all L2 harmonic p-forms on Mn by Hp(L2(M)).
These spaces have a (reduced) L2-cohomology interpretation. For more results
concerning L2 harmonic p-forms on complete non-compact manifolds, one can
consult a very nice survey of Carron [3].

In the case of harmonic p-forms of higher order, there is a little more
difficulty in computing the Laplacian of their squared norm because of the
Weitzenböck curvature operator, which is the zero order term involving curva-
ture tensor. However, if M is a submanifold with flat normal bundle and the
ambient space has pure curvature tensor, we can estimate the Weitzenböck
curvature operator in terms of the sectional curvature of the ambient space
and the second fundamental form of M by the Gauss equation.

Let Mn be a complete submanifold immersed in a Riemannian manifold
Nn+k. Fix a point x ∈ M and a local orthonormal frame {e1, . . . , en+k} of
Nn+k such that {e1, . . . , en} are tangent fields of Mn. For each α, n+1 ≤ α ≤
n + k, define a linear map Aα : TxM → TxM by

〈AαX,Y 〉 = 〈∇XY, eα〉,
where X, Y are tangent fields and ∇ is the Riemannian connection of Nn+k.
Denote by hα

ij = 〈Aαei, ej〉. The squared norm |A|2 of the second fundamental
form and the mean curvature vector H are defined respectively by

|A|2 =
∑

α

tr(A2
α) =

∑

α

∑

i,j

(hα
ij)

2 and H =
∑

α

Hαeα =
1
n

∑

α

∑

i

hα
iieα.
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For each α, define a linear map φα : TxM → TxM by

〈φαX,Y 〉 = 〈X,Y 〉Hα − 〈AαX,Y 〉,
and a bilinear map φ : TxM × TxM → TxM⊥ by

φ(X,Y ) =
∑

α

〈φαX,Y 〉eα.

It is easy to see that the tensor φ is traceless and

|φ|2 :=
∑

α

tr(φ2
α) = |A|2 − n|H|2,

which measures how much the immersion deviates from being totally umbilical.
We say that Mn has finite total curvature if

∫

M

|φ|ndv < +∞.

If Nn+k is a nonpositive curved manifolds, Hoffman and Spruck [7] proved
the following L1 Sobolev inequality

(∫

M

g
n

n−1 dv

)n−1
n

≤ D(n)
∫

M

(|∇g| + n|H|g) dv ∀ g ∈ C∞
0 (M) (1.1)

where D(n) > 0 is an explicit constant depending only on the dimension n.
Recall that a complete Riemannian manifold Nn+m has non-negative

(n − 1)-th Ricci curvature if for any x ∈ N and any n orthonormal vectors
{e, e1, . . . , en−1} ⊂ TxN , the curvature tensor satisfies

∑n−1
i=1 〈R̄(ei, e)e, ei〉 ≥ 0.

Let Mn be a complete submanifold in Nn+k of non-negative (n − 1)-th Ricci
curvature. Then we have the following inequality due to Leung [8]

RicM ≥ 2(n − 1)H2 − (n − 2)

√
n − 1

n
|H|
√

|A|2 − n|H|2 − n − 1
n

|A|2. (1.2)

Our main results in this paper are stated as follows.

Theorem 1.1. Let Mn be a compact immersed submanifold in Nn+k which has
non-negative (n − 1)-th Ricci curvature. Assume that

|A|2 ≤ n2|H|2
n − 1

. (1.3)

Then every harmonic 1-form on M is parallel. Furthermore, if the inequality
(1.3) is strict at some point, then the Betti numbers β1(M) = βn−1(M) = 0.

Let us recall that a Riemannian manifold N is said to have nonnegative
isotropic curvature if

R1313 + R1414 + R2323 + R2424 − 2R1234 ≥ 0

for every orthonormal 4-frame {e1, e2, e3, e4} of TN . For harmonic forms of
higher order, we have the following result.
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Theorem 1.2. Let Mn be a compact immersed submanifold in Nn+k with flat
normal bundle. Assume that Nn+k has pure curvature tensor and non-negative
isotropic curvature, and

|A|2 ≤ n2|H|2
max{p, n − p} (1.4)

for 2 ≤ p ≤ n−2. Then every harmonic p-form on M is parallel. Furthermore,
if the inequality (1.4) is strict at some point, then the Betti numbers βp(M) = 0
for 2 ≤ p ≤ n − 2.

Finally, we shall generalize Cavalcante, Mirandola and Vitório’s [4] finite-
ness theorem for L2 harmonic 1-forms to L2 harmonic p-forms of higher order.

Theorem 1.3. Let Mn (n ≥ 3) be a complete non-compact immersed sub-
manifold in R

n+k with flat normal bundle and finite total curvature. Then
dimHp(L2(M)) < ∞ for all 2 ≤ p ≤ n − 2.

2. An Estimate for the Weitzenböck Curvature Operator

Let Mn be an n-dimensional complete submanifold, and let � be the Hodge
Laplace-Beltrami operator of Mn acting on the space of differential p-forms.
Denote by Rijkl and R̄ijkl the curvature tensors of Mn and Nn+k, respectively.
Given two p-forms ω and θ on M , we define a pointwise inner product

〈ω, θ〉 =
n∑

i1,...,ip=1

ω(ei1 , . . . , eip)θ(ei1 , . . . , eip).

Observe that we are omitting the normalizing factor 1/p!. The Weitzenböck
formula ([12]) gives

� = ∇2 − Rp, (2.1)

where ∇2 is the Bochner Laplacian and Rp is the Weitzenböck curvature oper-
ator, which is an endomorphism depending upon the curvature tensor of Mn.
Using an orthonormal basis {θ1, . . . , θn} dual to {e1, . . . , en}, one may express
the curvature term Rp as

〈Rp(ω), ω〉 =

〈
n∑

j,k=1

θk ∧ iej
R(ek, ej)ω, ω

〉

for any p-form ω. In particular, if ω is a 1-form and ω� denotes the vector field
dual to ω, then

〈R1(ω), ω〉 = Ric(ω�, ω�).
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By (2.1), we have

1
2
�|ω|2 = |∇ω|2 +

〈
n∑

j,k=1

θk ∧ iej
R(ek, ej)ω, ω

〉

= |∇ω|2 + pF (ω) (2.2)

where

F (ω) = Rijω
ii2...ipωj

i2...ip
− p − 1

2
Rijklω

iji3...ipωkl
i3...ip .

Here, repeated indices are contracted and summed. The Gauss equation implies
that

Rijkl = R̄ijkl + hα
ikhα

jl − hα
ilh

α
jk,

and

Rij =
n∑

k=1

R̄ikjk + nHαhα
ij − hα

ikhα
jk.

Thus,

F (ω) = F1(ω) + F2(ω)

where

F1(ω) =
n∑

k=1

∑

i,j,i2,...,ip

R̄ikjkωii2...ipωj
i2...ip

− p − 1
2

∑
R̄ijklω

iji3...ipωkl
i3...ip

(2.3)

and

F2(ω) = (nHαhα
ij − hα

ikhα
jk)ωii2...ipωj

i2...ip

− p − 1
2

(hα
ikhα

jl − hα
ilh

α
jk)ωiji3...ipωkl

i3...ip

= nHαhα
ijω

ii2...ipωj
i2...ip

− hα
ikhα

jkωii2...ipωj
i2...ip

− (p − 1)hα
ikhα

jlω
iji3...ipωkl

i3...ip . (2.4)

To estimate F1(ω), we need to put some assumption on the curvature
tensor of Nn+k. Let us recall that a Riemannian manifold Nn+k is said to
have pure curvature tensor if for every x ∈ N there is an orthonormal basis
{e1, . . . , en+k} of the tangent space TxN such that 〈R̄(ei, ej)ek, el〉 = 0 when-
ever the set {i, j, k, l} contains more than two elements. It is obvious that all
3-manifolds and conformally flat manifolds have pure curvature tensor.
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We assume that Nn+k has pure curvature tensor and the indices 1 ≤
i1, i2, . . . , in ≤ n are distinct with each other in the following discussion. De-
note by Kij = R̄ijij = 〈R̄(ei, ej)ej , ei〉. Then

F1(ω) =
n∑

k=1

∑

i,i2,...,ip

R̄ikikωii2...ipωi
i2...ip

− p − 1
2

∑
(R̄ijijω

iji3...ipωij
i3...ip

+ R̄ijjiω
iji3...ipωji

i3...ip
)

=
n∑

k=1

Kikωii2...ipωii2...ip − (p − 1)
∑

Kijω
iji3...ipωiji3...ip

=
n∑

k=1

Ki1kωi1i2...ipωi1i2...ip

−
∑

(Ki1i2 + Ki1i3 + · · · + Ki1ip)ω
i1i2i3...ipωi1i2i3...ip

=
n∑

h=p+1

Ki1ihωi1i2...ipωi1i2...ip

=
1
p

p∑

t=1

n∑

h=p+1

Kitihωi1i2···ipωi1i2...ip

≥ 1
p

(
inf

i1,...,in

p∑

t=1

n∑

h=p+1

Kitih

)
|ω|2. (2.5)

On the other hand, to estimate the three terms at the right hand side of
(2.4) in the case 2 ≤ p ≤ n−2, we assume that M has flat normal bundle. Work
at a point x ∈ M , we can choose an orthonormal frame {ei}n

i=1 diagonalizing
(hα

ij) for all α. Hence

F2(ω) = nHαhα
iiω

ii2...ipωi
i2...ip − hα

iih
α
iiω

ii2...ipωi
i2...ip −(p−1)hα

iih
α
jjω

iji3...ipωij
i3...ip

= nHαhα
iiω

ii2...ipωi
i2...ip − hα

iih
α
iiω

ii2...ipωi
i2...ip + hα

jjh
α
jjω

iji3...ipωij
i3...ip

− (hα
ii + hα

jj + hα
i3i3 + · · · + hα

ipip)h
α
jjω

iji3...ipωij
i3...ip

=
nHα

p
(hα

ii + hα
i2i2 + hα

i3i3 + · · · + hα
ipip)ω

ii2...ipωi
i2...ip

− 1

p
(hα

ii + hα
jj + hα

i3i3 + · · · + hα
ipip)

2ωiji3...ipωij
i3...ip

=
1

p
[nHα(hα

i1i1 + · · · + hα
ipip) − (hα

i1i1 + · · · + hα
ipip)

2]ωi1i2...ipωi1i2...ip

=
1

p
(hα

i1i1 + · · · + hα
ipip)(h

α
ip+1ip+1 + · · · + hα

inin)|ωi1i2...ip |2

≥ 1

p
inf

i1,...,in
{(hα

i1i1 + · · · + hα
ipip)(h

α
ip+1ip+1 + · · · + hα

inin)}|ω|2 (2.6)
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for 2 ≤ p ≤ n − 2. To estimate the term at the right side of (2.6), we have the
following lemma.

Lemma 2.1. Let Mn be a complete immersed submanifold with flat normal
bundle. Choose an orthonormal frame such that hα

ij = δijh
α
ij. Then

(hα
i1i1 + · · · + hα

ipip)(h
α
ip+1ip+1

+ · · · + hα
inin)

≥ 2p(n − p)|H|2 − p(n − p)
n

|A|2 − |2p − n|
√

p(n − p)
n

|H|
√

|A|2 − n|H|2.

Proof. Using the Cauchy–Schwarz inequality, we have

|Aα|2 =
p∑

s=1

(hα
isis)

2 +
n∑

t=p+1

(hα
itit)

2

≥ 1
p

(
p∑

s=1

hα
isis

)2

+
1

n − p

(
n∑

t=p+1

hα
itit

)2

=
n

p(n − p)

(
p∑

s=1

hα
isis

)2

− 2n

n − p
Hα

p∑

s=1

hα
isis +

n2

n − p
|Hα|2.

Thus,
(

p∑

s=1

hα
isis

)2

− 2pHα

p∑

s=1

hα
isis + np|Hα|2 − p(n − p)

n
|Aα|2 ≤ 0,

which implies that

pHα −
√

p(n − p)
n

√
|Aα|2 − n|Hα|2 ≤

p∑

s=1

hα
isis

≤ pHα +

√
p(n − p)

n

√
|Aα|2 − n|Hα|2, (2.7)

and also
(

p∑

s=1

hα
isis

)2

− nHα
p∑

s=1

hα
isis ≤ p(n − p)

n
|Aα|2 − np|Hα|2 + (2p − n)Hα

p∑

s=1

hα
isis .

(2.8)

Substituting (2.7) into (2.8) yields
(

p∑

s=1

hα
isis

)2

− nHα

p∑

s=1

hα
isis ≤ p(n − p)

n
|Aα|2 − np|Hα|2 + p(2p − n)|Hα|2

+ |2p − n|
√

p(n − p)
n

|Hα|
√

|Aα|2 − n|Hα|2.
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Hence using the Cauchy–Schwarz inequality again yields

(hα
i1i1 + · · · + hα

ipip)(h
α
ip+1ip+1

+ · · · + hα
inin)

=
∑

α

⎡

⎣nHα

p∑

s=1

hα
isis −

(
p∑

s=1

hα
isis

)2
⎤

⎦

≥ 2p(n − p)
∑

α

|Hα|2 − p(n − p)
n

∑

α

|Aα|2

− |2p − n|
√

p(n − p)
n

∑

α

|Hα|
√

|Aα|2 − n|Hα|2

≥ 2p(n − p)|H|2 − p(n − p)
n

|A|2 − |2p − n|
√

p(n − p)
n

|H|
√

|A|2 − n|H|2.

�

We first assume that 2p ≤ n. From Lemma 2.1, by the Cauchy–Schwarz
inequality, we obtain

(hα
i1i1 + · · · + hα

ipip)(h
α
ip+1ip+1 + · · · + hα

inin)

≥ 2p(n − p)|H|2 − p(n − p)

n
|A|2 − (n − 2p)2

4s
|H|2 − sp(n − p)

n
(|A|2 − n|H|2)

=

[
(2 + s)p(n − p) − (n − 2p)2

4s

]
|H|2 − (1 + s)p(n − p)

n
|A|2

= (1 + s)

[
(2 + s)p(n − p) − (n−2p)2

4s

1 + s
|H|2 − p(n − p)

n
|A|2

]
. (2.9)

for all s > 0. Denote by

f(s) =
(2 + s)p(n − p) − (n−2p)2

4s

1 + s
.

A straightforward computation shows that

max
s>0

f(s) = f(
n − 2p

2p
) = np.

Hence from (2.9), we get

(hα
i1i1 + · · · + hα

ipip)(h
α
ip+1ip+1

+ · · · + hα
inin)

≥ (1 +
n − 2p

2p
)
[
np|H|2 − p(n − p)

n
|A|2]

=
1
2
[
n2|H|2 − (n − p)|A|2] . (2.10)
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If 2p ≥ n, then 2(n − p) ≤ n. Thus replacing p by n − p in (2.9) and
(2.10), we have

(hα
i1i1 + · · · + hα

ipip)(h
α
ip+1ip+1

+ · · · + hα
inin) ≥ 1

2
(n2|H|2 − p|A|2). (2.11)

Combining (2.10) and (2.11), we have

(hα
i1i1 + · · · + hα

ipip)(h
α
ip+1ip+1

+ · · · + hα
inin) ≥ 1

2
(
n2|H|2 − max{p, n − p}|A|2)

(2.12)

for all 2 ≤ p ≤ n − 2. Combining (2.2), (2.5), (2.6) and (2.12), we conclude
that

1
2
�|ω|2 ≥ |∇ω|2 +

⎛

⎝ inf
i1,··· ,in

p∑

t=1

n∑

h=p+1

Kitih

⎞

⎠ |ω|2

+
1
2
(
n2|H|2 − max{p, n − p}|A|2) |ω|2. (2.13)

3. Proof of the Main Results

Theorem 3.1. Let Mn be a compact immersed submanifold in Nn+k which has
non-negative (n − 1)-th Ricci curvature. Assume that

|A|2 ≤ n2H2

n − 1
. (3.1)

Then every harmonic 1-form on M is parallel. Furthermore, if the inequality
(3.1) is strict at some point, then the Betti numbers β1(M) = βn−1(M) = 0.

Proof. Given ω ∈ H1(L2(M)), it follows from (1.2) and (3.1) that

F (ω) = Ric(ω�, ω�)

≥
[
2(n − 1)H2 − (n − 2)

√
n − 1

n
|H|
√

|A|2 − nH2 − n − 1
n

|A|2
]

|ω|2

≥
[
2(n − 1) − (n − 2)

√
n − 1

n

√
n2

n − 1
− n − n − 1

n

n2

n − 1

]
H2|ω|2

= 0.

Combining with (2.2), we conclude that
1
2
�|ω|2 = |∇ω|2 + F (ω) ≥ 0.

By the compactness of M and the maximum principle, |ω| = constant. Hence
|∇ω| = 0 = F (ω). The first equality means that ω is parallel. If (3.1) is strict
at some point x0 ∈ M , then the Ricci curvature of Mn is positive at x0.
Hence F (ω) = Ric(ω�, ω�) = 0 implies that ω�(x0) = 0, which is equivalent to
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ω(x0) = 0. Since ω is parallel, ω = 0 on M . Hence β1(M) = 0. By duality,
βn−1(M) = β1(M) = 0. �
Theorem 3.2. Let Mn be a compact immersed submanifold in Nn+k with flat
normal bundle. Assume that Nn+k has pure curvature tensor and non-negative
isotropic curvature, and

|A|2 ≤ n2H2

max{p, n − p} (3.2)

for 2 ≤ p ≤ n−2. Then every harmonic p-form on M is parallel. Furthermore,
if the inequality (3.2) is strict at some point, then the Betti numbers βp(M) = 0
for 2 ≤ p ≤ n − 2.

Proof. Let ω ∈ Hp(L2(M)) for 2 ≤ p ≤ n − 2. Since Nn+k has non-negative
isotropic curvature, by Lemma 2.2 of [5], we have

inf
i1,...,in

p∑

t=1

n∑

h=p+1

Kitih ≥ 0, (3.3)

which, combining with (2.13) and the hypothesis, implies that
1
2
�|ω|2 ≥|∇ω|2 +

1
2
(
n2|H|2 − max{p, n − p}|A|2) |ω|2 ≥ 0. (3.4)

The remaining argument is similar to the proof of Theorem 3.1. �
Remark 3.1. It is well known that non-negative sectional curvature implies
non-negative isotropic curvature.

To obtain finiteness theorems for L2 harmonic p-forms under Ln-norm
curvature of Mn, we need the following L2 Sobolev inequality. Putting g =
f

2(n−1)
n−2 with f ∈ C1

0 (M) in (1.1), using the Hölder inequality yields
(∫

M

|f | 2n
n−2 dv

)n−2
n

≤ 2(n−1)D(n)
n − 2

∫

M

f
n

n−2 |∇f |dv + nD(n)
∫

M

|H|f 2(n−1)
n−2 dv

≤ 2(n − 1)D(n)
n − 2

(∫

M

|f | 2n
n−2 dv

) 1
2
(∫

M

|∇f |2dv

) 1
2

+ nD(n)
(∫

M

|f | 2n
n−2 dv

) 1
2
(∫

M

|H|2f2dv

) 1
2

,

which implies the following L2 Sobolev inequality
(∫

M

|f | 2n
n−2 dv

)n−2
n

≤ c(n)
∫

M

(|∇f |2 + |H|2f2)dv ∀f ∈ C1
0 (M) (3.5)

for some c(n) > 0 depending only on the dimension n.

Theorem 3.3. Let Mn (n ≥ 3) be a complete non-compact immersed sub-
manifold of R

n+k with flat normal bundle and finite total curvature. Then
dimHp(L2(M)) < ∞ for all 2 ≤ p ≤ n − 2.
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Proof. Let ω ∈ Hp(L2(M)) for 2 ≤ p ≤ n − 2. Since ω satisfies the refined
Kato’s inequality ([1])

|∇ω|2 ≥ (1 + Kp)|∇|ω||2,
where

Kp =

{
1

n−p if 2 ≤ p ≤ n/2,
1
p if n/2 ≤ p ≤ n − 2,

we get from (2.13) that

1
2
�|ω|2 ≥ (1 + Kp)|∇|ω||2 +

1
2
(
n2|H|2 − max{p, n − p}|A|2) |ω|2. (3.6)

On the other hand, we have

1
2
�|ω|2 = |ω|�|ω| + |∇|ω||2,

which, combining with (3.6), implies that

|ω|�|ω| ≥ Kp|∇|ω||2 +
1
2
(
n2|H|2 − max{p, n − p}|A|2) |ω|2

= Kp|∇|ω||2 − n

2
(|A|2 − n|H|2)|ω|2 +

1
2
(n − max{p, n − p})|A|2|ω|2

= Kp|∇|ω||2 − n

2
|φ|2|ω|2 +

1
2

min{p, n − p}|A|2|ω|2. (3.7)

Fix a point x0 ∈ M and denote by ρ(x) the geodesic distance on M from
x0 to x. Let us choose η ∈ C∞

0 (M) satisfying

η(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 on Bx0(r0) ∪ (M\Bx0(2r)),
ρ(x, x0) − r0 on Bx0(r0 + 1)\Bx0(r0),
1 on Bx0(r)\Bx0(r0 + 1),
2r−ρ(x,x0)

r on Bx0(2r)\Bx0(r)

(3.8)

where r > r0 + 1 and r0 will be determined later. Multiplying (3.7) by η2 and
integrating by parts over M , and using the Cauchy–Schwarz inequality, we get

0 ≤
∫

M

(η2|ω|�|ω| − Kpη
2|∇|ω||2)dv +

n

2

∫

M

|φ|2η2|ω|2dv

−1
2

min{p, n − p}
∫

M

|A|2η2|ω|2dv

= −2
∫

M

η|ω|〈∇η,∇|ω|〉dv − (1 + Kp)
∫

M

η2|∇|ω||2dv

+
n

2

∫

M

|φ|2η2|ω|2dv − 1
2

min{p, n − p}
∫

M

|A|2η2|ω|2dv (3.9)
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≤ (b − 1 − Kp)
∫

M

η2|∇|ω||2dv +
1
b

∫

M

|ω|2|∇η|2dv

+
n

2

∫

M

|φ|2η2|ω|2dv − 1
2

min{p, n − p}
∫

M

|A|2η2|ω|2dv (3.10)

for all b > 0. On the other hand, it follows from (3.5) and the Hölder inequality
that

∫

M

|φ|2η2|ω|2dv ≤
(∫

supp(η)

|φ|ndv

) 2
n (∫

M

|η|ω|| 2n
n−2 dv

)n−2
n

≤ c(n)

(∫

supp(η)

|φ|ndv

) 2
n ∫

M

(|∇(η|ω|)|2 + |H|2η2|ω|2) dv

= E(η)
∫

M

(η2|∇|ω||2 + |ω|2|∇η|2 + |H|2η2|ω|2)dv

+ 2E(η)
∫

M

η|ω|〈∇η,∇|ω|〉dv (3.11)

where E(η) = c(n)(
∫
supp(η)

|φ|ndv)
2
n . Substituting (3.11) into (3.10) and using

the Cauchy–Schwarz inequality, we have

0 ≤
(

b − 1 − Kp +
nE(η)

2

)∫

M

η2|∇|ω||2dv +
(

1
b

+
nE(η)

2

)∫

M

|ω|2|∇η|2dv

+ nE(η)
∫

M

η|ω|〈∇η,∇|ω|〉dv +
nE(η)

2

∫

M

|H|2η2|ω|2dv

− 1
2

min{p, n − p}
∫

M

|A|2η2|ω|2dv

≤
(

b − 1 − Kp +
nE(η)

2
+

nE(η)γ
2

)∫

M

η2|∇|ω||2dv

+
(

1
b

+
nE(η)

2
+

nE(η)
2γ

)∫

M

|ω|2|∇η|2dv +
nE(η)

2

∫

M

|H|2η2|ω|2dv

− 1
2

min{p, n − p}
∫

M

|A|2η2|ω|2dv

for any γ > 0. Thus,

C

∫

M

η2|∇|ω||2dv ≤D

∫

M

|ω|2|∇η|2dv +
nE(η)

2

∫

M

|H|2η2|ω|2dv

− 1
2

min{p, n − p}
∫

M

|A|2η2|ω|2dv (3.12)
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where

C = 1 + Kp − b − (1 + γ)nE(η)
2

,

D =
(1 + γ)nE(η)

2γ
+

1
b
.

Since M has finite total curvature, we can fix r1 large enough such that
(∫

M\Bx0 (r1)

|φ|ndv

) 2
n

<
Kp

nc(n)
.

Take r0 ≥ r1, thus supp(η) ⊂ M\Bx0(r1), and E(η) <
Kp

n . Let γ = b = 1,
then C = Kp − nE(η) > 0 and D = nE(η) + 1 > 0. It follows from (3.5) and
the Cauchy-Schwarz inequality that
(∫

M

|η|ω|| 2n
n−2 dv

)n−2
n

≤ c(n)
∫

M

(|∇(η|ω|)|2 + |H|2η2|ω|2)dv

≤ c(n)(1 + s)
∫

M

η2|∇|ω||2dv + c(n)
(

1 +
1
s

)

×
∫

M

|ω|2|∇η|2dv + c(n)
∫

M

|H|2η2|ω|2dv (3.13)

for all s > 0. Substituting (3.12) into (3.13) yields
(∫

M

|η|ω|| 2n
n−2 dv

)n−2
n

≤
[
c(n)(1 + s)C−1D + c(n)

(
1 +

1
s

)]∫

M

|ω|2|∇η|2dv

+
[n
2

E(η)c(n)(1 + s)C−1 + c(n)
] ∫

M

|H|2η2|ω|2dv

− 1
2

min{p, n − p}c(n)(1 + s)C−1

∫

M

|A|2η2|ω|2dv.

(3.14)

By a direct computation, we have
[n
2

E(η)c(n)(1 + s)C−1 + c(n)
]
|H|2 − 1

2
min{p, n − p}c(n)(1 + s)C−1|A|2

≤ c(n)
[
1
2
E(η)(1 + s)C−1 +

1
n

− 1
2

min{p, n − p}(1 + s)C−1

]
|A|2

≤ c(n)
[
1
2
(E(η) − 1)(1 + s)C−1 +

1
n

]
|A|2

≤ c(n)
[
1
2
(
Kp

n
− 1)K−1

p +
1
n

]
|A|2

≤ 0.
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Hence (3.14) reduces to
(∫

M

|η|ω|| 2n
n−2 dv

)n−2
n

≤ C1

∫

M

|ω|2|∇η|2dv (3.15)

for some constant C1 = C1(n) > 0.
It follow from (3.8) and (3.15) that
(∫

Bx0 (r)\Bx0 (r0+1)

|ω| 2n
n−2 dv

)n−2
n

≤ C1

∫

Bx0 (r0+1)\Bx0 (r0)

|ω|2dv

+
C1

r2

∫

Bx0 (2r)\Bx0 (r)

|ω|2dv.

Since |ω| ∈ L2(M), taking r → ∞, we have
(∫

M\Bx0 (r0+1)

|ω| 2n
n−2 dv

)n−2
n

≤ C1

∫

Bx0 (r0+1)\Bx0 (r0)

|ω|2dv. (3.16)

It follows from the Hölder inequality that
∫

Bx0 (r0+2)\Bx0 (r0+1)

|ω|2dv

≤ vol(Bx0(r0 + 2))
2
n

(∫

Bx0 (r0+2)\Bx0 (r0+1)

|ω| 2n
n−2 dv

)n−2
n

.

Combining with (3.16), we conclude that there exists a constant C2 > 0 de-
pending on vol(Bx0(r0 + 2)) such that

∫

Bx0 (r0+2)

|ω|2dv ≤ C2

∫

Bx0 (r0+1)

|ω|2dv. (3.17)

From (3.7), we get

|ω|�|ω| ≥ Kp|∇|ω||2 − F |ω|2 (3.18)

where F : M → [0,∞) is the function given by

F =
n

2
|φ|2 − 1

2
min{p, n − p}|A|2.

Fix x ∈ M and take ϕ ∈ C1
0 (Bx(1)). Multiplying (3.18) by ϕ2|ω|q−2, q ≥ 2,

and integrating by parts, we obtain

Kp

∫

Bx(1)

ϕ2|ω|q−2|∇|ω||2dv −
∫

Bx(1)

Fϕ2|ω|qdv

≤ −(q − 1)
∫

Bx(1)

ϕ2|ω|q−2|∇|ω||2dv − 2
∫

Bx(1)

〈|ω| q
2 ∇ϕ, |ω| q

2 −1ϕ|∇|ω||〉dv

≤ (1 − q + Kp)
∫

Bx(1)

ϕ2|ω|q−2|∇|ω||2dv +
1

Kp

∫

Bx(1)

|ω|q|∇ϕ|2dv



Vol. 68 (2015) On the Structure of Submanifolds in Euclidean Space 327

which implies that

(q − 1)
∫

Bx(1)

ϕ2|ω|q−2|∇|ω||2dv ≤
∫

Bx(1)

[Fϕ2 +
1

Kp
|∇ϕ|2]|ω|qdv. (3.19)

On the other hand, using the Cauchy-Schwarz inequality, we have
∫

Bx(1)

|∇(ϕ|ω| q
2 )|2dv ≤

(
1 +

q

2ε

)∫

Bx(1)

|ω|q|∇ϕ|2dv

+
q

2

(q

2
+ ε
)∫

Bx(1)

ϕ2|ω|q−2|∇|ω||2dv

for any ε > 0. Combining with (3.19) and taking ε = 1
2 , we conclude that

∫

Bx(1)

|∇(ϕ|ω| q
2 )|2dv

≤
∫

Bx(1)

{
q(1 + q)
4(q − 1)

Fϕ2 +
[
1 + q +

q(1 + q)
4(q − 1)Kp

]|∇ϕ|2
}

|ω|qdv. (3.20)

Applying (3.5) to ϕ|ω| q
2 and using (3.20), we have

(∫

Bx(1)

(ϕ|ω| q
2 )

2n
n−2 dv

)n−2
n

≤ c(n)
∫

Bx(1)

|∇(ϕ|ω| q
2 )|2dv

+ c(n)
∫

Bx(1)

|H|2(ϕ|ω| q
2 )2dv

≤
∫

Bx(1)

(Aϕ2 + B|∇ϕ|2)|ω|qdv

where

A =
q(q + 1)c(n)

4(q − 1)
F + c(n)|H|2 ≤ qc(n)(F + |H|2)

and

B = c(n)
[
q + 1 +

q(q + 1)
4(q − 1)Kp

]
≤ qnc(n).

Thus,
(∫

Bx(1)

(ϕ|ω| q
2 )

2n
n−2 dv

)n−2
n

≤ qC3

∫

Bx(1)

(ϕ2 + |∇ϕ|2)|ω|qdv (3.21)

for a constant C3 > 0 depending only on n, vol(Bx(1)), supBx(1)F and
supBx(1)|H|2.

Given an integer k ≥ 0, we set qk = 2nk

(n−2)k
and rk = 1

2 + 1
2k+1 . Take

a function ϕk ∈ C∞
0 (Bx(rk)) satisfying ϕk ≥ 0, ϕk = 1 on Bx(rk+1) and

|∇ϕ| ≤ 2k+3. Replacing q and ϕ in (3.21) by qk and ϕk respectively, we get
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(∫

Bx(rk+1)

|ω|qk+1dv

) 1
qk+1

≤ (qkC34k+4)
1
qk

(∫

Bx(rk)

|ω|qkdv

) 1
qk

. (3.22)

Applying the Moser iteration to (3.22), we conclude that

|ω|2(x) ≤ ‖ω‖2L∞(Bx(
1
2 )

≤ C4

∫

Bx(1)

|ω|2dv (3.23)

for a constant C4 > 0 depending only on n, vol(Bx(1)), supBx(1)F and
supBx(1)|H|2. Take x ∈ Bx0(r0 + 1) such that

|ω|2(x) = sup
Bx0 (r0+1)

|ω|2,

then (3.23) implies that

sup
Bx0 (r0+1)

|ω|2 ≤ C4

∫

Bx0 (r0+2)

|ω|2dv.

Combining with (3.17), we have

sup
Bx0 (r0+1)

|ω|2 ≤ C5

∫

Bx0 (r0+1)

|ω|2dv (3.24)

where C5 > 0 depends only on n, vol(Bx0(r0 + 2)), supBx0 (r0+2)F and
supBx0 (r0+2)|H|2.

Finally, let V be any finite dimensional subspace of Hp(L2(M)). Accord-
ing to Lemma 11 of [9], there exists an ω ∈ V such that

dimV
∫

Bx0 (r0+1)

|ω|2dv ≤ vol(Bx0(r0 + 1))(min{n,dimV}) sup
Bx0 (r0+1)

|ω|2.

Combining with (3.24) we conclude that

dimV ≤ C6

where C6 > 0 depends only on n, vol(Bx0(r0 + 2)), supBx0 (r0+2)F and
supBx0 (r0+2)|H|2. This implies that Hp(L2(M)) has finite dimension, which
complete the proof of Theorem 3.3. �

Remark 3.2. Cavalcante, Mirandola and Vitório’s [4] proved a finiteness the-
orem for L2 harmonic 1-forms on complete submanifolds with finite total cur-
vature in Euclidean space.
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